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Introduction.

Many mathematicians consider Shiing-Shen Chern to be the outstanding contributor
to research in differential geometry in the second half of the twentieth century. Just
as geometry in the first half-century bears the indelible stamp of Élie Cartan, so the
seal of Chern appears large on the canvas of geometry that has been painted in the
past fifty years. And beyond the great respect and admiration that his scientific
accomplishments have brought him, there is also a remarkable affection and esteem
for Chern on the part of countless colleagues, students, and personal friends. This
reflects another aspect of his career—the friendship, warmth, and consideration Chern
has always shown to others throughout a life devoted as much to helping younger
mathematicians develop their full potential as to his own research.

Our recounting of Chern’s life is in two sections: the first, more biographical in
nature, concentrates on details of his personal and family history; the second gives a
brief report on his research and its influence on the development of twentieth-century
mathematics.

Our main sources for the preparation of this article were the four volumes of
Chern’s selected papers [CSP] published by Springer-Verlag, a collection of Chern’s
Chinese articles by Science Press [SCW], and many conversations with Chern himself.
Letters within square brackets refer to the references at the end of this article, whereas
numbers within square brackets refer to items from the Bibliography of the Publications
of S.S. Chern, found in the second volume of [CSP].

Early life.

Chern was born on October 28, 1911 in Jia Xin. His father, Bao Zheng Chern, passed
the city level Civil Service examinations at the end of the Qing Dynasty, and later
graduated from Zhe Jiang Law School and practiced law. He and Chern’s mother, Mei
Han, had one other son and two daughters.

Because his grandmother liked to have him at home, Shiing-Shen was not sent
to elementary school, but instead learned Chinese at home from his aunt. His father
was often away working for the government, but once when his father was at home
he taught Shiing-Shen about numbers, and the four arithmetic operations. After his
father left, Shiing-Shen went on to teach himself arithmetic by working out many
exercises in the three volumes of Bi Shuan Mathematics. Because of this he easily
passed the examination and entered Xiu Zhou School, fifth grade, in 1920.

His father worked for the court in Tianjin and decided to move the family there
in 1922. Chern entered Fu Luen middle school that year and continued to find mathe-
matics easy and interesting. He worked a large number of exercises in Higher Algebra
by Hall and Knight, and in Geometry and Trigonometry by Wentworth and Smith. He
also enjoyed reading and writing.
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1926–30, Nankai University.

Chern passed the college entrance examinations in 1926, at age fifteen, and entered
Nankai University to study Mathematics. In the late 1920’s there were few mathe-
maticians with a PhD degree in all of China, but Chern’s teacher, Lifu Jiang, had
received a doctoral degree from Harvard with Julian Coolidge. Jiang had a strong
influence on Chern’s course of study; he was very serious about his teaching, giving
many exercises and personally correcting all of them. Nankai provided Chern with an
excellent education during four happy years.

1930–34, Qing Hua graduate school.

In the early 1930’s, many mathematicians with PhD degrees recently earned abroad
were returning to China and starting to train students. It appeared to Chern that
this new generation of teachers did not encourage students to become original and
strike out on their own, but instead set them to work on problems that were fairly
routine generalizations of their own thesis research. Chern realized that to attain his
goal of high quality advanced training in mathematics he would have to study abroad.
Since his family could not cover the expense this would involve, he knew that he would
require the support of a government fellowship. He learned that a student graduating
from Qing Hua graduate school with sufficiently distinguished records could be sent
abroad with support for further study, so, after graduating from Nankai in 1930, he
took and passed the entrance examination for Qing Hua graduate school. At that time
the four professors of mathematics at Qing Hua were Qinglai Xiong, Guangyuan Sun,
Wuzhi Yang (C. N. Yang’s father), and Zhifan Zheng (Chern’s father-in-law to be),
and Chern studied projective differential geometry with Professor Sun.

While at Nankai Chern had taken courses from Jiang on the theory of curves and
surfaces, using a textbook written by W. Blaschke. Chern had found this deep and
fascinating, so when Blaschke visited Beijing in 1932, Chern attended all of his series
of six lectures on web geometry. In 1934, when Chern graduated from Qing Hua, he
was awarded a two-year fellowship for study in the United States but, because of his
high regard for Blaschke, he requested permission from Qing Hua to use the fellowship
at the University of Hamburg instead. The acting chairman, Professor Wuzhi Yang,
helped both to arrange the fellowship for Chern and for his permission to use it in
Germany. This was the year that the Nazis were starting to expel Jewish professors
from the German universities, but Hamburg University had opened only several years
before and, perhaps because it was so new, it remained relatively calm and a good
place for a young mathematician to study.
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1934–36, Hamburg University.

Chern arrived at Hamburg University in September of 1934, and started working under
Blaschke’s direction on applications of Cartan’s methods in differential geometry. He
received the Doctor of Science degree in February 1936. Because Blaschke travelled
frequently, Chern worked much of the time with Blaschke’s assistant, Kähler. Perhaps
the major influence on him while at Hamburg was Kähler’s seminar on what is now
known as Cartan-Kähler Theory. This was then a new theory and everyone at the
Institute attended the first meeting. By the end of the seminar only Chern was left,
but he felt that he had benefited greatly from it.

When his two year fellowship ended in the summer of 1936, Chern was offered
appointments at both Qing Hua and Beijing University. But he was also offered another
year of support from The Chinese Culture Foundation and, with the recommendation
of Blaschke, he went to Paris in 1936-37 to work under the renowned geometer Élie
Cartan.

1936–37, Paris.

When Chern arrived in Paris in September of 1936, Cartan had so many students eager
to work with him that they lined up to see him during his office hours. Fortunately,
after two months Cartan invited Chern to see him at home for an hour once every
other week during the remaining ten months he was in Paris. Chern spent all his efforts
preparing for these biweekly meetings, working very hard and very happily. He learned
moving frames, the method of equivalence, more of Cartan-Kähler theory, and most
importantly according to Chern himself, he learned the mathematical language and the
way of thinking of Cartan. The three papers he wrote during this period represented
the fruits of only a small part of the research that came out of this association with
Cartan.

1937–43, Kunming and The Southwest University Consortium.

Chern received an appointment as Professor of Mathematics at Qing Hua in 1937. But
before he could return to China, invading Japanese forces had touched off the long
and tragic Sino-Japanese war. Qing Hua joined with Peking University and Nankai
University to form a three-university consortium, first at Changsha, and then, be-
ginning in January 1938, at Kunming, where it was called the Southwest Associated
University. Chern taught at both places. It had an excellent faculty, and in particular
Luogeng Hua was also Professor of Mathematics there. Chern had many excellent stu-
dents in Kunming, some of whom later made substantial contributions to mathematics
and physics. Among these were the mathematician H. C. Wang and the Nobel prize-
winning physicist C. N. Yang. Because of the war, there was little communication with
the outside world and the material life was meager. But Chern was fortunate enough
to have Cartan’s recent papers to study, and he immersed himself in these and in his
own research. The work begun during this difficult time would later become a major
source of inspiration in modern mathematics.
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Chern’s family.

In 1937 Chern and Ms. Shih-Ning Cheng became engaged in Changsha, having been
introduced by Wuzhi Yang. She had recently graduated from Dong Wu University,
where she had studied biology. They were married in July of 1939, and Mrs. Chern
went to Shanghai in 1940 to give birth to their first child, a son Buo Lung. The war
separated the family for six years and they were not reunited until 1946. They have a
second child, a daughter, Pu (married to Chingwu Chu, one of the main contributors
in the development of high temperature superconductors).

The Cherns have had a beautiful and full marriage and family life. Mrs. Chern
has always been at his side and Chern greatly appreciated her efforts to maintain a
serene environment for his research. He expressed this in a poem he wrote on her
sixtieth birthday:

Thirty-six years together
Through times of happiness
And times of worry too.
Time’s passage has no mercy.
We fly the Skies and cross the Oceans
To fulfill my destiny;
Raising the children fell
Entirely on your shoulders.
How fortunate I am
To have my works to look back upon,
I feel regrets you still have chores.
Growing old together in El Cerrito is a blessing.
Time passes by,
And we hardly notice.

In 1978 Chern wrote in the article “A summary of my scientific life and works”:

“I would not conclude this account without mentioning my wife’s role in my
life and work. Through war and peace and through bad and good times we
have shared a life for forty years, which is both simple and rich. If there is
credit for my mathematical works, it will be hers as well as mine.”

1943–45, Institute for Advanced Study at Princeton.

By now Chern was recognized as one of the outstanding mathematicians of China,
and his work was drawing international attention. But he felt unsatisfied with his
achievements, and when O. Veblen obtained a membership for him at the Institute
for Advanced Study in 1943, he decided to go despite the great difficulties of wartime
travel. In fact, it required seven days for Chern to reach the United States by military
aircraft!

This was one of the most momentous decisions of Chern’s life, for in those next two
years in Princeton he was to complete some of his most original and influential work.
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In particular, he found an intrinsic proof of The Generalized Gauss-Bonnet Theorem
[25], and this in turn lead him to discover the famous Chern characteristic classes [33].
In 1945 Chern gave an invited hour address to the American Mathematical Society,
summarizing some of these striking new advances. The written version of this talk
[32] was an unusually influential paper, and as Heinz Hopf remarked in reviewing it for
Mathematical Reviews it signaled the arrival of a new age in global differential geometry
(“Dieser Vortrag. . .zeigt, dass wir uns einer neuen Epoche in der ‘Differentialgeometrie
im Grossen’ befinden”).

1946–48, Academia Sinica.

Chern returned to China in the spring of 1946. The Chinese government had just
decided to set up an Institute of Mathematics as part of Academia Sinica. Lifu Jiang
was designated chairman of the organizing committee, and he in turn appointed Chern
as one of the committee members. Jiang himself soon went abroad, and the actual
work of organizing the Institute fell to Chern. At the Institute, temporarily located
in Shanghai, Chern emphasized the training of young people. He selected the best
recent undergraduates from universities all over China and lectured to them twelve
hours a week on recent advances in topology. Many of today’s outstanding Chinese
mathematicians came from this group, including Wenjun Wu, Shantao Liao, Guo Tsai
Chen, and C. T. Yang. In 1948 the Institute moved to Nanjing, and Academia Sinica
elected eighty-one charter members, Chern being the youngest of these.

Chern was so involved in his research and with the training of students that he
paid scant attention to the civil war that was engulfing China. One day however, he
received a telegram from J. Robert Oppenheimer, then Director of the Institute for
Advanced Study, saying “If there is anything we can do to facilitate your coming to this
country please let us know.” Chern went to read the English language newspapers and,
realizing that Nanjing would soon become embroiled in the turmoil that was rapidly
overtaking the country, he decided to move the whole family to America. Shortly
before leaving China he was also offered a position at the Tata Institute in Bombay.
The Cherns left from Shanghai on December 31, 1948, and spent the Spring Semester
at the Institute in Princeton.

1949–60, Chicago University.

Chern quickly realized that he would not soon be able to return to China, and so would
have to find a permanent position abroad. At this time, Professor Marshall Stone of
the University of Chicago Mathematics Department had embarked on an aggressive
program of bringing to Chicago stellar research figures from all over the world, and
in a few years time he had made the Chicago department one of the premier centers
for mathematical research and graduate education worldwide. Among this group of
outstanding scholars was Chern’s old friend, André Weil, and in the summer of 1949
Chern too accepted a professorship at the University of Chicago. During his eleven
years there Chern had ten doctoral students. He left in 1960 for the University of
California at Berkeley, where he remained until his retirement in 1979.
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Chern and C.N. Yang.

Chern’s paper on characteristic classes was published in 1946 and he gave a one
semester course on the theory of connections in 1949. Yang and Mills published their
paper introducing the Yang-Mills theory into physics in 1954. Chern and Yang were
together in Chicago in 1949 and again in Princeton in 1954. They are good friends and
often met and discussed their respective research. Remarkably, neither realized until
many years later that they had been studying different aspects of the same thing!

1960–79, UC Berkeley.

Chern has commented that two factors convinced him to make the move to Berke-
ley. One was that the Berkeley department was growing vigorously, giving him the
opportunity to build a strong group in geometry. The other was. . .the warm weather.

During his years at Berkeley, Chern directed the thesis research of thirty-one
students. He was also teacher and mentor to many of the young postdoctoral math-
ematicians who came to Berkeley for their first jobs. (This group includes one of the
coauthors of this article; the other was similarly privileged at Chicago.)

During this period the Berkeley Department became a world-famous center for
research in geometry and topology. Almost all geometers in the United States, and in
much of the rest of the world too, have met Chern and been strongly influenced by
him. He has always been friendly, encouraging, and easy to talk with on a personal
level, and since the 1950’s his research papers, lecture notes, and monographs have
been the standard source for students desiring to learn differential geometry. When
he “retired” from Berkeley in 1979, there was a week long “Chern Symposium” in his
honor, attended by over three hundred geometers. In reality, this was a retirement in
name only; during the five years that followed, not only did Chern find time to continue
occasional teaching as Professor Emeritus, but he also went “up the hill” to serve as the
founding director of the Berkeley Mathematical Sciences Research Institute (MSRI).

1981–present. The Three Institutes.

In 1981 Chern, together with Calvin Moore, Isadore Singer, and several other San
Francisco Bay area mathematicians wrote a proposal to the National Science Founda-
tion for a mathematical research institute at Berkeley. Of the many such proposals
submitted, this was one of only two that were eventually funded by the NSF. Chern
became the first director of the resulting Mathematical Sciences Research Institute
(MSRI), serving in this capacity until 1984. MSRI quickly became a highly successful
institute and many credit Chern’s influence as a major factor.

In fact, Chern has been instrumental in establishing three important institutes
of mathematical research: The Mathematical Institute of Academia Sinica (1946),
The Mathematical Sciences Research Institute in Berkeley, California (1981), and The
Nankai Institute for Mathematics in Tianjin, China (1985). It was remarkable that
Chern did this despite a reluctance to get involved with details of administration. In
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such matters his adoption of Laozi’s philosophy of “Wu Wei” (roughly translated as
“Let Nature take its course”) seems to have worked admirably.

Chern has always believed strongly that China could and should become a world
leader in mathematics. But for this to happen he felt two preconditions were required:
(1) The existence within the Chinese mathematical community of a group of strong,

confident, creative people, who are dedicated, unselfish, and aspire to go beyond
their teachers, even as they wish their students to go beyond them.

(2) Ample support for excellent library facilities, research space, and communica-
tion with the world-wide mathematical community. (Chern claimed that these
resources were as essential for mathematics as laboratories were for the experi-
mental sciences).

It was to help in achieving these goals that Chern accepted the job of organizing the
mathematics institute of Academia Sinica during 1946 to 1948, and the reason why he
returned to Tianjin to found the Mathematics Institute at Nankai University after his
retirement in 1984 as director of MSRI .

During 1965–76, because of the Cultural Revolution, China lost a whole genera-
tion of mathematicians, and with them much of the tradition of mathematical research.
Chern started visiting China frequently after 1972, to lecture, to train Chinese math-
ematicians, and to rekindle these traditions. In part because of the strong bonds he
had with Nankai University, he founded the Nankai Mathematical Research Institute
there in 1985. This Institute has its own housing, and attracts many visitors both from
China and abroad. In some ways it is modeled after the Institute for Advanced Study
in Princeton. One of its purposes is to have a place where mature mathematicians and
graduate students from all of China can spend a period of time in contact with each
other and with foreign mathematicians, concentrating fully on research. Another is to
have an inspiring place in which to work; one that will be an incentive for the very
best young mathematicians who get their doctoral degrees abroad to return home to
China.

Honors and awards.

Chern was invited three times to address The International Congress of Mathemati-
cians. He gave an Hour Address at the 1950 Congress in Cambridge, Massachusetts
(the first ICM following the Second World War), spoke again in 1958, at Edinburgh,
Scotland, and was invited to give a second Hour Address at the 1970 ICM in Nice,
France. These Congresses are held only every fourth year and it is unusual for a
mathematician to be invited twice to give a plenary Hour Address.

During his long career Chern was awarded numerous honorary degrees. He was
elected to the US National Academy of Sciences in 1961, and received the National
Medal of Science in 1975 and the Wolf Prize in 1983. The Wolf Prize was instituted in
1979 by the Wolf Foundation of Israel to honor scientists who had made outstanding
contributions to their field of research. Chern donated the prize money he received
from this award to the Nankai Mathematical Institute. He is also a foreign member of
The Royal Society of London, Academie Lincei, and the French Academy of Sciences.
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A more complete list of the honors he received can be found in the Curriculum Vitae
in [CSP].
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An overview of Chern’s research.

Chern’s mathematical interests have been unusually wide and far-ranging and he has
made significant contributions to many areas of geometry, both classical and modern.
Principal among these are:
• Geometric structures and their equivalence problems
• Integral geometry
• Euclidean differential geometry
• Minimal surfaces and minimal submanifolds
• Holomorphic maps
• Webs
• Exterior Differential Systems and Partial Differential Equations
• The Gauss-Bonnet Theorem
• Characteristic classes

Since it would be impossible within the space at our disposal to present a detailed
review of Chern’s achievements in so many areas, rather than attempting a superficial
account of all facets of his research, we have elected to concentrate on those areas
where the effects of his contributions have, in our opinion, been most profound and
far-reaching. For further information concerning Chern’s scientific contributions the
reader may consult the four volume set, Shiing-Shen Chern Selected Papers [CSP].
This includes a Curriculum Vitae, a full bibliography of his published papers, articles
of commentary by André Weil and Phillip Griffiths, and a scientific autobiography in
which Chern comments briefly on many of his papers.

One further caveat ; the reader should keep in mind that this is a mathematical
biography, not a mathematical history. As such, it concentrates on giving an account
of Chern’s own scientific contributions, mentioning other mathematicians only if they
were his coauthors or had some particularly direct and personal effect on Chern’s
research. Chern was working at the cutting edge of mathematics and there were of
course many occasions when others made discoveries closely related to Chern’s and
at approximately the same time. A far longer (and different) article would have been
required if we had even attempted to analyze such cases. But it is not only for reasons
of space that we have avoided these issues. A full historical treatment covering this
same ground would be an extremely valuable undertaking, and will no doubt one day
be written. But that will require a major research effort of a kind that neither of the
present authors has the training or qualifications even to attempt.

Before turning to a description of Chern’s research, we would like to point out a
unifying theme that runs through all of it: his absolute mastery of the techniques of
differential forms and his artful application of these techniques in solving geometric
problems. This was a magic mantle, handed down to him by his great teacher, Élie
Cartan. It permitted him to explore in depth new mathematical territory where others
could not enter. What makes differential forms such an ideal tool for studying local
and global geometric properties (and for relating them to each other) is their two
complementary aspects. They admit, on the one hand, the local operation of exterior
differentiation, and on the other the global operation of integration over cochains, and
these are related via Stokes’ Theorem.
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Geometric structures and their equivalence problems.

Much of Chern’s early work was concerned with various “equivalence problems”. Basi-
cally, the question is how to determine effectively when two geometric structures of the
same type are “equivalent” under an appropriate group of geometric transformations.
For example, given two curves in space, when is there a Euclidean motion that carries
one onto the other? Similarly, when are two Riemannian structures locally isometric?
Classically one tried to associate with a given type of geometric structure various “in-
variants”, that is, simpler and better understood objects that do not change under an
isomorphism, and then show that certain of these invariants are a “complete set”, in
the sense that they determine the structure up to isomorphism. Ideally one should also
be able to specify what values these invariants can assume by giving relations between
them that are both necessary and sufficient for the existence of a structure with a given
set of invariants. The goal is a theorem like the elegant classic paradigm of Euclidean
plane geometry, stating that the three side lengths of a triangle determine it up to con-
gruence, and that three positive real numbers arise as side lengths precisely when each
is less than the sum of the other two. For smooth, regular space curves the solution to
the equivalence problem was known early in the last century. If to a given space curve
σ(s) (parameterized by arc length) we associate its curvature κ(s) and torsion τ(s), it
is easy to show that these two smooth scalar functions are invariant under the group of
Euclidean motions, and that they uniquely determine a curve up to an element of that
group. Moreover any smooth real valued functions κ and τ can serve as curvature and
torsion as long as κ is positive. The more complex equivalence problem for surfaces
in space had also been solved by the mid 1800’s. Here the invariants turned out to be
two smooth quadratic forms on the surface, the first and second fundamental forms,
of which the first, the metric tensor, had to be positive definite and the two had to
satisfy the so-called Gauss and Codazzi equations. The so-called “form problem”, that
is the local equivalence problem for Riemannian metrics, was also solved classically (by
Christoffel and Lipschitz). The solution is still more complex and superficially seems
to have little in common with the other examples above.

As Chern was starting his research career, a major challenge facing geometry was
to find what this seemingly disparate class of examples had in common, and thereby
discover a general framework for the Equivalence Problem. Cartan saw this clearly,
and had already made important steps in that direction with his general machinery
of “moving frames”. His approach was to reduce a general equivalence problem to
one of a special class of equivalence problems for differential forms. More precisely, he
would associate to a given type of local geometric structure in open sets U of Rn, an
“equivalent” structure, given by specifying:
1) a subgroup G of GL(n,R),
2) certain local co-frame fields {θi} in open subsets U of Rn (i.e., n linearly inde-

pendent differential 1-forms in U).
The condition of equivalence for {θi} in U and and {θ∗i } in U∗ is the existence of
a diffeomorphism ϕ of U with U∗ such that ϕ∗(θ∗i ) =

∑n
i=1 aijθj , where (aij) is a

smooth map of U into G. A geometric structure defined by the choices 1) and 2)
is now usually called a “G-structure”, a name introduced by Chern in the course
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of formalizing and explicating Cartan’s approach. For a given geometric structure
one must choose the related G-structure so that its notion of equivalence coincides
with that for the originally given geometric structure, so the invariants of the G-
structure will also be the same as for the given geometric structure. In the case of
the form problem one takes G = O(n), and given a Riemannian metric ds2 in U
chooses any θi such that ds2 =

∑n
i=1 θ

2
i in U . While not always so obvious as in this

case (and a real geometric insight is sometimes required for their discovery) most other
natural geometric equivalence problems, including the ones mentioned above, do admit
reformulation in terms of G-structures.

But do we gain anything besides uniformity from such a reformulation? In fact, we
do, for Cartan also developed general techniques for finding complete sets of invariants
for G-structures. Unfortunately, however, carrying out this solution of the Equivalence
Problem in complete generality depends on his powerful but difficult theory of Pfaffian
systems in involution, with its method of prolongation, a theory not widely known or
well understood even today. In fact, while his preeminence as a geometer was clearly
recognized towards the end of his career, many great mathematicians confessed to
finding Cartan’s work hard going at best, and few mathematicians of his day were able
to comprehend fully his more novel and innovative advances. For example, in a review
of one of his books (Bull. Amer. Math. Soc. vol. 44, p. 601) H. Weyl made this often
quoted admission:

“Cartan is undoubtedly the greatest living master in differential geometry. . .
Nevertheless I must admit that I found the book, like most of Cartan’s papers,
hard reading. . . ”

Given this well-known difficulty Cartan had in communicating his more esoteric ideas,
one can easily imagine that his important insights on the Equivalence Problem might
have lain buried. Fortunately they were spared such a fate.

Recall that Chern had spent his time at Hamburg studying the Cartan-Kähler
theory of Pfaffian systems with Kähler, and immediately after Hamburg Chern spent
a year in Paris continuing his study of these techniques with Cartan. Clearly Chern
was ideally prepared to carry forward the attack on the Equivalence Problem. In a
series of beautiful papers over the next twenty years not only did he do just that,
but he also explained and reformulated the theory with such clarity and geometric
appeal that much (though by no means all!) of the theory has become part of the
common world-view of differential geometers, to be found in the standard textbooks
on geometry. Those two decades were also, not coincidentally, the years that saw the
development of the theory of fiber bundles and of connections on principal G-bundles.
These theories were the result of the combined research efforts of many people and
had multiple sources of inspiration both in topology and geometry. One major thread
in that development was Chern’s work on the Equivalence Problem and his related
research on characteristic classes that grew out of it. In order to discuss this important
work of Chern we must first define some of the concepts and notations that he and
others introduced.

Using current geometric terminology, a G-structure for a smooth n-dimensional
manifold M is a reduction of the structure group of its principal tangent co-frame
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bundle from GL(n,R) to the subgroup G. In particular, the total space of this re-
duction is a principal G-bundle, P , over M consisting of the admissible co-frames
θ = (θ1, . . . , θn), and we can identify the G-structure with this P . There are n canoni-
cally defined 1-forms ωi on P ; if Π : P →M is the bundle projection, then the value of
ωi at θ is Π∗(θi). The kernel of DΠ is of course the sub-bundle of the tangent bundle
TP of P tangent to its fibers, and is usually called the vertical sub-bundle V . Clearly
the canonical forms ωi vanish on V . The group G acts on the right on P , acting simply
transitively on each fiber, so we can identify the vertical space Vθ at any point θ with
the Lie algebra L(G) of left-invariant vector fields on G. Now, as Ehresmann first
noted, a “connection” in Cartan’s sense for the given G-structure (or as we now say,
a G-connection for the principal bundle P ) is the same as a “horizontal” sub-bundle
H of TP complementary to V and invariant under G. Instead of H it is equivalent
to consider the projection of TP onto V along H which, by the above identification
of Vθ with L(G), is an L(G)-valued 1-form ω on P , called the “connection 1-form”. If
we denote the right action of g ∈ G on P by Rg, then the invariance of H under G
translates to the transformation law R∗g(ω) = ad(g−1) ◦ ω for ω, where ad denotes the
adjoint representation of G on L(G). L(G)-valued forms on P transforming in this way
are called equivariant . Since L(G) is a sub-algebra of the Lie algebra L(GL(n,R)) of
n×n matrices, we can regard ω as an n×n matrix-valued 1-form on P , or equivalently
as a matrix ωij of n2 real-valued 1-forms on P .

If σ : [0, 1] →M is a smooth path in M from p to q, then the connection defines a
canonical G-equivariant map πσ of the fiber Pp to the fiber Pq, called parallel transla-
tion along σ; namely πσ(θ) = σ̃(1), where σ̃ is the unique horizontal lift of σ starting
at θ. In general, parallel translation depends on the path σ, not just on the endpoints
p and q. If it depends only on the homotopy class of σ with fixed endpoints, then the
connection is called “flat”. It is easy to see that this is so if and only if the horizontal
sub-bundle H of TP is integrable, and using the Frobenius integrability criterion, this
translates to dωij =

∑
k ωik ∧ ωkj . Thus it is natural to define the matrix Ωij of so-

called curvature forms of the connection, (whose vanishing is necessary and sufficient
for flatness) by dωij =

∑
k ωik ∧ ωkj − Ωij or, in matrix notation, dω = ω ∧ ω − Ω.

Since ω is equivariant, so is Ω. Differentiating the defining equation of the curvature
forms gives the Bianchi identity, dΩ = Ω ∧ ω − ω ∧Ω. A local cross-section θ : U → P
is called an “admissible local co-frame” for the G-structure, and we can use it to pull
back the the connection forms and curvature forms to forms ψij and Ψij on U . Any
other admissible co-frame field θ̂ in U is related to θ by a unique “change of gauge”, g
in U (i.e., a unique map g : U → G) such that θ̂(x) = Rg(x)θ(x). If we use θ̂ to also pull
back the connection and curvature forms to forms ψ̂ and Ψ̂ on U , then, using matrix
notation, it follows easily from the equivariance of ω and Ω that ψ̂ = dg g−1 + gψg−1

and Ψ̂ = gΨg−1.
But where do connections fit into the Equivalence Problem? While Cartan’s

solution to the equivalence problem for G-structures was complicated in the general
case, it became much simpler for the special case that G is the trivial subgroup {e}.
For this reason Cartan had developed a method by which one could sometimes reduce
a G-structure on a manifold M to an {e}-structure on a new manifold obtained by
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“adding variables” corresponding to coordinates in the group G. Chern recognized
that this new manifold was just the total space P of the principal G-bundle, and that
Cartan’s reduction method amounted to finding an “intrinsic G-connection” for P ,
i.e., one canonically associated to the G-structure. Indeed the canonical 1-forms ωi

together with a linearly independent set of the connection forms ωij , defined by the
intrinsic connection, give a canonical co-frame field for P , which of course is the same
as an {e}-structure. Finally, Chern realized that in this setting one could describe
geometrically the invariants for a G-structure given by Cartan’s general method; in
fact they can all be calculated from the curvature forms of the intrinsic connection.

Note that this covers one of the most important examples of a G-structure; namely
the case G = O(n), corresponding to Riemannian geometry. The intrinsic connection is
of course the “Levi-Civita connection”. Moreover, in this case it is also easy to explain
how to go on to “solve the form problem”, i.e., to find explicitly a complete set of local
invariants for a Riemannian metric. In fact, they can be taken as the components
of the Riemann curvature tensor and its covariant derivatives in Riemannian normal
coordinates. To see this, note first the obvious fact that there is a local isometry of
the Riemannian manifold (M, g) with (M∗, g∗) carrying the orthonormal frame ei at p
to e∗i at p∗ if and only if in some neighborhood of the origin the components gij(x) of
the metric tensor of M with respect to the Riemannian normal coordinates xk defined
by ei are identical to the corresponding components g∗ij(x) of the metric tensor of
M∗ with respect to Riemannian normal coordinates defined by e∗i . The proof is then
completed by using the easy, classical fact [ABP, Appendix II] that each coefficient in
the Maclaurin expansion of gij(x) can be expressed as a universal polynomial in the
components of the Riemann tensor and a finite number of its covariant derivatives.

Let us denote by N(G) the semi-direct product G |×Rn of affine transformations
of Rn generated by G and the translations. Correspondingly we can “extend” the
principal G-bundle P of linear frames to the associated principal N(G)-bundle N(P )
of affine frames. Chern noted in [43] that the above technique could be expressed
more naturally, and could be generalized to a wide class of groups G, if one looked
for intrinsic N(G)-connections on N(P ). The curvature of an N(G)-connection on
N(P ) is a two-form Ω on N(P ) with values in the Lie algebra L(N(G)) of N(G).
Now L(N(G)) splits canonically as the direct sum of L(G) and L(Rn) = Rn, and Ω
splits accordingly. The Rn valued part, τ , of Ω is called the torsion of the connection,
and what Chern exploited was the fact that he could in certain cases define “intrinsic”
N(G) connections by putting conditions on τ . For example, the Levi-Civita connection
can be characterized as the unique N(O(n)) connection on N(P ) such that τ = 0. In
fact, in [43] Chern showed that if the Lie algebra L(G) satisfied a certain simple
algebraic condition (“property C”) then it was always possible to define an intrinsic
N(G) connection in this way, and he proved that any compact G satisfies property C.
He also pointed out here, from the point of view of Cartan’s theory of pseudogroups,
why some G-structures do not admit intrinsic connections. The pseudogroup of a
G-structure Π : P → M is the pseudogroup of local diffeomorphisms of M whose
differential preserves the subbundle P . It is elementary that the group of bundle
automorphisms of a principal G-bundle that preserve a given G-connection is a finite
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dimensional Lie group and so a fortiori the pseudogroup of a G-structure with a
canonically defined connection will be a Lie group. But there are important examples
of groups G for which the pseudogroup of a G-structure is of infinite dimension. For
example, if n = 2m and we take G = GL(m,C), then a G-structure is the same
thing as an almost-complex structure, and the group of automorphisms is an infinite
pseudogroup.

Chern solved many concrete equivalence problems. In [6] and [13] he carried this
out for the path geometry defined by a third order ordinary differential equation. Here
the G-structure is on the contact manifold of unit tangent vectors of R2, and G is
the ten-dimensional group of circle preserving contact transformations. In [10], [11]
he generalized this to the path geometry of systems of n-th order ordinary differential
equations. In [23] he considers a generalized projective geometry, i.e., the geometry of
(k+1)(n− k)-parameter family of k-dimensional submanifolds in Rn, and in [20], [21]
the geometry defined by an (n− 1)-parameter family of hypersurfaces in Rn. In [105]
(jointly with Moser) and in [106] he considers real hypersurfaces in Cn. This latter
research played a fundamental rôle in the development of the theory of CR manifolds.

Integral geometry.

The group G of rigid motions of Rn acts transitively on various spaces S of geometric
objects (e.g., points, lines, affine subspaces of a fixed dimension, spheres of a fixed
radius) so that these spaces can be regarded as homogeneous spaces, G/H, and the
invariant measure on G induces an invariant measure on S. This is the so-called
“kinematic density”, first introduced by Poincaré, and the basic problem of integral
geometry is to express the integrals of various geometrically interesting quantities with
respect to the kinematic density in terms of known integral invariants (see [84]). The
simplest example is Crofton’s formula for a plane curve C,∫

n(` ∩ C) d` = 2L(C)

where L(C) is its length, n(` ∩ C) is the number of its intersection points with a line
` in the plane, and d` is the kinematic density on lines. We can interpret this formula
as saying that the average number of times that a line meets a curve (i.e., is incident
with a point on the curve) is equal to twice the length of the curve.

In [18], Chern laid down the foundations for a much generalized integral geometry.
In [W], André Weil says of this paper that:

“. . . it lifted the whole subject at one stroke to a higher plane than where
Blaschke’s school had left it, and I was impressed by the unusual talent and
depth of understanding that shone through it.”

Chern first extended the classical notion of “incidence” to a pair of elements from two
homogeneous spaces G/H and G/K of the same group G. Given aH ∈ G/H and
bK ∈ G/K, Chern calls them “incident” if aH ∩ bK 6= 6©. This definition plays an
important rôle in the theory of Tits buildings.
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In [48] and [84] Chern obtained fundamental kinematic formulas for two subman-
ifolds in Rn. The integral invariants in Chern’s formula arise naturally in Weyl’s
formula for the volume of a tube Tρ of radius ρ about a k- dimensional submanifold
X of Rn. Setting m = n− k, Weyl’s formula is:

V (Tρ) =
∑

0≤i≤k, i even

ci µi(X) ρm+i.

Here the ci are constants depending on m and i,

µi(X) =
∫

M

Ii(Ω)

where Ii is a certain adjoint invariant polynomial of degree i/2 on the Lie algebra of
O(n), and Ω is the curvature form with respect to the induced metric on X. Chern’s
formula (also discovered independently by Federer) is:∫

µe(M1 ∩ gM2) dg =
∑

0≤i≤e, i even

ci µi(M1)µe−i(M2),

where M1 and M2 are submanifolds of Rn of dimensions p and q respectively, e is
even, 0 ≤ e ≤ p + q − n, and ci are constant depend on n, p, q, e. Griffiths made the
following comment concerning this paper [G]:

“Chern’s proof of [this formula] exhibits a number of characteristic features.
Of course, one is the use of moving frames. . . . Another is that the proof
proceeds by direct computation rather than by establishing an elaborate,
conceptual framework; in fact upon closer inspection there is such a concep-
tual framework, as described in [18], however, the philosophical basis is not
isolated but is left to the reader to understand by seeing how it operates in a
non-trivial problem.”

Euclidean differential geometry.

One of the main topics in classical differential geometry is the study of local
invariants of submanifolds in Euclidean space under the group of rigid motions, i.e.,
the equivalence problem for submanifolds. The solution is classical. In fact, the first
and second fundamental forms, I and II, and the induced connection ∇ν on the normal
bundle of a submanifold satisfy the Gauss, Codazzi and Ricci equations, and they form
a complete set of local invariants for submanifolds in Rn. Explicitly these invariants
are as follows:
a) I is the induced metric on M ,
b) II is a quadratic form on M with values in the normal bundle ν(M) such that,

for any unit tangent vector u and unit normal vector v at p, IIv(u) = 〈II(u), v〉 is
the curvature at p of the plane curve σ formed by intersecting M with the plane
spanned by u and v, and
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c) if s is a smooth normal field then ∇ν(s) is the orthogonal projection of the differ-
ential ds onto the normal bundle ν(M).

IIv = 〈II, v〉 is called the second fundamental form in the direction of v. The self-
adjoint operator Av corresponding to IIv is called the shape operator of M in the
direction v.

Chern’s work in this field involved mainly the relation between the global geometry
of submanifolds and these local invariants. He wrote many important papers in the
area, but because of space limitations we will concentrate only on the following:

(1) Minimal surfaces.

Since the first variation for the area functional for submanifolds of Rn is the
trace of the second fundamental form, a submanifold M of Rn is called minimal if
trace(II) = 0. Let Gr(2, n) denote the Grassmann manifold of 2-planes in Rn. The
Gauss map G of a surface M in Rn is the map from M to the Grassmann manifold
Gr(2, n) defined by G(x) = the tangent plane to M at x. The Grassmann manifold
Gr(2, n) can be identified as the hyperquadric z2

1 + . . .+z2
n = 0 of CPn−1 (via the map

that sends a 2-plane V of Rn to the complex line spanned by e1 + ie2, where (e1, e2)
is an orthonormal base for V ). Thus Gr(2, n) has a complex structure. On the other
hand, an oriented surface in Rn has a conformal and hence complex structure through
its induced Riemannian metric. In [79], Chern proved that an immersed surface in Rn

is minimal if and only if the Gauss map is anti-holomorphic. This theorem was proved
by Pinl for n = 4 and is the starting point for relating minimal surfaces with the
value distribution theory of Nevanlinna, Weyl, and Ahlfors. One of the fundamental
results of minimal surface theory is the Bernstein uniqueness theorem, which says that
a minimal graph z = f(x, y) in R3, defined for all (x, y) ∈ R2, must be a plane. Note
that the image of the Gauss map of an entire graph lies in a hemisphere. Bernstein’s
theorem as generalized by Osserman says that if the image of the Gauss map of a
complete minimal surface of R3 is not dense, then the minimal surface is a plane. In
[79], using a classical theorem of E. Borel, Chern generalized the Bernstein-Osserman
theorem to a density theorem on the image of the Gauss map of a complete minimal
surface in Rn, that is not a plane. More refined density theorems were established in
[86], a joint paper with Osserman.

Motivated by Calabi’s work on minimal 2-spheres in Sn, Chern developed in [96]
a general formalism for osculating spaces for submanifolds. He proved that given a
minimal surface in a space form there is an integer m such that the osculating spaces of
order m are parallel along the surface, and gave a complete system of local invariants,
with their relations. As a consequence, he proved an analogue of Calabi’s theorem: if a
minimal sphere of constant Gaussian curvature K in a space form of constant sectional
curvature c is not totally geodesic, then K = 2c/m(m+ 1).

(2) Tight and taut immersions

We first recall a theorem of Fenchel, proved in 1929: if α(s) is a simple closed
curve in R3, parametrized by its arc length, and k(s) is its curvature function, then∫
|k(s)|ds ≥ 2π, and equality holds if and only if α is a convex plane curve. Fary and

Milnor proved that if α is knotted then this integral must be greater than 4π.
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In [62] and [66], Chern and Lashof generalized these results to submanifolds of Rn.
Let Mm be a compact m-dimensional manifold, f : M → Rn an immersion, ν1(M)
the unit normal sphere bundle of M , and dv the natural volume element of ν1(M).
Let N : ν1(M) → Sn−1 denote the normal map, i.e., N maps the unit normal vector
v at x to the parallel unit vector at the origin. Let da denote the volume element of
Sn−1. Then the Lipschitz-Killing curvature G on ν1(M) is defined by the equation
N∗(da) = GdA, i.e., G(v) is the absolute value of the determinant of the shape operator
Av of M along the unit normal direction v. The absolute total curvature τ(M,f) of
the immersion f is the normalized volume of the image of N ,

τ(M,f) =
1

cn−1

∫
ν1(M)

|det(Av)|dv,

where cn−1 is the volume of the unit (n− 1)-sphere.
In [62] Chern and Lashof generalized Fenchel’s theorem by showing that τ(M,f) ≥

2, with equality if and only if M is a convex hypersurface of an (m + 1)-dimensional
affine subspace V . In [66] they obtained the sharper result that

τ(M,f) ≥
∑

βi(M),

where βi(M) is the i-th Betti number of M .
An immersion f : M → Rn is called tight if τ(M,f) is equal to the infimum, τ(M),

of the absolute total curvature among all the immersions of M into Euclidean spaces
of arbitrary dimensions. The study of absolute total curvature and tight immersion
has become an important field in submanifold geometry that has seen many interest-
ing developments in recent years. An important step in this development is Kuiper’s
reformulation of tightness in terms of critical point theory. He showed that for a given
compact manifold M , τ(M) is the Morse number γ of M , i.e., the minimum number
of critical points a non-degenerate Morse function must have. Moreover, an immersion
of M is tight if and only if every non-degenerate height function has exactly τ(M) = γ
critical points. Another development is the concept of taut immersion introduced by
Banchoff and Carter-West. An immersion of M into Rn is called taut if every non-
degenerate Euclidean distance function from a fixed point in Rn to the submanifold
has exactly γ critical points. Taut implies tight, and moreover a taut immersion is an
embedding. Tautness is invariant under conformal transformations, hence using stere-
ographic projection we may assume taut submanifolds lie in the sphere. Pinkall proved
that the tube Mε of radius ε around a submanifold M in Rn is a taut hypersurface if
and only if M is a taut submanifold. In particular, this gives two facts: one is that
the parallel hypersurface of a taut hypersurface in Sn is again taut, another is that to
understand taut submanifolds it suffices to understand taut hypersurfaces. Since the
Lie sphere group (the group of contact transformations carrying spheres to spheres) is
generated by conformal transformations and parallel translations, tautness is invariant
under the Lie sphere group. Note also that the ε-tube Mε of a submanifold M in Sn is
an immersed Legendre submanifold of the contact manifold of the unit tangent bundle
of Sn. Thus tautness really should be defined for Legendre submanifolds of the contact
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manifold of the unit tangent sphere bundle of Sn. Chern and Cecil make this concept
precise in [143] and lay some of the basic differential geometric groundwork for Lie
sphere geometry. There are many interesting examples of tight and taut submanifolds
and many interesting theorems concerning them. But some of the most basic questions
are still unanswered; for example there are no good necessary and sufficient conditions
known for a compact manifolds to be immersed in Euclidean space as a tight or taut
submanifold, and a complete set of local invariants for Lie sphere geometry is yet to
be found.

The Generalized Gauss-Bonnet Theorem.

Geometers tend to make a sharp distinction between “local” and “global” questions,
and it is common not only to regard global problems as somehow more important, but
even to consider local theory “old-fashioned” and unworthy of serious effort. Chern
however has always maintained that research on these seemingly polar aspects of ge-
ometry must of necessity go hand-in-hand; he felt that one could not hope to attack
the global theory of a geometric structure until one understood its local theory (i.e.,
the equivalence problem), and moreover, once one had discovered the local invariants
of a theory, one was well on the way towards finding its global invariants as well! We
shall next explain how Chern came to this contrary attitude, for it is an interesting
and revealing story, involving the most exciting and important events of his research
career: his discovery of an “intrinsic proof” of the Generalized Gauss-Bonnet Theorem
and, flowing out of that, his solution of the characteristic class problem for complex
vector bundles by his striking and elegant construction of what are now called “Chern
classes” from his favorite raw material, the curvature forms of a connection.

The Gauss-Bonnet Theorem for a closed, two-dimensional Riemannian manifold
M was surely one of the high points of classical geometry, and it was generally recog-
nized that generalizing it to higher dimensional Riemannian manifolds was a central
problem of global differential geometry. The theorem states that the most basic topo-
logical invariant of M , its Euler characteristic χ(M), can be expressed as 1/2π times
the integral over M of its most basic geometric invariant, the Gaussian curvature
function K. Although there were many published proofs of this, Chern reproved it
for himself by a new method that was very natural from a moving frames perspec-
tive. Moreover, unlike the published proofs, Chern’s had the potential to generalize to
higher dimensions.

To explain Chern’s method, we start by applying the standard moving frames
approach to n-dimensional oriented Riemannian manifolds M , then specialize to n = 2.
The orientation together with the Riemannian structure give an SO(n) structure for
M . Since the Lie algebra L(SO(n)) is just the skew-adjoint n× n matrices, in the
principal SO(n) bundle F (M) of oriented orthonormal frames of M , in addition to
the n canonical 1-forms (ωi),we will have the connection 1-forms for the Levi-Civita
connection, a skew-adjoint n× n matrix of 1-forms ωij , characterized uniquely by the
zero torsion condition, dωi =

∑
j ωij ∧ ωj . The components Rijkl of the Riemann

curvature tensor in the frame ωi are determined from the curvature forms Ωij by
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Ωij = 1
2

∑
kl Rijkl ωk ∧ ωl (plus the condition of being skew-symmetric in (i, j) and in

(k, l)).
When n = 2, the Lie algebra L(SO(n)) is 1-dimensional; ω11 = ω22 = 0 and ω21 =

−ω12, so there is only one independent ωij , namely ω12, and so only one curvature
equation, dω12 = −Ω12 = −R1212 ω1 ∧ ω2. Now it is easily seen that R1212 is a
constant on every fiber Π−1(x), and its value is in fact the Gaussian curvature K(x).
We can identify the area 2-form, dA, on M with −θ1∧θ2, where (θ1, θ2) is any oriented
orthonormal frame, so that Π∗(dA) = −ω1 ∧ ω2. Thus we can rewrite the above
curvature equation as a formula for the pull-back of the Gauss-Bonnet integrand,
K dA, to F (M):

(∗) Π∗(K dA) = dω12.

In [136] Chern remarks that, along with zero torsion equations, the formula (∗) contains
“. . . all the information on local Riemannian geometry in two dimensions [and]
gives global consequences as well. A little meditation convinces one that (∗)
must be the formal basis of the Gauss-Bonnet formula, and this is indeed the
case. It turns out that the proof of the n-dimensional Gauss-Bonnet formula
can be based on this idea. . . ”

Chern noticed a remarkable property of (∗). Since the Gauss-Bonnet integrand is a
2-form on a 2-dimensional manifold, it is automatically closed, and hence its pull-back
under Π∗ must also be closed. But (except when M is a torus) K dA is never exact,
so we do not expect its pull back to be exact. Nevertheless, (∗) says that it is! This
phenomenon of a closed but non-exact form on the base of a fiber bundle becoming
exact when pulled up to the total space is called transgression. As we shall see, it
plays a key rôle in Chern’s proof.

By elementary topology, in the complement M ′ of any point p of a closed Rie-
mannian manifold M one can always define a smooth vector field e1 of unit length,
and the index of this vector field at p is χ(M). We will now see how this well-
known characterization of the Euler characteristic together with the transgression
formula (∗) leads quickly to Chern’s proof of the Gauss-Bonnet theorem for two-
dimensional M . Let e2 denote the unit length vector field in M ′ making (e1, e2)
an oriented frame, and let θ denote the dual co-frame field in M ′. Since Π com-
posed with θ is the identity map of M ′, we have d(θ∗(ω12)) = θ∗(dω12) = K dA
in M ′, so

∫
M
K dA =

∫
M ′ K dA =

∫
M ′ d(θ∗(ω12)). If we write Mε for the comple-

ment of the open ε-ball about p, then
∫

M ′ = limε→0

∫
Mε

, and by Stokes’ Theorem,∫
M
K dA = limε→0

∫
Sε
θ∗(ω12), where Sε = ∂Mε is the distance sphere of radius ε

about p. The proof will be complete if we can identify the right hand side of the latter
equation with 2π times the index of e1 at p.

Choose Riemannian normal coordinates in a neighborhood U of p and let (ê1, ê2)
denote the local frame field in U defined by orthonormalizing the corresponding coor-
dinate basis vectors, and θ̂ the dual co-frame field. If α(x) denotes the angle between
e1(x) and ê1(x), then we recall that the standard expression for the index or winding
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number of e1 with respect to p is 1
2π

∫
C
dα where C is a small simple closed curve

surrounding p; so we will be done if we can show that the right hand side above is
equal to

∫
Sε
dα.

Let ρ(α) ∈ SO(2) denote rotation through an angle α. The gauge transformation
g : U → SO(2) from the co-frame θ̂ to the co-frame θ is just g(x) = ρ(α(x)), so
by the transformation law for pull-backs of connection forms noted above, θ∗(ω12) =
dα + θ̂∗(ω12). Thus

∫
Sε
θ∗(ω12) can be written as the sum of two terms. The first is

the desired
∫

Sε
dα, and the second term,

∫
Sε
θ̂∗(ω12) clearly tends to zero with ε since

the integrand is continuous at p, while the length of Sε tends to zero.
We now return to the case of a general n-dimensional oriented Riemannian man-

ifold M and develop some machinery we will need to explain the remarkable results
that grew out of this approach to the two-dimensional Gauss-Bonnet Theorem.

A basic problem is how to construct differential forms on M canonically from the
metric. Up in the co-frame bundle, F (M), there is an easy way to construct differential
forms naturally from the metric—simply take “polynomials” in the curvature forms
Ωij . Certain forms Λ constructed this way will “define” a form λ on M by the relation
Λ = Π∗λ, and these are the forms we are after.

To make this precise we consider the ring R of polynomials with real (or complex)
coefficients in n(n − 1)/2 variables {Xij}, 1 ≤ i < j ≤ n. We use matrix notation;
X denotes the n × n matrix Xij of elements of R, where Xji = −Xij for i < j, and
Xii = 0. For g ∈ SO(n), ad(g)X = gXg−1 is the matrix

∑
k,l gik Xkl gjl of elements of

R. If for g in SO(n) and P in R we define ad(g)P in R by (ad(g)P )(X) = P (ad(g)X),
this defines an “adjoint” action of SO(n) on R (by ring automorphisms). The subring
of “ad-invariant” elements of R is denoted by Rad. For future reference we note that
we can also regard X as representing the general n × n skew-symmetric matrix, i.e.,
the general element of the Lie algebra L(SO(n)), and R is just the ring of polynomial
functions on L(SO(n)).

The curvature 2-forms Ωij , being of even degree, commute with each other under
exterior multiplication, so we can substitute them in elements P of R; if P (X) is
homogeneous of degree d in the Xij , then P (Ω) will be a differential 2d-form on F (M).

Now let θ be a local orthonormal co-frame field in an open set U of M , i.e., a
local section θ : U → F (M), and let Ψ = θ∗(Ω) denote the matrix of pulled back
curvature forms in U . Since θ∗ is a Grassmann algebra homomorphism, for any P in
R, θ∗(P (Ω)) = P (Ψ). In particular for any x in U we have θ∗(P (Ω))x = P (Ψx). If
Ψ̂ is the matrix of curvature forms in U corresponding to some other local co-frame
field, θ̂ in U , and g : U → SO(n) is the change of gauge mapping θ to θ̂, then as noted
above, Ψ̂x = ad(g(x))Ψ, so we find P (Ψ̂x) = (ad(g(x))P )(Ψx). Thus in general the
pulled back form P (Ψ) depends on the choice of θ and is only defined locally, in U .
However if (and only if) P is in the subring Rad of ad-invariant polynomials, the form
P (Ψ) is a globally well-defined form on M , independent of the choice of local frame
fields θ used to pull back the locally-defined curvature matrices Ψ. In this case it is
clear that Π∗(P (Ψ)) = P (Ω), a relation that uniquely determines P (Ψ).

There are many ways one might attempt to generalize the Gauss-Bonnet Theorem
for surfaces, but perhaps the most obvious and natural is to associate with every
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compact, oriented, n-dimensional Riemannian manifold without boundary, M , an n-
form λ on M that is canonically defined from the metric, and has the property that∫

M
λ = cnχ(M), where cn is some universal constant. If n is odd then Poincaré duality

implies that χ(M) = 0 when M is without boundary, and since we will only consider
the closed case here, we will assume n = 2k. (On the other hand, for odd-dimensional
manifolds with boundary, the Gauss-Bonnet Theorem is interesting and decidedly non-
trivial!). From the above discussion it is clear that that we should define λ = P (Ψ),
where P is an ad-invariant polynomial, homogeneous of degree k in the Xij . In fact
there is an obvious candidate for P—the classical Pfaffian, Pf, uniquely determined
(up to sign) by the condition that Pf(X)2 = det(X) (cf. [MS], page 309).

A Generalized Gauss-Bonnet Theorem had already been proved in two papers,
one by Allendoerfer and the other by Fenchel. Both proofs were “extrinsic”—they
assumed M could be isometrically embedded in some Euclidean space. (A paper of
Allendoerfer and Weil implied that the existence of local isometric embeddings was
enough, thereby settling the case of analytic metrics). These earlier proofs wrote the
Generalized Gauss-Bonnret integrand as the volume element times a scalar that was
a complicated polynomial in the components of the Riemann tensor. In [25] Chern
for the first time wrote the integrand as the Pfaffian of the curvature forms and then
provided a simple and elegant intrinsic proof of the theorem along the lines of the
above proof for surfaces.

Let S(M) denote the bundle of unit vectors of the tangent bundle to M , and
π : S(M) → M the natural projection. Given a co-frame θ in F (M) let e1(θ) denote
the first element of the frame dual to θ. Then e1 : F (M) → S(M) is a fiber bundle
and clearly Π : F (M) → M factors as Π = π ◦ e1. Let λ be the n-form Pf(Ψ) on M ,
and Λ = p∗(λ) its pull-back to S(M). In [25] Chern first proves a transgression lemma
for Λ, i.e., he explicitly finds an n− 1-form Θ on S(M) satisfying dΘ = Λ. As in two
dimensions let M ′ be the complement of some point p in M and construct a smooth
cross-section ξ of S(M) over M ′. Then π ◦ ξ is the identity map of M ′, so just as in
the two dimensional argument we find d(ξ∗(Θ)) = λ, and

∫
M
λ = limε→0

∫
Sε
ξ∗(Θ).

Finally, the construction of Θ is so explicit that Chern is able to evaluate the right
hand side by an argument similar to the one in the surface case, and he finds that it
is indeed a universal constant times the Euler characteristic of M .

Mathematicians in general value proofs of new facts much more highly than elegant
new proofs of old results. It is worth commenting why [25] is an exception to this rule.
The earlier proofs of the Generalized Gauss-Bonnet Theorem were virtually a dead end
while, as we shall see below, Chern’s intrinsic proof was a key that opened the door to
the secrets of characteristic classes.

Characteristic classes.

The co-frame bundle, F (M), that keeps re-appearing in our story, is an important
example of a mathematical structure known as a principal G-bundle. These were
first defined and their study begun only in the late 1930’s, but their importance was
quickly recognized by topologists and geometers, and the theory underwent intensive
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development during the 1940’s. By the end of that decade the beautiful classification
theory had been worked out, and with it the related theory of “characteristic classes”,
a concept whose importance for the mathematics of the latter half of the twentieth
century it would be difficult to exaggerate. (As we will see below, in the language
we have been using, the classification problem is the equivalence problem for principal
bundles, and characteristic classes are invariants for this equivalence problem).

In order to explain Chern’s rôle in these important developments we will first
review some of the basic mathematical background of the theory.

We will consider only the case of a Lie group G. Since the theory is essentially
the same for a Lie group and one of its maximal compact subgroups, we will also
assume that G is compact. A “space” will mean a paracompact topological space,
and a G-space will mean a space, P , together with a continuous right action of G on
P . We will write Rg for the homeomorphism p 7→ pg. The G-space P is called a
principal G-bundle if the action is free, i.e., if for all p in P , Rg(p) 6= p unless g is
the identity element e of G. More specifically, P is called a principal G-bundle over a
space X if we are given some fixed homeomorphism of X with the orbit space P/G,
or equivalently if there is given a “projection map” Π : P → X such that the G orbits
of P are exactly the “fibers” Π−1(x) of the map Π. P is called the total space of the
bundle, and we often denote the bundle by the same symbol as the total space. A
map σ : X → P that is a left inverse to Π is called a section. Two G-bundles over
X, Πi : Pi → X, i = 1, 2 are considered “equivalent” if there is a G-equivariant
homeomorphism ϕ : P1 → P2 such that Π1 = Π2 ◦ ϕ. The principal G-bundle over X
defined by P = X × G with Rg(x, γ) = (x, γg) and Π(x, γ) = x is called the product
bundle, and any bundle equivalent to the product bundle is called a trivial bundle.
Clearly x 7→ (x, e) is a section of the product bundle, so any trivial bundle has a
section. Conversely, if Π : P → X has a section σ, then ϕ(x, g) = Rg(σ(x)) is an
equivalence of the product bundle with P , i.e., a principal G-bundle is trivial if and
only if it admits a section. We will denote the set of equivalence classes [P ] of principal
G-bundles P over X by BndlG(X).

Given a principal G-bundle Π : P → X and a continuous map f : Y → X, we
can define a bundle f∗(P ) over Y , called the bundle induced from P by the map f .
Its total space is {(p, y) ∈ P × Y | Π(p) = f(y)}, with the projection (p, y) 7→ y and
the G-action Rg(p, y) = (Rg(p), y). It is easy to see that f∗ maps equivalent bundles
to equivalent bundles, so it induces a map (also denoted by f∗) from BndlG(X) to
BndlG(Y ). If Π : P → X is a principal G-bundle then Π∗(P ) is a principal G-bundle
over the total space P , called the “square” of the original bundle. In fact this bundle is
always trivial , since it admits the “diagonal” section p 7→ (p, p). As we will see below,
this simple observation is the secret behind transgression!

The first non-trivial fact in the theory is the so-called “covering homotopy the-
orem”; it says that the induced map f∗ : BndlG(X) → BndlG(Y ) depends only on
the homotopy class [f ] of f . We can paraphrase this by saying that BndlG( ) is a
contravariant functor from the category of spaces and homotopy classes of maps to the
category of sets. Now a cohomology theory is also such a functor, and a characteristic
class for G-bundles can be defined as simply a natural transformation from BndlG( )
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to some cohomology theory H∗( ). Of course this fancy language isn’t essential and
was only invented about the same time as bundle theory. It just says that a character-
istic class c is a function that assigns to each principal G-bundle P over any space X
an element c(P ) in H∗(X), with the “naturality” property that c(f∗(P )) = f∗(c(P )),
for any continuous f : Y → X. We fix some cohomology theory H∗( ) and denote
by Char(G) the set of all characteristic classes for G-bundles. Since H∗(X) has the
structure of a ring with unit, so does Char(G), and the characteristic class problem
for G is the problem of explicitly identifying this ring. Note that a trivial bundle is
induced from a map to a space with one point, so all its characteristic classes (except
the unit class) must be zero. More generally, equality of all characteristic classes of a
bundle is a necessary (and in some circumstances sufficient) test for their equivalence,
and this is one of the important uses of characteristic classes.

The remarkable and beautiful classification theorem for principalG-bundles “solves”
the classification problem at least in the sense of reducing it to a standard problem of
homotopy theory. Given spaces X and Z let [X,Z] denote the set of homotopy classes
of maps of X into Z. Note that [ , Z] is a contravariant functor, much like BndlG—any
map f : Y → X induces a pull-back map f∗ : [h] 7→ [h◦f ] of [X,Z] to [Y, Z]. Moreover
if Π : P → Z is any principle G-bundle then we have a map [h] 7→ [h∗(P )] of [X,Z]
to BndlG(X) that is “natural” (i.e., it commutes with all “pull-back” maps f∗). We
call P a universal principal G-bundle if the latter map is bijective. The heart of the
classification theorem is the fact that universal G-bundles do exist . In fact it can be
shown that a principal G-bundle is universal provided its total space is contractible,
and there are even a number of methods for explicitly constructing such bundles.

We will denote by UG some choice of universal principal G-bundle. Its base space
will be denoted by BG and is called the classifying space for G. (Although BG is not
unique, its homotopy type is). If Π : P → X is any principal G-bundle then, by
definition of universal, there is a unique homotopy class [h] of maps of X to BG such
that P is equivalent to h∗(UG). Any representative h is called a classifying map for P .
Clearly if f : Y → X then h ◦ f is a classifying map for f∗(P ). Also, the classifying
map for UG is just the identity map of BG.

It is now easy to give a solution of sorts to the characteristic class problem for
G; namely Char(G) is canonically isomorphic to H∗(BG). In fact each c ∈ H∗(BG)
defines a characteristic class (also denoted by c) by the formula c(P ) = f∗(c), where
f is a classifying map for P , and the inverse map is just c 7→ c(UG).

This is a distillation of ideas developed between 1935 and 1950 by Chern, Ehres-
mann, Hopf, Feldbau, Pontrjagin, Steenrod, Stiefel, and Whitney. While elegant in its
simplicity, the above version is still too abstract and general to be of use in finding
Char(G) for a specific group G. It is also of little use in calculating the characteristic
classes of bundles that come up in geometric problems, for it is not often an easy
matter to find a classifying map from geometric data. We shall discuss how Chern
put flesh on these bones by finding concrete models for classifying spaces and, more
importantly, by showing how to calculate explicitly de Rham theory representatives of
many characteristic classes from the curvature forms of connections.

Let V(n,N + n) denote the Stiefel manifold of n-frames in RN+n, consisting of
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all orthonormal sequences e = (e1, . . . , en) of vectors in RN+n. There is an obvious
free action of O(n) on V(n,N +n), and the orbit of e consists of all n-frames spanning
the same n-dimensional linear subspace that e does. Thus we have an O(n) principal
bundle Π : V(n,N+n) → Gr(n,N+n), where Gr(n,N+n) is the Grassmaniann of all
n-dimensional linear subspaces of RN+n. In the early 1940’s it was known from results
of Steenrod and Whitney that this bundle is “universal for compact k-dimensional
polyhedra”, provided N ≥ k + 1. This means that for any compact polyhedral space
X, with dim(X) ≤ k, every principal O(n) bundle overX is of the form h∗(V(n,N+n))
for a unique [h] in [X,Gr(n,N + n)]. In [43] Chern and Y.F. Sun generalized these
results to show that this bundle is also universal for compact k-dimensional ANR’s.
(If one wants universal bundles in the strict sense described above, one need only form
the obvious inductive limit, Π : V(n,∞) → Gr(n,∞), by letting N tend to infinity.
But for the finite dimensional problems of geometry it is preferable to stick with these
finite dimensional models). By replacing the real numbers respectively by the complex
numbers and the quaternions, Chern and Sun proved analogous results for the other
classical groups U(n) and Sp(n). They went on to note that if G is any compact Lie
group, then by taking a faithful representation of G in some O(n), V(n,N+n) becomes
a principal G bundle by restriction, and the corresponding orbit space V(n,N + n)/G
becomes a classifying space BG for compact ANR’s of dimension ≤ k.

The Grassmannians make good models for classifying spaces, for they are well-
studied explicit objects whose cohomology can be investigated using both algebraic
and geometric techniques. From such computations Chern knew that there was an
n-dimensional “Euler class” e in Char(SO(n)). If M is a smooth, compact, oriented
n-dimensional manifold then e(F (M)) ∈ Hn(M) when evaluated on the fundamental
class of M is just χ(M). One can thus interpret the Generalized Gauss-Bonnet The-
orem as saying that λ = Pf(Ψ) represents e(F (M)) in de Rham cohomology. This
inspired Chern to look for a general technique for representing characteristic classes
by de Rham classes. This was in 1944–1945, while Chern was in Princeton, and he
discussed this problem frequently with his friend André Weil who encouraged him in
this search.

It might seem natural to start by trying to represent SO(n) characteristic classes
by closed differential forms, but Chern made what was to be a crucial observation: the
cohomology of the real Grassmannians is complicated. In particular it contains a lot
of Z2 torsion, and this part of the cohomology is invisible to de Rham theory. On the
other hand Chern knew that Ehresmann, in his thesis, had calculated the homology of
complex Grassmannians and showed there was no torsion. In fact Ehresmann showed
that certain explicit algebraic cycles (the “Schubert cells”) form a free basis for the
homology over Z. It follows from de Rham’s Theorem that all the cohomology classes
for BU(n) can be represented by closed differential forms. These forms, when pulled
back by the classifying map of a principal U(n)-bundle, will then represent the char-
acteristic classes of the bundle in de Rham cohomology. While this is fine in theory,
it still depends on knowing a classifying map, while what is needed in practice is a
method to calculate these characteristic forms from geometric data. We now explain
Chern’s beautiful algorithm for doing this.
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Let Π : P → M be a smooth principle U(n)-bundle over a smooth manifold M .
Recall that a connection for P can be regarded as a 1-form ω on P with values in
the Lie algebra of U(n), L(U(n)), which consists of all n× n skew-hermitian complex
matrices. Equivalently we can regard ω as an n× n matrix of complex-valued 1-forms
ωij on P satisfying ωji = −ω̄ij , and similarly for the associated curvature 2-forms Ωij .

We will denote by R the ring of complex-valued polynomial functions on the
vector space L(U(n)). Using the usual basis for the L(U(n)), we can identify R with
complex polynomials in the 2n(n − 1) variables Xij , Yij 1 ≤ i < j ≤ n and the n
variables Yii 1 ≤ i ≤ n. Z will denote the n × n matrix of elements inR defined by
Zij = Xij +

√
−1Yij , Zji = −Xij +

√
−1Yij , and Zii =

√
−1Yii for 1 ≤ i < j ≤ n.

We can also regard Z as representing the general element of L(U(n)), and we will
write Q(Z) rather than Q(Xij , Yij) to denote elements of R. The adjoint action of
the group U(n) on its Lie algebra L(U(n)) is now given by ad(g)(Z) = gZg−1, just
as in the SO(n) case above, and as in that case we define the adjoint action of U(n)
on R by (ad(g)Q)(Z) = Q(ad(g)Z). As before we denote by Rad the subring of R
consisting of ad invariant polynomials. Once again we can substitute the curvature
forms Ωij for the Zij in an element Q(Z) in R, and obtain a differential form Q(Ω) on
P ; if Q is homogeneous of degree d in its variables then Q(Ω) is a 2d-form. The same
argument as in the SO(n) case shows that if Q ∈ Rad then Q(Ω) is the pull-back of
a uniquely determined form Q(Ψ) on M . Using the Bianchi identity, Chern showed
that dQ(Ψ) = 0, (cf. [MS], p.297) so Q(Ψ) represents an element [Q(Ψ)] in H∗(M),
the complex de Rham cohomology ring of M . If we use a different connection ω′ on
P with curvature matrix Ω′ then we get a different closed form Q(Ψ′) on M with
Π∗(Q(Ψ′)) = Q(Ω′). What is the relation between Q(Ψ′) and Q(Ψ)? Weil provided
Chern with the necessary lemma: they differ by an exact form, so that [Q(Ψ)] is a
well-defined element of H∗(M), independent of the connection. We will denote it by
Q̂(P ). (Weil’s lemma can be derived as a corollary of the fact that Q(Ψ) is closed. For
the easy but clever proof see [MS] p. 298).

If h : M ′ →M is a smooth map, then a connection on P “pulls-back” naturally to
one on the U(n)-bundle h∗(P ) over M ′. The curvature forms likewise are pull-backs,
from which it is immediate that Q(h∗(P )) = h∗(Q(P )). In other words, Q 7→ Q̂ is a
map from Rad into Char(U(n)). It is clearly a ring homomorphism, and in recognition
of Weil’s lemma Chern called it the Weil homomorphism, but it is more commonly
referred to as the Chern-Weil homomorphism.

For U(n) the ringRad of ad-invariant polynomials on its Lie algebra has an elegant
and explicit description that follows easily from the diagonalizability of skew-hermitian
operators and the classic classification of symmetric polynomials. Extend the adjoint
action of U(n) to the polynomial ring R[t] by letting it act trivially on the new inde-
terminate t. The characteristic polynomial det(Z + tI) =

∑n
k=0 σk(Z)tn−k is clearly

ad-invariant, and hence its coefficients σk(Z) belong to Rad. Substituting a particular
matrix for Z in σk(Z) gives the kth elementary symmetric function of its eigenvalues; in
particular σ1(Z) = trace(Z) and σn(Z) = det(Z). Now if P (t1, . . . , tn) ∈ C[t1, . . . , tn]
then of course P (σ1[Z], . . . , σn[Z]) is also in Rad. In fact, Rad = C[σ1, . . . σn], i.e.,
P (t1, . . . , tn) 7→ P (σ1[Z], . . . , σn[Z]) is a ring isomorphism. From this fact, together
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with Ehresmann’s explicit description of the homology of complex Grassmannians,
Chern was easily able to verify that the Chern-Weil homomorphism is in fact an
isomorphism of Rad with Char(U(n)). For technical reasons it is convenient to renor-
malize the polynomials σk(Z), defining γk(Z) = σk( 1

2πiZ). Then we get a U(n)-
characteristic class ck = γ̂k of dimension 2k, called the kth Chern class, and these
n classes c1, . . . , cn are polynomial generators for the characteristic ring Char(U(n));
that is each U(n)-characteristic class c can be written uniquely as a polynomial in the
Chern classes.

If F (Z) is a formal power series, F =
∑∞

0 Fr, where Fr is a homogeneous polyno-
mial of degree r, then for finite dimensional spaces, F̂r will vanish for large r so F̂ =∑∞

0 F̂r will be a well-defined characteristic class. Many important classes were defined
in this way by Hirzebruch, and Chern used the power series E(Z) = trace(exp( 1

2πiZ))
to define the Chern character , ch = Ê. It plays a vital rôle in the Atiyah-Singer Index
Theorem.

Chern also developed a generalization of the Chern-Weil homomorphism for an
arbitrary compact Lie group G. The adjoint action of G on its Lie algebra L(G)
induces one on the ring R of complex-valued polynomial functions on L(G), so we have
a subring Rad of adjoint invariant polynomials. Substituting curvature forms of G-
connections on G-principal bundles into such invariant polynomials Q, we get as above
a Chern-Weil homomorphismQ 7→ Q̂ ofRad to the characteristic ring Char(G) (defined
with respect to complex de Rham cohomology) and this is again an isomorphism. Of
course, for general G the homology of the classifying space BG will have torsion, so
there will be other characteristic classes beyond those picked up by de Rham theory.
Moreover the explicit description of the ring of adjoint invariant polynomials is in
general fairly complicated.

Chern left the subject of characteristic classes for nearly twenty years, but then
returned to it in 1974 in a now famous joint paper with J. Simons [103]. This paper is a
detailed and elegant study of the phenomenon of transgression in principal bundles. Let
M be an n-dimensional smooth manifold, Π : P →M a smooth principalG-bundle over
M , ω a G-connection in P , and Ω the matrix of curvature 2-forms. Given an adjoint
invariant polynomial Q on L(G), homogeneous of degree `, we have a globally defined
closed 2`-form Q(Ψ) on M that represents the characteristic class Q̂(P ) ∈ H2`(M),
and that is characterized by Π∗(Q(Ψ)) = Q(Ω). Chern and Simons first point out
the simple reason why Q(Ω) must be an exact form on P . Indeed, by the naturality
of characteristic classes under pull-back, Q(Ω) represents Q̂(Π∗(P )). But as we saw
earlier, Π∗(P ), the “square” of the bundle P , is a principal G-bundle over P with a
global cross-section, hence it is trivial and all of its characteristic classes must vanish.
In particular Q̂(Π∗(P )) = 0, i.e., Q(Ω) is exact.

They next write down an explicit formula in terms of Q, ω, and Ω for a 2` − 1
form TQ(ω) on P , and show that dTQ(ω) = Q(Ω). TQ(ω) is natural under pull-back
of a bundle and its connection. Now suppose 2` > n. Then Q(Ψ) = 0, so of course
Q(Ω) = 0, i.e., in this case TQ(ω) is closed, and so defines an element [TQ(ω)] of
H2`−1(P ). If 2` > n+1 Chern and Simons show this cohomology class is independent
of the choice of connection ω, and so defines a “secondary characteristic class”. However
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if 2` = n+ 1 then they show that [TQ(ω)] does depend on the choice of connection ω.
They now consider the case G = GL(n,R) and consider the adjoint invariant

polynomials Qk defined by det(X + tI) =
∑n

i=0Qi(X)tn−i. Taking Q = Q2k−1 they
again show Q(Ω) = 0 provided ω restricts to an O(n) connection on an O(n)-subbundle
of P , so of course in this case too we have a cohomology class [TQ(ω)]. They specialize
to the case that P is the bundle of bases for the tangent bundle of M and ω is the Levi-
Civita connection of a Riemannian structure. Then [TQ(ω)] is defined, but depends in
general on the choice of Riemannian metric. Now they prove a remarkable and beautiful
fact—[TQ(ω)] is invariant under conformal changes of the Riemannian metric! Such
conformal invariants have recently been adopted by physicists in formulating so-called
conformal quantum field theories.

Chern also returned to the consideration of characteristic classes and transgression
in another joint paper, this one with R. Bott [92]. Here they consider holomorphic bun-
dles over complex analytic manifolds, where there is a refined exterior calculus, using
the ∂ and ∂̄ operators, and they prove a transgression formula for the top Chern form
of a Hermitian structure with respect to the operator i∂∂̄. This work has applications
both to complex geometry (especially the study of the zeros of holomorphic sections),
and to algebraic number theory. In recent years it has played an important rôle in
papers by J.M. Bismut, H. Gillet, and C. Soulé.

“Retirement”.

For most mathematicians, retirement is a one-time event followed by a period of
declining mathematical activity. But as with so much else, Chern’s attitude towards
retirement is highly non-standard. Both authors remember well attending a series of
enjoyable so-called retirement parties for Chern, as he retired first from UC Berkeley,
then several years later as Director of MSRI, etc. But in each case, instead of retiring,
Chern merely replaced one demanding job with another.

Finally, in 1992, Dr. Hu Guo-Ding took over as director of the Nankai Institute of
Mathematics and Chern declared himself truly retired. In fact though, he travels back
to Nankai one or more times each year and continues to play an active rôle in the life
of the Institute. The Institute now has an excellent library, has become increasingly
active in international exchanges, and has many well-trained younger members. In
1995, the occassion of the tenth aniversary of the Nankai Institute was celebrated with
a highly successful international conference, attended by many well-known physicists
and mathematicians.

Chern also continues to be very active in mathematical research, and when asked
why he doesn’t slow down and take it a little easier, his stock “excuse” is that he
does not know how to do something else. He says he tries to work in areas that
he feels have a future, avoiding the current fashions. His recent interests have been
Lie sphere geometry, several complex variables, and particularly Finsler geometry.
Chern’s interest in the latter subject has a long history. Already in 1948 he solved the
equivalence problem for the subject in “Local Equivalence and Euclidean connections
in Finsler spaces” (reprinted in [CSP]). Chern feels that the time is now ripe to recast
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all the beautiful global results of Riemannian geometry of the past several decades
in the Finsler context, and he points out that thinking of Riemannian geometry as a
special case of Finsler geometry was already advocated by David Hilbert in his twenty-
third problem at the turn of the last century. Chern himself has recently taken some
steps in that direction, in “On Finsler geometry” (C.R. Acad. Sci. Paris, t. 314,
Série I, p.757–761, 1992), and with David Bao, “On a notable connection in Finsler
geometry” (Houston Journal of Math., v.19, No.1, 1993). He has also recently spelled
out the general program in a paper that is as yet unpublished, “Riemannian geometry
as a special case of Finsler geometry”.
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