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1. Introduction

This is a course about K3 surfaces and several related topics. I want
to begin by working through an example which will illustrate some of
the techniques and results we will encounter during the course. So
consider the following problem.

Problem . Find an example of C ⊂ X ⊂ P3, where C is a smooth
curve of genus 3 and degree 8 and X is a smooth surface of degree 4.

Of course, smooth surfaces of degree 4 are one type of K3 surface.
(For those who don’t know, a K3 surface is a (smooth) surface X which
is simply connected and has trivial canonical bundle. Such surfaces
satisfy χ(OX ) = ∞, and for every divisor D on X, D · D is an even
integer.)

We first try a very straightforward approach to this problem. Let C
be any smooth curve of genus 3, and let Z be any divisor on C of degree
8. (For example, we may take Z to be the sum of any 8 points on C.)
I claim that the linear system |Z| defines an embedding of C. This
follows from a more general fact, which I hope you have seen before.

Theorem . Let C be a smooth curve of genus g, and let Z be a divisor
on C of degree d > 2g. Then the linear system |Z| is base-point-free,
and defines an embedding of C.

Proof. First suppose that P is a base point of Z. We have an exact
sequence

0 → OC(Z − P ) → OC(Z) → OP (Z) → 0
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and the assumption that P is a base point implies H0(OC(Z − P )) ∼=
H0(OC(Z)). But deg(Z−P ) = d−1 > 2g−2 and deg(Z) = d > 2g−2
so that both of these divisors Z and Z−P are non-special. By Riemann-
Roch, h0(OC(Z − P )) = d − 1 − g + 1 6= d − g + 1 = h0(OC(Z)), a
contradiction.

Similarly, suppose that P and Q are not separated by the linear
system |Z|. (We include the case P = Q, where we suppose that the
maximal ideal of C at P is not embedded.) Then in the long exact
cohomology sequence associated to

0 → OC(Z − P −Q) → OC(Z) → OP+Q(Z) → 0

we must have that the map H0(OC(Z)) → H0(OP+Q(Z)) is not sur-
jective. This implies that H1(OC(Z − P −Q)) 6= (0). But

H1(OC(Z − P −Q)) ∼= H0(OC(KC − Z + P +Q))∗

and deg(KC − Z + P +Q) = 2g − 2− d+ 2 < 0 so this divisor cannot
be effective (again a contradiction). Q.E.D.

I have included this proof because later we will study the question:
on a surface, when does a linear system have base points, and when
does it give an embedding?

To return to our problem, we have a curve C of genus 3 and a divisor
Z of degree 8. This divisor is non-special and gives an embedding (since
8 > 2 · 3). By Riemann-Roch,

h0(OC(Z)) = 8− 3 + 1 = 6

so |Z| maps C into P5.
The theory of generic projections guarantees that we can project C

into P3 from P5 in such a way as to still embed C. So we assume from
now on: C ⊂ P3 is a smooth curve of degree 8 and genus 3. (The linear
system |OC(1)| is not complete.)

We now consider the map H0(OP3(k)) → H0(OC(k)) for various
degrees k. We have

h0(OP3(k)) =
(k + 1)(k + 2)(k + 3)

6

h0(OC(k)) = 8k − 3 + 1 = 8k − 2

(by Riemann-Roch).
It is easy to see that for k ≤ 3 we have h0(OP3(k)) < h0(OC(k))

while for k ≥ 4 we have h0(OP3(k)) > h0(OC(k)). This means that for
k ≤ 3, the linear system cut out on C by hypersurfaces of degree k is
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incomplete, while for k ≥ 4 there must be a hypersurface of degree k
containing C. In fact, for k = 4 we have

h0(OP3(4)) = 35

h0(OC(4)) = 30

so that there is at least a P4 of quartic hypersurfaces X containing
C. By Bertini’s theorem, the generic X is smooth away from C (the
base locus of this P4). So we have almost solved our problem: we have
constructed C ⊂ X ⊂ P3 with C smooth, but X is only known to be
smooth away from C.

Where do we go from here? We could continue to pursue these
methods of projective geometry in P3. For example, we might consider
a generic pencil inside our P4 of quartics: the base locus of this pencil is
C ∪C ′ with C ′ another curve of degree 8. (C ′ 6= C since the arithmetic
genus would be wrong). We could try varying the pencil and showing
that the induced family of divisors C ′∩C on C has no base point. But
the arguments are very intricate, and I’m not sure if they work! So we
will try a different approach.

In this second approach, we construct X first instead of C. What
we want is a K3 surface X together with two curves H and C on X.
(H is the hyperplane section from the embedding X ⊂ P3). We want
C to have genus 3, |H| to define an embedding X ⊂ P3, and C should
have degree 8 under this embedding. To translate these properties
into numerical properties of H and C on X, notice that for any curve
D ⊂ X we have

deg(KD) = deg((KX +D)|D) = deg(D|D) = D ·D
(using the adjunction formula, and the fact that KX is trivial). Thus,
g(D) = 1

2
(D ·D) + 1.

The numerical versions of our properties are: C · C = 4 (so that
g(C) = 3), H ·H = 4 (so that we get a quartic X ⊂ P3) and H ·C = 8
(so that C will have degree 8 in P3). In addition, we want C to be
smooth and |H| to define an embedding in P3.

The first step is to check that the topology of a K3 surface permits
curves with these numerical properties to exist. The topological prop-
erties I have in mind concern the intersection pairing on H2(X,Z).
Each curve D on X has a cohomology class [D] ∈ H2(X,Z), and the
intersection number for curves coincides with the cup product pairing

H2(X,Z)⊗H2(X,Z) → H4(X,Z) ∼= Z.

Poincaré duality guarantees that this is a unimodular pairing (i. e. in
a basis, the matrix for the pairing has determinant ±1). In addition,
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the signature of the pairing (the number of +1 and −1 eigenvalues)
can be computed as (3,19) for a K3 surface. The pairing is also even:
this means x · x ∈ 2Z for all x ∈ H2(X,Z). These three properties
together imply that the isomorphism type of this bilinear form over Z
is (−E8)

⊕2 ⊕ U⊕3 where E8 is the unimodular even positive definite
form of rank 8, and U is the hyperbolic plane. Let Λ denote this
bilinear form; Λ is called the K3 lattice. We will return to study these
topological properties in more detail (and define the terms!) in section
11.

In our example, we need a submodule of H2(X,Z) ∼= Λ generated
by 2 elements h and c such that the matrix of the pairing on these 2
elements is (

4 8
8 4

)
.

The fact that such a submodule exists is a consequence of

Theorem (James [12]). Given an even symmetric bilinear form L
over the integers such that L has signature (1, r− 1) and the rank r of
L is ≤ 10, there exists a submodule of Λ isomorphic to L.

(Later1 we will study refinements of this theorem in which the rank
is allowed to be larger.)

So there is no topological obstruction in our case. Moreover, later2

in the course we will partially prove the following:

Fact . Given a submodule L of Λ on which the form has signature
(1, r − 1) with r ≤ 20, there exists a (20 − r)-dimensional family of
K3 surfaces {Xt}, each equipped with an isomorphism H2(Xt,Z) ∼= Λ
in such a way that elements of L correspond to cohomology classes of
line bundles on Xt. Moreover, for t generic, these are the only line
bundles on Xt, that is, the Néron-Severi group NS(Xt) [together with
its intersection form] is isomorphic to L.

I said we would partially prove this: what we will not prove (for lack
of time) is the global Torelli theorem and the surjectivity of the period
map for K3 surfaces. This fact depends on those theorems.3

To return to our problem: we now have a K3 surface X and two
line bundles OX(H), OX(C) with the correct numerical properties,
which generate NS(X). For any line bundle L on X, we have H2(L) ∼=

1Need cross-reference.
2Need cross-reference.
3For statements of the theorems and further discussion, see section 12.
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H0(L∗)∗ (since KX is trivial), from which follows the Riemann-Roch
inequality:

h0(L) + h0(L∗) ≥ L · L
2

+ 2

(since χ(OX) = 2). Thus, if L · L ≥ −2 either L or L∗ is effective.
In our situation we conclude: ±H is effective and ±C is effective.

Replacing H by −H if necessary we may assume H is effective. (The
choice of C is then determined by H · C = 8.)

To finish our construction, we need another fact which will be proved
later.4

Fact . Let H be an effective divisor on a K3 surface X with H2 ≥ 4.
If |H| has base points or does not define an embedding, then there is a
curve E on X with E2 = −2 or E2 = 0. Moreover, when it does define
an embedding H1(OX(H)) = 0 and H2(OX(H)) = 0.

In our situation, we wish to rule out the existence of such an E.
We have5 E ∼ mH + nC since H and C generate NS(X). Thus,
E2 = 4m2 + 16mn + 4n2 is always divisible by 4, so E2 = −2 is
impossible. Moreover, if a rank 2 quadratic form ( a bb c ) represents 0
then − det ( a bb c ) = b2 − ac is a square. In our case, − det ( 4 8

8 4 ) = 48 is
not a square, so E2 = 0 is impossible.

We conclude that |H| is very ample. Then H · C = 8 implies −C is
not effective, so that C must be effective. Furthermore, |C| is then very
ample, so this linear system contains a smooth curve (which we denote
again by C). By Riemann-Roch, h0(OX(H)) = H·H

2
+ 2 = 4, so |H|

maps X into P3 as a smooth quartic surface, and we have C ⊂ X ⊂ P3

as desired.

2. K3 surfaces and Fano threefolds

We will use in this course a definition of K3 surfaces which is slightly
different from the standard one. Namely, for various technical reasons
which will appear later, it is convenient to allow K3 surfaces to have
some singular points called rational double points. These will be the
subject of a seminar later on;6 if you are not familiar with them, I sug-
gest that you ignore the singularities for the moment and concentrate
on smooth K3 surfaces.

(We do not use the term “singular K3 surface” to refer to these
surfaces, because that term has a different meaning in the literature:
it refers to a smooth K3 surface with Picard number 20. Cf. [27].)

4Need cross-reference: section 5?
5The symbol ∼ denotes linear equivalence.
6See Appendix on rational double points.
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Here is a convenient definition of rational double points: a complex
surface X has rational double points if the dualizing sheaf ωX is locally
free, and if there is a resolution of singularities π : X̃ → X such that
π∗ωX = ω

X̃
= O

X̃
(K

X̃
). For those unfamiliar with the dualizing sheaf,

what this means is: for every P ∈ X there is a neighborhood U of P
and a holomorphic 2-form α = α(z1, z2)dz1 ∧ dz2 defined on U − {P}
such that π∗(α) extends to a nowhere-vanishing holomorphic form on
π−1(U).

The structure of rational double points (sometimes called simple sin-
gularities) is well-known: each such point must be analytically isomor-
phic to one of the following:

An (n ≥ 1): x2 + y2 + zn+1 = 0
Dn (n ≥ 4): x2 + yz2 + zn−1 = 0
E6: x2 + y3 + z4 = 0
E7: x2 + y3 + yz3 = 0
E8: x2 + y3 + z5 = 0

and the resolution X̃ → X replaces such a point with a collection of
rational curves of self-intersection −2 in the following configuration:
An (n curves)
Dn (n curves)
E6

E7

E8

To return to the definition of K3 surfaces: a K3 surface is a compact
complex analytic surface X with only rational double points such that
h1(OX) = 0 and ωX ∼= OX . (If X is smooth, the dualizing sheaf ωX
is the line bundle associated to the canonical divisor KX , so this last
condition says that the canonical divisor is trivial.)

If X is a K3 surface and π : X̃ → X is the minimal resolution of
singularities (i. e. the one which appeared in the definition of rational
double point) then it turns out that π∗ establishes an isomorphism
H1(OX) ∼= H1(O

X̃
), and also we have ω

X̃
= π∗ωX = π∗OX = O

X̃
.

Thus, the smooth surface X̃ is also a K3 surface.
We will concentrate on smooth K3 surfaces for quite a while, and

only return to singular ones in several weeks.7 I have included the
singular case today so that we don’t have to change the definitions
later.

Here are some of the basic facts about smooth K3 surfaces. Let X
be a smooth K3 surface.

7Need cross-reference: section 8?
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(1) χ(OX) = 2, because h1(OX) = 0 and h2(OX) = h0(OX(KX))∗ =
h0(OX) = 1.

(2) c21(X) = 0. [Remember that c21(X) = KX ·KX .]
(3) Therefore, using Noether’s formula

c21(X) + c2(X) = 12χ(OX)

we find that c2(X) = 24. Since b1(X) = 2h1(OX) or 2h1(OX)−
1, we see that b1(X) = 0. So the Betti numbers must be: b0 = 1,
b1 = 0, b2 = 22, b3 = 0, b4 = 1 giving 24 as the topological Euler
characteristic.

[For those who haven’t studied compact complex sur-
faces, I remind you that in the case of algebraic surfaces we
always have b1(X) = 2h1(OX). Kodaira proved that for non-
algebraic complex surfaces this equality can only fail by 1, i. e.,
b1 = 2h1(OX) or 2h1(OX)− 1.] (Cf. [BPV, Theorem II.6].8)

(4) For any line bundle L on X, the Riemann-Roch theorem

χ(L) = χ(OX) +
L · L −KX · L

2

becomes:

h0(L)− h1(L) + h0(L∗) = 2 +
L · L

2

since h2(L) = h0(L∗(KX)) = h0(L∗).
In particular, if L · L ≥ −2 then h0(L) + h0(L∗) > 0,

i. e., either L or L∗ is effective.
(5) The intersection form on H2(X,Z) has a very explicit structure

mentioned in the introduction. We postpone discussion of this
structure until section 11.

(6) Let D be an irreducible reduced effective divisor on X. Then
the adjunction formula KD = (KX +D)|D yields

deg(KD) = deg(D|D) = D ·D.

In particular,

g(D) =
1

2
(D ·D) + 1.

(7) h0(D) = g(D) + 1.

But even more is true: if we consider the exact sequence (when D is
smooth)

0 → OX → OX(D) → OD(D) → 0

8Per A. G.
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since h1(OX) = 0 we have that H0(OX(D)) → H0(OD(D)) is surjec-
tive. Thus since OD(D) ∼= OD(KD), the global sections of the line
bundle OX(D) induce the canonical map on D. So when D is not
hyperelliptic, it must be embedded by OX(D) and this embedding co-
incides with the canonical embedding of D.

To say this another way, if X is embedded in Pg by the complete
linear system |OX(D)|, then a hyperplane section D = X ∩ Pg−1 is
canonically embedded in Pg−1 ⊂ Pg. In brief: “a hyperplane section of
a K3 surface is a canonical curve”.

This property can be considered as motivating the definition of a K3
surface. That is, we require KX ∼ 0 so that the normal bundle OD(D)
of a hyperplane section agrees with the canonical bundle OD(KD),
and we require h1(OX) = 0 so that the rational map H0(OX(D)) →
H0(OD(D)) is surjective.

We now ask: What kind of threefold has a K3 surface as its hy-
perplane section? If Y is such a threefold, we must have h1(OY ) = 0
to guarantee that H0(OY (X)) → H0(OX(X)) is surjective, and by
adjunction

KX = (KY +X)|X
so that we need KY = −X. (Note that by the Lefschetz hyperplane
theorem (cf. [9]), we have h1(OX ) = ′ so X is a K3 surface.) That is,
Y is embedded by its anti-canonical linear system |OY (−KY )|. This is
called a Fano threefold.

We can ask the same question for higher dimension, of course.

Definition . A Fano variety is a complex projective variety Y with
OY (−KY ) ample. A Fano variety has index r if r is the maximum
integer such that −KY ∼ rH for some ample H on Y . The coindex of
Y is defined to be c = dim(Y )− r + 1.

The linear system |H| is called the fundamental system of the Fano
variety.

Lemma . If |H| is very ample and we choose r general hyperplanes
H1, . . . , Hr, then Y ∩H1 ∩ · · · ∩Hr is a variety of dimension c− 1 with
trivial canonical bundle.

(The proof is easy: use the adjunction formula.)
Thus, the Fano varieties related to elliptic curves are the ones of

coindex 2; the ones related to K3 surfaces (and canonical curves) are
the ones of coindex 3. To see that Fano varieties of coindex 3 are in fact
related to K3 surfaces, rather than to some other surface with trivial
canonical bundle, we need to recall the Kodaira vanishing theorem.
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Theorem (Kodaira). Let L be an ample divisor on Y . Then H i(OY (KY +
L)) = 0 for i > 0.

Corollary . Let Y be a Fano variety. Then H i(OY ) = 0 for i > 0.

Proof. Take L = −KY , which is ample, so that OY (KY + L) = OY .
then H i(OY ) = (H i(OY (KY + L)) = 0 for i > 0. Q.E.D.

Corollary . Let Y be a Fano variety of coindex c, and let X = Y ∩
H1 ∩ · · · ∩Hr be a linear section of dimension c− 1 (which has trivial
canonical bundle). Then H i(OX) = 0 for 0 < i < dimX = c− 1.

[This justifies the statement made earlier that Fano varieties of coin-
dex 3 have linear surface sections which are K3 surfaces.]

Proof. Let Z = Y ∩H1 ∩ · · · ∩Hr−1 be a linear section of dimension c
so that X = Z ∩H; then OZ(KZ) = OZ(−H) and Z is again a Fano
variety. We apply Kodaira vanishing (in its dual form) to conclude
that H i(OZ(−H)) = 0 for 0 ≤ i < c = dimZ. Thus, in the long exact
cohomology sequence associated to

0 → OZ(−H) → OZ → OX → 0

we find that H i(OZ) ∼= H i(OX) for i + 1 < c. The statement now
follows from the previous corollary. Q.E.D.

3. Examples of canonical curves, K3 surfaces, and Fano
varieties of coindex 3

Before beginning the examples, let us recall the theory of the Hirze-
bruch surfaces Fn (or Σn). These are defined as Fn = P(OP1⊕OP1(n)),
and are P1-bundles over P1. Fn has a distinguished section of its
P1-bundle structure (when n > 0), given by σ∞ = P(OP1(n)) ⊂
P(OP1 ⊕ OP1(n)). [When n = 0, the section exists but is no longer
unique.] σ∞ satisfies: σ2

∞ = −n, σ∞ · f = 1 (where f is a general fiber)
and also f 2 = 0; moreover, σ∞ and f generate Pic(Fn). There are other
sections P(OP1) ⊂ Fn which are linearly equivalent to σ∞ + nf .

We need to know the canonical bundle formula for Fn, and it is
derived as follows. Write

KFn = aσ∞ + bf

and use the fact that σ∞ and f are smooth rational curves:

−2 = deg(Kσ∞) = deg((a+ 1)σ∞ + bf)|σ∞ = −n(a+ 1) + b
−2 = deg(Kf ) = deg(aσ∞ + (b+ 1)f)|f = a.

This implies a = −2, b = −n− 2 so KFn = −2σ∞ − (n+ 2)f .
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Example 1. Write −2KF4 = σ∞ + (3σ∞ + 12f) and choose a smooth
divisor D ∈ |3σ∞ + 12f |. (We will see in a moment9 that this can be
done.) Let X be the double cover branched on D + σ∞ ∈ | − 2KF4|.
Then h1(OX) = h1(OF4) = 0 and

KX = π∗(KF4 +
1

2
(D + σ∞)) = π∗(KF4 −KF4) ∼ 0

so that X is a K3 surface.10

We have the following picture of the branch locus:

In fact, the double cover of f is branched in 4 points (because −2KF4 ·
f = 4), and so is a smooth elliptic curve for general f by the Hurwitz
formula. Thus, X is a K3 surface with a pencil of curves of genus 1.

To see that D exists and to describe this all more explicitly, consider
the complement of σ∞ in F4. This is a C-bundle over P1, isomorphic
to the total space of the (bundle associated to the) sheaf OP1(4). If we
restrict further to C ⊂ P1, we can choose coordinates: x in the fiber
direction and t in the base.

There will be another set of coordinates: s = 1
t

and y in the fiber

direction. To see how these are related, let e be a nonvanishing section
of OP1(4)|t-chart and let f be one of OP1(4)|s-chart. There is a global
section of OP1(4) with a zero of order 4 at t = 0 and no other zero:
this must be given by t4e and 1 ·f when restricted to the two charts.
So we have t4e = 1 · f which determines the transition e = t−4f .
Since arbitrary sections are to be represented by xe or yf we have

yf = xe = xt−4f so that xt−4 = y . The 2 boxed equations are the

transition functions.
Now on this space we have the line bundle L = O(σ∞ + 4f) which

has a section vanishing at (x = 0)∪ (y = 0), and D is the zero-locus of
a section of L⊗3. If we let ε and ϕ be trivializing sections for L in the
(x, t) and (y, s) charts respectively, then xε = yϕ so that the transition
is ε = y

x
ϕ = t−4ϕ.

9I. e., below.
10See also the appendix on double covers.
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Let us write the section of L⊗3 whose zero-locus is D in the form
f(x, t)ε⊗3 = g(y, s)ϕ⊗3. Then f(x, t)t−12 = g(y, s). A monomial xitj

can appear in f only if

xitj−12 = (ys−4)i(s−1)j−12 = yis12−4i−j

is holomorphic, i. e., 12− ri− j ≥ 0. This implies that f has the form

f(x, t) = kx3 + a4(t)x
2 + b8(t)x+ c12(t).

We take k 6= 0 so that there are truly three points of intersection with
the fiber; then by a coordinate change we may assume k = 1.

Finally we may describe the double cover: it has the form

z2 = x3 + a4(t)x
2 + b8(t)x+ c12(t)

in one chart, and

w2 = y3 + (s4a4(
1

s
))y2 + (s8b8(

1

s
))y + (s12c12(

1

s
))

in the other chart. As is well-known, this compactifies nicely when
x → ∞ or y → ∞, and branches at ∞ in the fiber direction, giving a
family of elliptic curves with a section.

What remains to be checked is that D is smooth when a, b, c are
chosen generically. We leave this as an exercise.

Example 2. Let X → P2 be the double cover of P2 branched in a
smooth curve C of degree 6. Then11

h1(OX) = h1(OP2) = 0

KX = π∗(KP2 +
1

2
C) = π∗(−3H +

1

2
(6H)) ∼ 0

so that X is a K3 surface. π expresses the inverse image of a general
line in P2 as a double cover of the line branched in 6 points, so the
inverse image is a curve of genus 2. Thus, X is a K3 surface with a
curve of genus 2.

Examples 3, 4, 5 . Let us find all complete intersections in projective
space Pn+k which are either a canonical curve, a K3 surface, or a Fano
variety of coindex 3. Let X be the variety in question, and notice that
in all three cases we want

KX = (2− n)H|X
where n = dim(X). [In the Fano case, r = n−2 so c = n−(n−2)+1 =
3.]

11See the appendix on double covers.
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Now if X is the intersection of hypersurfaces V1, . . . , Vk in Pn+k of
degrees d1, . . . , dk, we may assume di ≥ 2. An easy induction with the
adjunction formula gives

KX = (KPn+k + V1 + · · ·+ Vk)|X
= ((−n− k − 1) + d1 + · · ·+ dk)H|X .

So we need

−n− k − 1 + d1 + · · ·+ dk = 2− n

or
k∑
i=1

(di − 1) = n+ 1 + 2− n = 3.

The solutions are 3 = 3, 3 = 2 + 1 and 3 = 1 + 1 + 1 corresponding to

Example 3. A quartic hypersurface in Pn+1 (this is a K3 with curve
section of genus 3 when n = 2);

Example 4. The intersection of a quadric and a cubic in Pn+2 (this is
a K3 with curve section of genus 4 when n = 2); and

Example 5. The intersection of three quadrics in Pn+3 (this is a K3
with curve section of genus 5 when n = 2).

Example 6. The canonical bundle of the Grassmannian Gr(2, 5) sat-
isfies KGr(2,5) = −5Σ, where Σ is the Schubert cycle of codimension 1.
The linear system |Σ| induces the Plucker embedding of the Grassman-
nian Gr(2, 5) → P(Λ2C5) = P9.

Let Y be the double cover of Gr(2, 5) branched along a divisor D ∈
|2Σ|. Then KY = π∗(KGr(2,5) +

1
2
D) = π∗(−5Σ+Σ) = −4π∗(Σ) so that

Y has index 4. Since dim(Y ) = 6, the coindex is 6− 4 + 1 = 3.
The fundamental system |π∗(Σ)| satisfies:

π∗(Σ)6 = 2 · Σ6 = 2 · 5 = 10

and so has degree 10. Moreover, since H0(π∗Σ) ∼= H0(Σ)⊕H0(Σ− 1
2
D)

and H0(Σ − 1
2
D) = H0(OGr(2,5)) ∼= C, the fundamental system maps

Y to PH0(π∗Σ) ∼= P10. The genus of a linear curve section is 6, since
2g − 2 = 10.

Examples 7, 8, 9, 10 . Mukai has investigated the question: which
compact complex homogeneous spaces are Fano varieties of coindex
3? (Note that Pn and the quadric Qn ⊂ Pn+1, which are the Fano
varieties of coindex 0 and 1 respectively, are complex homogeneous
spaces). The answers Mukai found (cf. [21]) are the following (we give
no details about his methods):
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Variety Dimension
Degree
of |H|

Ambient
space

Genus
of C

7) S0(10)/U(5) 10 12 P15 7
8) U(6)/U(2)× U(4) = Gr(2, 6) 8 14 P14 8
9) Sp(3)/U(3) 6 16 P13 9

10) G2/P 5 18 P13 10

where G2 is the exceptional Lie group of that name, and P is the
maximal parabolic associated to the long root in the Dynkin diagram
•>≡ •.

[In the table, H represents the ample generator of the Picard group
(which is isomorphic to Z), the ambient space refers to the embedding
ϕ|H| (it turns out that |H| is in fact very ample), and C is a linear
curve section of the embedded variety.]

In the examples we have given with linear curve section of genus
g, 2 ≤ g ≤ 10, it will turn out later12 that the general K3 surface
with a (primitive) curve of that genus belongs to the family we have
described. It is also possible to give such a description for g = 12 (we
give the example below), but not for g = 11 or g ≥ 13. We will give
several examples of Fano varieties of genus 11 and coindex 3, but all
have Picard number ≥ 2 and so only give proper subsets of the set of
all K3 surfaces of genus 11.

Example 11a. P3 × P3.
Pic(P3 × P3) is generated by H1 = P2 × P3 and H2 = P3 × P2, with

KP3×P3 = −4H1 − 4H2. Thus, r = 4, c = 6 − 4 + 1 = 3 and of course
the dimension is 6. The fundamental system is H = H1 + H2, and
H6 = (6

3)H
3
1H

3
2 = (6

3) = 20. The mapping ϕ|H| is the Segre embedding
P3 × P3 ↪→ P15. Since 2g − 2 = 20 we have g = 11.

Example 11b. P2 ×Q3, where Q3 ⊂ P4 is a quadric.
Pic(P2×Q3) is generated by H1 = P1×Q3 and H2 = P2×(P3∩Q3),

with KP2×Q3 = −3H1 − 3H2. Thus, r = 3, c = 5− 3 + 1 = 3 and the
dimension is 5. The fundamental system is H = H1 + H2 of degree
H5 = (5

2)H
2
1H

3
2 = (5

2) · 2 = 20. The mapping ϕ|H| is induced by the

Segre embedding of P2 × P4:

P2 ×Q3 ⊂ P2 × P4 ↪→ P14.

Since 2g − 2 = 20 we have g = 11.

Example 11c. P1 × V 3
5 , where V 3

5 is a 3-dimensional linear section of
Gr(2, 5) ⊂ P9 (and thus has degree 5 in P6).

12Need cross-reference.
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Pic(P1×V 3
5 ) is generated by H1 = P0×V 3

5 and H2 = P1× (V 3
5 ∩P5)

with KP1×V 3
5

= −2H1 − 2H2. (V 3
5 is a Fano 3-fold of index 2.) Thus,

r = 2, c = 4 − 2 + 1 = 3 and the dimension is 4. The fundamental
system is H = H1 + H2 of degree H4 = (4

1)H1 · H3
2 = (4

1) · 1 · 5 = 20.
The mapping ϕ|H| is induced by the Segre embedding of P1 × P6:

P1 × V 3
5 ⊂ P1 × P6 ↪→ P13.

Since 2g − 2 = 20, we once again have g = 11.

Example 11d. We give no details on this, but Mori and Mukai have
found that if we take a smooth conic C ⊂ P2 and choose a degree 5
map C → P1 so that the induced curve C ⊂ P1×P2 has bidegree (5,2),
then the blowup of P1 × P2 with center C is a Fano 3-fold of index 1
with degree of the fundamental system = 20 and so g = 11. This is an
example with Picard number 3.

Example 12. Let F1, F2, F3 be general skew-symmetric bilinear forms
on C7. Let

Y = {w ∈ Gr(3, 7) |F1(w,w) = F2(w,w) = F3(w,w) = 0}.

Mukai has shown that this Y is a smooth Fano 3-fold of degree 22 (and
g = 12). In fact, the map ϕ|H| associated to the fundamental system
factors through the inclusion Y ⊂ Gr(3, 7) and we have

Y
ϕ|H|−→ P13 = span of Y⋂ ⋂

[linear subspace]

Gr(3, 7)
Plucker−→ P34

Example Km. Our final example of K3 surfaces will include some
non-algebraic ones. Let T = C2/Γ be a complex torus of complex
dimension 2. (Thus, Γ ⊂ C2 is an additive subgroup such that there is
an isomorphism of R-vector spaces Γ⊗ R ∼=R C2. In particular, Γ is a
free Z-module of rank 4.) Let (z, w) be coordinates on C2, and define
i(z, w) = (−z,−w). Since Γ is a subgroup under addition, i(Γ) = Γ.
Thus, i descends to an automorphism ĩ : T → T .

What are the fixed points of ĩ? To find them, we need to know the so-
lutions to i(z, w) ≡ (z, w) mod Γ. These solutions are {(z, w) | (2z, 2w) ∈
Γ} and so ĩ has as fixed points 1

2
Γ/Γ. (There are 16 of these.)

Let X = T/ĩ; X is called a Kummer surface. This surface has 16 sin-
gular points at the images of the fixed points of ĩ. To see the structure
of these singular points, consider the action of i on a small neighbor-
hood U of (0,0) in C2. Then U/i is isomorphic to a neighborhood of a
singular point of X.
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To describe U/i, we note that the invariant functions on U are gen-
erated by z2, zw, and w2. Thus, if we let r = z2, s = zw and t = w2

we can write

U/i ∼= {(r, s, t) near (0, 0, 0) | rt = s2}.

This is a rational double point of type A1.
dz ∧ dw is a global holomorphic 2-form on C2, invariant under the

action of Γ, and so descends to a form on T . It is also invariant under
the action of i (since d(−z) ∧ d(−w) = dz ∧ dw), so we get a form
dz ∧ dw on X − {singular points}. In local coordinates, dr = 2zdz,
dt = 2wdw so that

dz ∧ dw =
dr ∧ dt
4zw

=
dr ∧ dt

4s
.

It is easy to check that this form induces a global nowhere vanishing
holomorphic 2-form on the minimal resolution X̃ of X.

To finish checking that X is a K3 surface, we use the fact that
H1(O

X̃
) ∼= H1(OX) ∼= {elements of H1(OT ) invariant under ĩ}. Now

H1(OT ) ∼= H0,1(T ), the space of global differential forms of type (0,1).
This space is generated by dz̄ and dw̄; since ĩ∗(dz̄) = −dz̄ and ĩ∗(dw̄) =
−dw̄ there are no invariants. It follows that H1(OX) ∼= H1(O

X̃
) = (0),

and that X and X̃ are both K3 surfaces. Notice that when T (or
equivalently Γ) is chosen generally, then T is not algebraic, nor are X

or X̃.

3.1. Addendum to section 3. There is a beautiful 3-fold, which I
believe was first constructed by Segre, which shows that projective K3
surfaces (specifically quartics in P3) can have 15 or 16 singularities of
type A1.

The threefold is defined in P5 by two equations

x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3 − 2x1y1x2y2 − 2x1y1x3y3 − 2x2y2x3y3 = 0

x1 + x2 + x3 + y1 + y2 + y3 = 0.

(Of course this is really in P4, but the equations are more symmetric
this way.) This is a quartic 3-fold which has 15 singular lines:

(a) 8 lines of the form `1 = `2 = `3 = `′1 + `′2 + `′3 = 0 where
`α ∈ {xα, yα} and `′α is different from `α for each α (e.g. x1 =
x2 = x3 = y1 + y2 + y3 = 0)

(b) 6 lines of the form xi = yi = `j + `k = `′j + `′k = 0 where `α ∈
{xα, yα}, `′α is different from `α and (i, j, k) is a permutation of
(1,2,3).

(c) the line x1 = y1, x2 = y2, x3 = y3, x1 + x2 + x3 = 0.
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A general hyperplane section of this 3-fold is a quartic surface with
15 A1 singularities. On the other hand, for the general point P of this
variety Y , if TP (Y ) is the (projective) tangent plane to Y at P then
TP (Y ) ∩ Y is a quartic surface with 16 A1 singularities: one at P and
15 at the intersection with the lines.

Note .

(i) For the general point P , the rank of Pic( ˜TP (Y ) ∩ Y is 17, where
˜TP (Y ) ∩ Y is the minimal resolution of TP (Y ) ∩ Y .

(ii) TP (Y )∩Y is a (quartic) Kummer surface (see Nikulin’s theorem
in section 8).

(iii) Every Kummer surface coming from a principally polarized
abelian surface can be represented as such a TP (Y ) ∩ Y . This
has been “sort of” proved by Van der Geer.13

3.2. Appendix: Double covers. A double cover is constructed from
a variety X, a line bundle L, and a section s ∈ H0(L⊗2) whose zero-
locus is D. (This is called the double cover of X branched along D.)
For simplicity we assume X and D smooth.

To describe the construction, we need an open cover {Ui} of X such
that L|Ui

is trivial. Let ~ti denote coordinates on Ui, and choose a
nowhere zero section ei ∈ H0(Ui,L|Ui

) to trivialize L|Ui
. Then every

section of L|Ui
may be written in the form si(~ti)ei for some functions

si on Ui.
The sections ei are related by the transition functions: ei = λijej.

Thus, if s = {si(~ti)ei} is a global section, we must have

si(~ti)ei = si(~ti)λijej = sj(~ti)ej

so that: si(~ti)λij = sj(~tj).

In the case of the double cover construction, we have s = {si(~ti)e⊗2
i },

a section of L⊗2 and so

si(~ti)λ
2
ij = sj(~tj)

where {λij} are transition functions for L. Define

Vi = {(~ti, xi) ∈ Ui × C |x2
i = si(~ti)}.

The double cover is Y =
⋃
Vi, with projection map π : Y → X given

by π(~ti, xi) = ~ti. The coordinate charts Vi are to be patched by:

(~tj, xj) = (~tj(ti), xiλij)

[so that x2
iλ

2
ij = siλ

2
ij = sj = x2

j .]

13Need a literature reference, and an explanation of “sort of.”
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Lemma .

(1) KY = π∗(KX + L), i. e., OY (KY ) = π∗(OX(KX)⊗ L).
(2) If M is another line bundle on X, then

H0(π∗M) ∼= H0(M)⊕H0(M⊗L−1).

[Property #1 is often written: KY = π∗(KX + 1
2
D), which is a bit

sloppy.]

Proof of (1). Let d~ti denote the differential form dt1i ∧ · · · ∧ dtni on Ui.
d~ti is a section of OX(KX)|Ui

which trivializes that bundle; since

d~ti =

∣∣∣∣∣∂(~ti)

∂(~tj)

∣∣∣∣∣ d~tj
[the notation means the “Jacobian determinant”], we see that wij =∣∣∣∣ ∂(~ti)

∂(~tj)

∣∣∣∣ give transition functions for OX(KX).

Since X and D are smooth, we may assume (after shrinking the
Ui’s) that si(~ti) = t1i (the first coordinate). Then x2

i = t1i so that
(xi, t

2
i , . . . , t

n
i ) form coordinates on Vi. Moreover,

d~ti = dt1i ∧ dt2i ∧ · · · ∧ dtni
= 2xidxi ∧ dt2i ∧ · · · ∧ dtni .

Thus, if ei is a trivializing section ofOX(KX)|Ui
and ẽi is a trivializing

section of OY (KY )|Vi
we have π∗(ei) = 2xiẽi. It follows that

ẽi =
1

2xi
π∗(ei) =

1

2

λij
xj
π∗(wij)π

∗(ej)

= π∗(λijwij)ẽj

(because π∗(λij) = λij due to this function being independent of xi).
So the transition functions for OY (KY ) and π∗OX(KX) ⊗ L are the
same. Q.E.D.

Proof of (2). Let µij be transition functions for M, and let εi be a
trivializing section of M|Ui

. A global section of π∗(M) is given by
{fi(~ti, xi)εi} with

fi(~ti, xi)µij = fj(~tj, xj).

Now the maps (~ti, xi) 7→ (~ti,−xi) are compatible and give an automor-
phism of Y whose quotient is X. We let this automorphism act on
H0(π∗M) and write

fi(~ti, xi) = f+
i (~ti, xi) + f−i (~ti, xi)

where we have decomposed according to +1 and −1 eigenspaces. {f+
i }

and {f−i } give global sections [since the automorphism was global].
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Now f+
i (~ti, xi) involves only even powers of xi: we may write

f+
i (~ti, xi) = gi(~ti, x

2
i ) = gi(~ti, si(~ti))

and so we get a section of M.
Similarly, f−i (~ti, xi) involves only odd powers of xi: if we write

f−i (~ti, xi) = xihi(~ti, x
2
i ) = xihi(~ti, si(~ti))

then {hi} give a section of M⊗L−1 since

hj =
f−j
xj

=
f−i µij
xiλij

= hi(
µij
λij

).

Q.E.D.

An explicit example of all of this is given in Example C1 in the next
section.

4. Elliptic K3 surfaces

I will give a very brief14 sketch of the following fact: if X is a K3
surface with a nonsingular connected elliptic curve E and a smooth
rational curve C such that C · E = 1, then X is constructed from a
Weierstrass equation as in example 1. Note that h0(E) = 2, by basic
fact (7) from section 2.

Consider X as an elliptic curve E over the function field k(Γ), where

Γ is the base of the elliptic fibration X
f→ Γ, one of whose fibers is

E. The curve C (which is a section of f) can be considered as a point
P ∈ E .

Now OE(P ) is a line bundle of degree 1 on E . By Riemann-Roch, we
have h0(nP ) = n. Thus, we have sections

1 generating H0(OE(P ))
12, x generating H0(OE(2P ))
13, 1 · x, y generating H0(OE(3P ))
14, 12x, 1 · y, x2 generating H0(OE(4P ))
15, 13x, 12y, 1x2, xy generating H0(OE(5P ))

and 16, 14x, 13y, 12x2, 1xy, x3y2 contained in H0(OE(6P )).

It follows that there is an equation relating all of these sections of
OE(6P ), of the form

c1y
2 + a1xy + a3y = c2x

3 + a2x
2 + a4x+ a6.

Some standard linear algebra reduces this to an equation of the form

y2 = x3 + b4x+ b6

14For more details, see Hartshorne II.3.2, Deligne’s “Formulaire”, or Tate.
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in Weierstrass form.
To complete the analysis, we must see how to do all of this in affine

charts, and how the different equations relate in the overlap; one even-
tually gets that X is the double cover of P(OΓ ⊕ L) for a line bundle
L which is divisible by 2, and that b4, b6 are sections of L⊗2 and L⊗3

respectively. Computing the canonical bundle forces the construction
to be that of example 1.

If we want X to have only rational double points, we must take the
branch locus to have only simple singularities.15

Every elliptic surface which is a K3 surface must be of the type
described above. In particular, the parameter curve for the elliptic
fibration must be isomorphic to P1. In fact, the canonical bundle
formula for an elliptic fibration π : X → C implies that κ(X) = 1
either if g(C) ≥ 2 or if g(C) = 1 and π is not a trivial fibration. (Here,
κ denotes the Kodaira dimension.16) Moreover, if g(C) = 1 and π is
trivial, then h1(OX ) = ∈, which prevents X from being a K3 surface.
Thus, when X is a K3 surface C must have genus 0.

4.1. Elliptic K3 surfaces, continued. We now use elliptic K3 sur-
faces to produce some examples of badly-behaved linear systems on K3
surfaces. First, we recall the Kodaira-Ramanujan vanishing theorem
(to be proved in section 5).

Theorem (Kodaira-Ramanujan). Let X be a smooth projective sur-
face, let L be a divisor on X which is nef and big. (That is, L · C ≥ 0
for all curves C on X, and L2 > 0.) Then H i(OX(KX + L)) = 0 for
i > 0.

In section 1, we saw three important properties which many linear
systems |KX + L| have: (a) the higher cohomology may vanish, i. e.,
H i(OX(KX + L)) = 0 for i > 0, (b) |KX + L| may have no base
points, and (c) ϕ|KX+L| may give an embedding. We now give some
examples of linear systems on K3 surfaces for which these properties
fail. The first example shows that the hypothesis “L2 > 0” in the
Kodaira-Ramanujan theorem cannot be relaxed.

Example A. Let X be an elliptic K3 surface, and let E be a fiber of
the elliptic pencil. Consider L = kE. The map ϕ|L| factors through
the elliptic pencil f : E → Γ ∼= P1 and in fact OX(L) = f ∗OP1(k).
Thus, h0(OX(L)) = h0(OP1(k)) = k + 1. Moreover, since −kE is not

15Need references to literature.
16This is occurring for the first time.
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effective, h2(OX(L)) = 0. But then

h0(OX(L))− h1(OX(L)) =
L · L

2
+ 2 = 2

which implies that h1(OX(L)) = k − 1, which is nonzero for k ≥ 2.
Note that L2 = 0 in this example, and L is nef.

Example B. Let f : X → Γ be an elliptic K3 surface with fiber E,
and let C be a section of f . (In particular, X has a Weierstrass form,
but we shall not need it for this example.) Consider L = C + kE; note
that L2 = 2k − 2.

Let us check that L is nef for k ≥ 2. If D is any irreducible curve on
X, then D · (C + kE) < 0 implies that D is a component of C + kE,
that is, D = C or D = E. But

C · (C + kE) = k − 2 ≥ 0

E · (C + kE) = 1

so that D · (C + kE) ≥ 0. Hence L = C + kE is nef.
We may then use the Kodaira-Ramanujan vanishing theorem and

Riemann-Roch to compute:

h0(OX(L)) =
L · L

2
+ 2 = k + 1.

On the other hand, h0(OX(kE)) = k + 1 as well by Example A. Since
the exact sequence

0 → OX(kE) → OX(C + kE) → OC(C + kE) → 0

induces an injection

0 → H0(OX(kE)) → H0(OX(C + kE)),

we see that H0(OX(kE)) ∼= H0(OX(L)) and that C is a fixed compo-
nent of |L|. In particular, every point of C is a base point of |L|. Note
that in this example L is nef, L2 > 0 and there exists an E with E2 = 0
and L · E = 1.

Example C1. Here are two examples of linear systems without base
points which do not give embeddings. Let X be the double cover of
P2 branched along a curve of degree 6. In the notation of the double
cover appendix, we have L = OP2(3) and KP2 = −3H so the canonical
bundle of the double cover is trivial. If we take M = OP2(n), then
H0(π∗M) contains 2 pieces: H0(M), coming from the pullback from
P2, and H0(M⊗L−1) = H0(OP2(n− 3)). We conclude: all sections of
π∗O(1) and π∗O(2) come from P2, so the maps ϕ|π∗O(1)| and ϕ|π∗O(2)|
factor through the projection to P2. That is, if X is the double cover
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of P2 branched along a smooth curve of degree 6, then |π∗OP2(1)| and
|π∗OP2(2)| both factor through the map π : X → P2. In particular,
these linear systems do not give embeddings. It is only with |π∗O(3)|
that we can embed the K3 surface.

Example C2. To see another example of this phenomenon, let D be
a smooth divisor in | − 2KF0|. (Note that F0

∼= P1 × P1 ∼= a smooth
quadric in P3, and that D is a curve of “type (4,4)”: the complete
intersection of F0 with a quartic surface.) Let π : X → F0 be the
double cover branched on D. Then X is a K3 surface. If we let C be
the graph in P1 × P1 of a degree k map P1 → P1, then C is a smooth
rational curve of “type (1, k)”, and C · D = 4k + 4. Thus, π−1(C)
is a hyperelliptic curve of genus 2k + 1 by the Hurwitz formula. In
particular, if L = π−1(C) then the map ϕ|L| induces the canonical map
|Kπ−1(C)| on π−1(C). Since that map has degree 2, ϕ|L| cannot be an
embedding.

Note that in this case L is nef, L2 > 0, and there is a curve E =
π−1(F ) (where F is a “type (0,1) fibre” of F0) which is elliptic with
E2 = 0 and L · E = 2.

Example C3. The genus of the curves in the previous example was
always odd; to get an even genus case, start with F1

∼= blowup of P2 at
a point P . Let D̄ be a curve in P2 of degree 6 with a node at P so that
the proper transform D of D̄ is a smooth curve in | − 2KF1|. Let C̄ be
an irreducible curve in P2 of degree k with a point of multiplicity (k−1)
at P . [For example, if P = [1, 0, 0], take an equation for C which is
the general linear combination of monomials xa0x

b
1x

c
2 with a+ b+ c = k,

a ≤ 1.] The proper transform C of C̄ is a smooth rational curve. Since
the local intersection multiplicity of C̄ and D̄ at P is 2(k − 1), we get
C ·D = 4k − 2(k − 1) = 4k + 2.

Now we repeat the construction of example C2: π : X → F1 branched
on D is a K3 surface with a hyperelliptic curve π−1(C) of genus 2k.
The linear system |L| = |π−1(C)| cannot embed X, and we have: L is
nef, L2 > 0, and there is an elliptic E = π−1(fiber on F1) with E2 = 0
and L · E = 2.

We will see in section 6 that all examples with ϕ|L| not birational are
of these types.

5. Reider’s method

Reider’s method, only a few years old, is now one of the most im-
portant tools for studying linear systems on algebraic surfaces. It
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has almost completely supplanted the older method of studying “d-
connectedness” of divisors, although it is closely related to that method.
We present Reider’s method here for arbitrary surfaces, and then give
a refinement for K3 surfaces in the next section.

We begin with a version of the Hodge index theorem for surfaces.

Theorem . Let L, D be divisors on a smooth projective surface X with
L2 > 0. Then either

(a) L2D2 < (L ·D)2, or
(b) L2D2 = (L ·D)2 and D ∼∼∼ sL for some s ∈ Q.

(Here, ∼∼∼ denotes numerical equivalence.)

“Proof”: (Based on the version of the Hodge index theorem given
in Hartshorne). Consider the intersection form on (Pic(X)/∼∼∼) ⊗ Q.
Hartshorne’s version of the index theorem says: if H is ample and
H · ∆ = 0 then either ∆2 < 0 or ∆ ∼∼∼ 0. If we choose a basis
H,∆1, . . . ,∆r−1 of (Pic(X)/∼∼∼) ⊗ Q with H · ∆i = 0 for all i, the
index theorem says that the intersection form on (Pic(X)/∼∼∼) ⊗ Q
has signature (1, r − 1). [It must be negative definite on the span
of ∆1, . . . ,∆r−1.]

Now consider the span of D and L inside (Pic(X)/∼∼∼) ⊗ Q. If this
span has dimension 2, then since L2 > 0 it must have signature (1,1).
[There can be at most one positive eigenvalue.] This is true if and only
if

det

(
L2 L ·D
L ·D D2

)
< 0,

giving case (a).
If the span has dimension 1, then D ∼∼∼ sL for some s ∈ Q and an

easy computation shows L2D2 = (L ·D)2. Q.E.D.

We will apply this to prove a very technical-looking lemma, which
contains the key computations for the Reider method.

Let us say that 2 divisors L and D on X satisfy condition (∗)d if:
L ·D ≥ 0
L · (L− 2D) ≥ 0
D · (L−D) ≤ d.

(∗)d

Technical Lemma . Let X be a smooth projective surface and let L
and D be divisors such that L2 > 0, D 6∼∼∼ 0, and L and D satisfy
condition (∗)d. Then either

(i) 0 < L ·D ≤ min{2d, 1
2
L2}, max{0,−d+ L ·D} ≤ D2 ≤ (L·D)2

L2 ,
or

(ii) 0 ≤ L ·D ≤ min{d− 1, 1
2
L2}, −d+ L ·D ≤ D2 < 0.
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Moreover, if D2 = (L·D)2

L2 in case (i), then L ∼∼∼ sD where s = L2

L·D .

Proof. We have

L ·D ≤ 1

2
L2 (1)

− d+ L ·D ≤ D2 (2)

which account for 2 of the inequalities in either case.

Case 1. L ·D = 0.
Here, we must be in case (ii) and what must be shown is L ·D < d

and D2 < 0. The first is a consequence of the second, in light of (2).
If D2 = 0, then L2D2 = (L · D)2 = 0 so by Hodge index, D ∼∼∼ sL.

This means D ∼∼∼ 0, contrary to hypothesis.
In any case, D2 ≤ (L ·D)2/L2 = 0, proving this case.

Case 2. L ·D > 0, D2 ≥ 0.
Multiply eq. (2) by (L ·D): (−d+ L ·D)(L ·D) ≤ D2(L ·D)
Multiply eq. (1) by D2: D2(L ·D) ≤ D2(1

2
L2)

Use Hodge index: 1
2
L2D2 ≤ 1

2
(L ·D)2.

Thus, since L ·D > 0 we get

−d+ L ·D ≤ 1

2
(L ·D)

or L ·D ≤ 2d.
The remaining inequalities are clear.

Case 3. L ·D > 0, D2 < 0.
All inequalities are clear in this case.

Q.E.D.

Corollary . Under the hypotheses L2 > 0, D 6∼∼∼ 0 there are the follow-
ing possible solutions for (∗)0, (∗)1, (∗)2:

Solution for (∗)0: None.
Solution for (∗)1:

L ·D = 2, D2 = 1, L2 = 4, L ∼∼∼ 2D
L ·D = 1, D2 = 0
L ·D = 0, D2 = −1

Solution for (∗)2: all solutions for (∗)1, and:
L ·D = 4, D2 = 2, L2 = 8, L ∼∼∼ 2D
L ·D = 3, D2 = 1, 6 ≤ L2 ≤ 9, (if L2 = 9 then L ∼∼∼ 3D)
L ·D = 2, D2 = 0
L ·D = 1, D2 = −1
L ·D = 0, D2 = −2.
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(The proof consists of enumerating cases in the conclusion of the “tech-
nical lemma”.)

For the next step in the Reider method, we need to construct some
vector bundles on the surface X. The construction proceeds by means
of extensions of sheaves, which are now review.

Suppose that 0 → B → E → A → 0 is a short exact sequence of
sheaves of OX-modules, and consider the functor Hom(−,B). This is
a half-exact contravariant functor, and leads to a long exact sequence
which begins

0 → Hom(A,B) → Hom(E ,B) → Hom(B,B) → Ext1(A,B) →

where Ext1(−,B) is the first derived functor. The extension class of
the sequence 0 → B → E → A → 0 is the image of the identity map
1B ∈ Hom(B,B) in Ext1(A,B). [Conversely, any element of Ext1(A,B)
is the extension class of some extension.] Notice that 1B maps to zero
in Ext1(A,B) if and only if there is some map ϕ : E → B such that

the composite B ⊂ E ϕ→ B is the identity on B. That is, the extension
class is 0 if and only if the sequence is split, so that E = A⊕ B.

The key to the bundle constructions we need is to use Serre duality
(for sheaves which may not be locally free) to interpret an H1 cohomol-
ogy group as the dual of an Ext1 group, and then build an extension. So
recall this form of Serre duality (proved in Hartshorne’s book), which
we state only for surfaces.

Theorem (Serre Duality). Let X be a smooth projective surface and
let F be a sheaf of OX-modules. Then

H1(F ⊗ ωX) ∼= Ext1(F ,OX)∗.

We use these techniques to build two kinds of vector bundles. First,
if L is a line bundle on X with H1(OX(KX + L)) 6= 0, and e ∈
H1(OX(KX +L))∗ is a nonzero element, define Ee,L to be the extension

0 → OX → Ee,L → OX(L) → 0

with extension class e ∈ H1(OX(KX + L))∗ = Ext1(OX(L),OX).
Second, if L is a line bundle on X and Z is a zero-cycle with

H1(IZ(KX + L)) 6= 0, we define a “universal” extension as follows.
For any complex vector space V ,

Ext1(IZ(L),OX ⊗ V ) ∼= Ext1(IZ(L),OX)⊗ V.

In particular, this holds for V = H1(IZ(KX+L)) ∼= Ext1(IZ(L),OX)∗.
We may regard the identity mapping on Ext1(IZ(L),OX) as an element

id ∈ Ext1(IZ(L),OX)⊗Ext1(IZ(L),OX)∗ ∼= Ext1(IZ(L),OX⊗H1(IZ(KX+L))
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and thus get an extension

0 → OX ⊗H1(IZ(KX + L)) → E(Z,L) → IZ(L) → 0.

Before proceeding, let’s pause and show why this particular coho-
mology group H1(IZ(KX + L)) is so interesting. Suppose we have a
line bundle L with H1(OX(KX + L)) = 0, and we consider the exact
sequence

0 → IZ(KX + L) → OX(KX + L) → OZ(KX + L) → 0.

The long exact cohomology sequence has 4 interesting terms:

0 → H0(IZ(KX + L)) → H0(OX(KX + L)) → H0(OZ(KX + L))
→ H1(IZ(KX + L)) → 0.

We say that Z fails to impose independent conditions on |KX + L| if
H1(IZ(KX +L)) 6= 0. The key cases for the Reider method will be (1)
Z = P is a point (in which case this condition means that P is a base
point) or (2) Z = P +Q is a pair of points, possibly infinitely near (in
which case this condition means that either P or Q is a base point, or
the map ϕ|KX+L| fails to separate P and Q [in the infinitely near case:
fails to have injective differential at P ]). We will use the sheaf E(Z,L)
to extract information about these situations.

We need the following lemma, whose proof we do not give here.

Lemma . Let X be a smooth projective surface, L be a nef and big
divisor

(i) If e is a general element of H1(OX(KX+L))∗ then Ee,L is locally
free.

(ii) If for every Z ′ $ Z we have h1(IZ′(KX+L)) < h1(IZ′(KX+L))
then E(Z,L) is locally free.

In these cases, we let Ee,L and E(Z,L) denote the corresponding
vector bundles, and write

Ee,L = OX(Ee,L);

E(Z,L) = OX(E(Z,L)).

We will be primarily interested in the case of rank 2 bundles; notice
that in this case we have a sequence

0 → OX → OX(E) → IZ(L) → 0

where E = Ee,L or E(Z,L), and Z = ∅ in the first case (assuming
rankE = 2).

Definition . Let E be a rank 2 vector bundle on a smooth projective
surface X.
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(i) We say that E has the strong Bogomolov property if there are
a zero-cycle A, line bundles M,N ∈ Pic(X) and an exact se-
quence

0 →M→ OX(E) → IA ⊗N → 0

such that h0((M⊗N−1)⊗k) > 0 for some k > 0.
(ii) If L = c1(E) is nef, we say that E has the weak Bogomolov prop-

erty if there are a zero-cycle A, line bundles M,N ∈ Pic(X)
and an exact sequence

0 →M→ OX(E) → IA ⊗N → 0

such that L · (M⊗N−1) ≥ 0.

[Clearly, when c1(E) is nef the strong Bogomolov property implies
the weak one. Notice also: OX(L) = M⊗N .]

The reason for making this somewhat strange looking definition is

Bogomolov’s Theorem . If E is a rank 2 vector bundle on a smooth
projective surface X with c21(X) > 4c2(X) then E has the strong Bogo-
molov property.

The proof of this theorem is far beyond the scope of this course; it
is essential for doing Reider’s method on arbitrary surfaces, but as we
will see in the next section, for K3 surfaces we get better results by
using a slightly different method (which avoids Bogomolov’s theorem).

The final ingredient in Reider’s method is the following proposition:

Proposition . Let E be a rank 2 vector bundle on a smooth projective
surface X such that L = c1(E) is nef and big. Suppose that there is a
section s : OX → OX(E) whose zero-locus Z has dimension 0. [This
is the case if and only if we have an exact sequence of sheaves

0 → OX
s→ OX(E) → IZ(L) → 0.] (*)

If E has the weak Bogomolov property with associated sequence

0 →M→ OX(E) → IA ⊗N → 0, (**)

then there is an effective divisor D containing Z such that N = OX(D).
Moreover, if D = 0 then Z = ∅ and the sequence (*) splits.
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Proof. We assemble (*) and (**) into a diagram and consider the in-
duced map α : OX → IA ⊗N shown below.

0y
OXys ↘α

0 −→ M −→ OX(E) −→ IA ⊗N −→ 0y
IZ(L)y

0

Suppose first that α is identically 0. Then the image of s lies in M,
and there is an induced map OX →M. For x /∈ Z ∪ A, the maps on
fibers OX,x → Ex and Mx → Ex are injective; thus, OX,x → Mx is
an isomorphism for such values of x. But a map between line bundles
which is an isomorphism away from a codimension 2 set like Z ∪ A
must be an isomorphism everywhere; it follows that M∼= OX .

But now OX(L) = M⊗N = N so that M⊗N−1 = OX(−L). The
weak Bogomolov property then implies that L·(−L) ≥ 0, contradicting
the assumption “L is big”.

Thus, α is not identically zero, so it defines a non-trivial section of
IA ⊗ N ; composing with the inclusion IA ⊗ N ⊂ N we get a section
of N . The zero-locus D of this section contains Z (since the map
s, through which our section OX → N factors, vanishes on Z), and
satisfies N = OX(D).

It remains to prove the last statement. Suppose that D = 0. Since
D is by definition the subset of X where the composite map OX

α→
IA ⊗ N ⊂ N fails to be surjective on fibers, we see that this map is
an isomorphism. (In particular, IA = OX and A = ∅.) Now in the
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diagram

0y
OXy ↘α

OX(E)
β−→ N −→ 0y

IZ(L)y
0

the map α−1 ◦β : OX(E) → OX gives a splitting of the sequence. This
implies that OX(E) = OX ⊕ IZ(L); since E is locally free, Z must be
empty as well. Q.E.D.

We can now give Mumford’s proof of the Kodaira-Ramanujan vanish-
ing theorem, which is the “0th case” of Reider’s method. (In retrospect,
this proof is a special case of Reider’s method, but in fact it preceded
Reider’s work by about 10 years.)

Mumford’s proof of Kodaira-Ramanujan vanishing. Let L be nef and
big, and suppose H1(OX(KX + L)) 6= 0. Choose e 6= 0 to be a general
element of H1(OX(KX + L))∗ and consider the vector bundle Ee,L,
which has a defining sequence

0 → OX → OX(Ee,L) → OX(L) → 0.

Since e 6= 0, this sequence is not split.
Now c1(Ee,L) = L and c2(Ee,L) = 0. Thus, c21(Ee,L) = L2 > 0 =

4c2(Ee,L) so that Bogomolov’s theorem applies, and we have the strong
(and the weak) Bogomolov property:

0 →M→ OX(Ee,L) → IA ⊗N → 0.

By the proposition, N = O(D) for some effective divisor D; moreover,
since the defining sequence is not split, D 6= 0. This implies that
D 6∼∼∼ 0, since D is effective.

Now L ·D ≥ 0 since L is nef and D is effective; L · ((L−D)−D) ≥ 0
since M = OX(L−D), N = OX(D); and

0 = c2(Ee,L) = c2(M) + c2(IA ⊗N ) + c1(M) · c1(IA ⊗N )

= degA+ (L−D) ·D ≥ (L ·D) ·D
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so that L and D satisfy (∗)0. But by the technical lemma, there are
no solutions to (∗)0 with D 6∼∼∼ 0 and L2 > 0, a contradiction.

Hence, H1(OX(KX + L)) = 0. Q.E.D.

We assemble all of our pieces of the Reider method for E(Z,L) in
the rank 2 case into the following theorem.

Theorem (Reider’s method). Let X be a smooth projective surface,
let L be a nef and big line bundle on X, and let Z be a zero-cycle of
degree d > 0 such that h1(IZ(KX + L)) = 1 but for every Z ′ $ Z,
h1(IZ′(KX +L)) = 0. Suppose that the vector bundle E(Z,L) satisfies
the weak Bogomolov property. Then there is an effective divisor D
containing Z such that L and D satisfy (∗)d [with L2 > 0 and D 6∼∼∼ 0].
In particular, L and D satisfy the conclusion of the “technical lemma”:
either

(i) 0 < L ·D ≤ min{2d, 1
2
L2}, max{0,−d+ L ·D} ≤ D2 ≤ (L·D)2

L2 ,
or

(ii) 0 ≤ L ·D ≤ min{d− 1, 1
2
L2}, −d+ L ·D ≤ D2 < 0.

Proof. Since h1(IZ(KX + L)) = 1 and h1(IZ′(KX + L)) = 0 for all
Z ′ $ Z, the vector bundle E(Z,L) exists and has rank 2. Its defining
sequence has the form

0 → OX → OX(E(Z,L)) → IZ(L) → 0.

Since E(Z,L) satisfies the weak Bogomolov property, there is another
sequence

0 →M→ OX(E(Z,L)) → IA ⊗N → 0

with L · (M⊗ N−1) ≥ 0. By the proposition, N = OX(D) for an
effective divisor D containing Z. Since Z 6= ∅, D 6= 0 so D 6∼∼∼ 0.

We compute Chern classes of E = E(Z,L):

L = c1(E) = c1(M) + c1(IA ⊗N ) = c1(M) +D

which implies c1(M) = L−D, and

d = degZ = c2(E) = c2(M) + c2(IA ⊗N ) + c1(M) · c1(IA ⊗N )

= deg(A) + c1(M) · c1(N ).

which implies d = deg(A) + (L−D) ·D.
It remains to verify (∗)d. Since L is nef and D is effective, L ·D ≥ 0.

By the weak Bogomolov property, since M⊗N−1 = OX((L−D)−D)
we have L · (L− 2D) ≥ 0. And finally, by the computation of c2,

d = degA+ (L−D) ·D ≥ (L−D) ·D.
Q.E.D.
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As an application, we prove Reider’s original theorem.

Reider’s Theorem . Let X be a smooth projective surface, and let L
be a nef line bundle on X.

(I) If P is a base point of |KX + L| and L2 ≥ 5 then there is an
effective divisor D containing P such that either
(a) L ·D = 0, D2 = −1

or
(b) L ·D = 1, D2 = 0.

(II) If P and Q are not base points of |KX + L|, and P and Q are
not separated by the map ϕ|KX+L| (including the infinitely mear
case in which the differential of ϕ|KX+L| at P has a kernel in
the direction corresponding to the infinitely near point Q), and
if L2 ≥ 9, then there is an effective divisor D containing P +Q
such that either
(a) L ·D = 0, D2 = −1 or −2
(b) L ·D = 1, D2 = 0 or −1
(c) L ·D = 2, D2 = 0

or
(d) L ·D = 3, D2 = 1, L2 = 9, L ∼∼∼ 3D.

Proof. (I) Let Z = P and note that H0(OZ(KX + L)) ∼= C. In view of
the exact sequence

0 → H0(IZ(KX+L)) → H0(OX(KX+L)) → C → H1(IZ(KX+L)) → 0

we have h1(IZ(KX+L)) = 1 if and only if P is a base point of |KX+L|.
Moreover,

c21(E(Z,L)) = L2 > 4 deg(Z) = 4c2(E(Z,L)),

so by Bogomolov’s theorem, E(Z,L) satisfies the Bogomolov property.
The statement now follows from the previous theorem together with
the list of solutions to (∗)1. (We omitted all cases with L2 ≤ 4.)

(II) This time, if Z = P + Q we have H0(OZ(KX + L)) ∼= C2. If
neither P nor Q is a base point, the image of the map H0(OX(KX +
L)) → H0(OX(KX+L)) has dimension at least 1, and it has dimension
exactly 1 if and only if P and Q are not separated by ϕ|KX+L|. In this
case, h1(IZ(KX + L)) = 1 while for Z ′ $ Z (i. e. Z ′ = P or Z ′ = Q),
h1(IZ′(KX + L)) = 0 since neither is a base point.

In this case, c21(E(Z,L)) = L2 > 4 deg(Z) = 4c2(E(Z,L)) so the
statement again follows from Bogomolov’s theorem, the previous the-
orem, and the list of solutions to (∗)2 (with L2 ≥ 9). Q.E.D.
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Corollary 1 . Let L be a nef line bundle on a smooth projective surface
X such that L2 ≥ 10. If ϕ|KX+L| is not birational, then there is a
(possibly irrational) pencil {Dt} such that D2

t = 0 and L ·Dt = 1 or 2.

Proof. Assume first that the base locus of |KX + L| is a proper subva-
riety of X. If ϕ|KX+L| is not birational, then there is some Zariski-open
subset U ⊂ X such that no point of U is a base point of |KX + L|,
but for every P ∈ U there is some Q 6= P , Q ∈ U which is not sep-
arated from P by the map ϕ|KX+L|. Thus, every point P ∈ U must
be contained in some curve D from cases (a), (b), or (c) of part (II)
of Reider’s theorem. Since each such D contains a 1-parameter family
of points but U has dimension 2, there must be at least a 1-parameter
family of such curves D. If we taken an irreducible component of this
family of dimension ≥ 1, it cannot consist of curves D with D2 < 0,
since such curves do not move in algebraic families. Thus, there is a
family of curves {Dt} with parameter space of dimension ≥ 1 such that
D2
t = 0 and L ·Dt = 1 or 2.
A similar argument in the case that the base locus of |KX +L| is all

of X shows the existence of a family {Dt} with D2
t = 0 and L ·Dt = 1

(from part (I) of Reider’s theorem). Q.E.D.

Corollary 2 .

(i) If −KX is nef and big then |−3KX | is birational. (Del Pezzo
surfaces)

(ii) if KX is nef and big then |5KX | is birational. (Surfaces of
general type)

Proof. Take L = ∓4KX . Then L2 = 16K2
X ≥ 16. Furthermore, L ·D

is always divisible by 4, so the cases D2 = 0, L · D = 1 or 2 cannot
occur. By Corollary 1, |KX + L| is birational. Q.E.D.

Remark . If we take L = ∓3KX then L2 = 9K2
X ≥ 9. A similar

argument shows: if in addition K2
X > 1, then |−2KX | resp. |4KX | is

birational.

5.1. Addendum to section 5. There is some further information
on generalized Del Pezzo surfaces which can easily be obtained from
Reider’s theorem.

Proposition . Let X be a generalized Del Pezzo surface, that is, a
surface for which −KX is nef and big, and let m ≥ 1.

(1) If |−mKX | has a base point, then m = 1 and K2
X = 1.

(2) If there are two points P and Q which are not separated by
ϕ|−mKX | and which do not lie on smooth rational curves with
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self-intersection −2, then either m = 1, K2
X ≤ 2 or m = 2,

K2
X = 1.

Proof. Let L = −(m+ 1)KX , so that |KX + L| = |−mKX |.
(1) L2 ≥ 5 if and only if m = 1, K2

X ≥ 2 or m ≥ 2. In this
case, if there is a base point then there is an effective divisor D with
either L · D = 0, D2 = −1 or L · D = 1, D2 = 0. In the first case,
KX ·D+D2 = −1 while in the second case, KX ·D+D2 = − 1

m+1
. In

neither case can KX ·D +D2 be an even integer, so such a D cannot
exist.

2) L2 ≥ 10 if and only if m = 1, K2
X ≥ 3 or m = 2, K2

X ≥ 2 or
m ≥ 3. In this case, if there exist such points P and Q which are
not base points, then there is an effective divisor D with either one of
the properties in (1) [which is impossible] or L · D = 1, D2 = −1 or
L ·D = 2, D2 = 0. We compute again: KX ·D +D2 = −1

m+1
− 1 in the

first case, and = −2
m+1

in the second case; again, neither can be an even
integer. Q.E.D.

Before leaving the topic of Reider’s method in general, we give a bit
more information about the condition h1(IZ′(KX +L)) < h1(IZ(KX +
L)) for Z ′ $ Z in a slightly special case.

Suppose that X is regular (so that H1(OX(KX)) ∼= H1(OX)∗ = 0)
and that there is a smooth curve C ∈ |L| containing Z. Then we can
make a big diagram of exact sheaf sequences:

0 0y y
IC/X(KX + L) = IC/X(KX + L)y y

0 → IZ/X(KX + L) → OX(KX + L) → OZ(KX + L) → 0y y ||
0 → IZ/C(KX + L) → OC(KX + L) → OZ(KX + L) → 0y y

0 0
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Using the standard isomorphism IC/X(KX+L) ∼= OX(KX), IZ/C(KX+
L) ∼= OC(KC − Z), and OC(KX + L) ∼= OC(KC), this becomes:

0 0y y
OX(KX) = OX(KX)y y

0 → IZ/X(KX + L) → OX(KX + L) → OZ(KX + L) → 0y y ||
0 → OC(KC − Z) → OC(KC) → OZ(KC) → 0y y

0 0

This has the following interpretation: H1(IZ/X(KX + L)) measures
the failure of the points Z to impose independent conditions on the
linear system |KX + L|. Now |KX + L| induces the canonical linear
system |KC | on C, so we are measuring the linear dependence relations
among the points Z in the canonical space PH0(OC(KC)). The “geo-
metric version of Riemann-Roch” (see Griffiths-Harris), relates this to
H0(OC(Z)). In our case, looking at the long exact sequence asso-
ciated to the left vertical sequence we find (since H1(OX(KX)) = 0,
H2(OX(KX)) ∼= H0(OX)∗ ∼= C, andH2(IZ/X(KX+L)) ∼= H2(OX(KX+
L)) ∼= H0(OX(−L))∗ = (0)):

0 → H1(IZ/X(KX + L)) → H1(OC(KC − Z)) → C → 0
||o

H0(OC(Z))∗

In particular, if r = h1(IZ/X(KX + L)) then h0(OC(Z) = r + 1 and
E(Z,L) has rank r + 1.

The condition h1(IZ′/X(KX+L)) < h1(IZ/X(KX+L)) for all Z ′ $ Z
can now be interpreted in the following way: h0(OZ′(C)) < h0(OZ(C)).
In other words, this condition means that the linear system |Z| on X
has no base points.

5.2. Second addendum to section 5. When the bundle E(Z,L)
comes from a base-point-free linear system |Z| on a smooth curve C ∈
|L|, there is an easy way to guarantee that E(Z,L) is generated by its
global sections (when X is regular). Namely, Z ⊂ C ⊂ X gives rise to
the exact sequence

0 → IC/X(L) → IZ/X(L) → IZ/C(L) → 0
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which can also be written as

0 → OX → IZ/X(L) → OC(KC − Z) → 0. (*)

Now the map H0(OX(E(Z,L)) → H0(IZ/X(L)) is surjective since X
is regular; thus, (*) induces an extra section of E(Z,L) and there is an
exact sequence

0 → (OX)⊕r ⊕OX → OX(E(Z,L)) → OC(KC − Z) → 0.

This sequence is exact on global sections; thus, E(Z,L) is generated by
global sections if OC(KC−Z) is. The latter happens whenever |KC−Z|
has no base points. Thus, if both |Z| and |KC−Z| have no base points,
OC(E(Z,L)) is locally free and generated by global sections.

6. Linear systems on K3 surfaces

We will use Reider’s method to investigate linear systems on K3
surfaces, but with one difference: instead of Bogomolov’s theorem, we
will find another technique for ensuring that the vector bundles E(Z,L)
have the weak Bogomolov property. To begin, we need to give the
computation of χ(E ⊗ E∗) due to Mukai and Lazarsfeld.

Computing Euler characteristics for vector bundles requires the Hir-
zebruch-Riemann-Roch theorem, which we now review. Let E be a
vector bundle of rank m on a smooth projective variety X of dimension
n, and let

ct(E) = 1 + c1(E)t+ · · ·+ cn(E)tn

be the Chern polynomial. There is a “splitting principle” for calculat-
ing Chern classes which states that any formula which can be proved
under the assumption that E is a direct sum of line bundles in fact
holds in general. If we pretend that E = L1 ⊕ · · · ⊕ Lm and write
ct(Lj) = 1 + λjt, then by the multiplicativity of ct(E) this splitting
principle corresponds to a formal factorization

ct(E) =
m∏
j=1

(1 + λjt) mod tn+1

and so cj(E) is the jth elementary symmetric function in {λ1, . . . , λm}.
Let us work now in the graded ring

⊕
H2i(X,Z), in which we denote

an element by [a0, a1, . . . ] and the ith component by [a0, a1, . . . ]i = ai.
(The grading is given by degH2i(X,Z) = i.) We may regard λj as an
element of H2(X,Z), and eλj as an element of our ring (via truncated
power series): [1, λj, λ

2
j/2!, . . . ]. With these conventions, define the
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Chern character of E to be

ch(E) =
m∑
j=1

eλj ∈
⊕

H2i(X,Z).

This definition is to be interpreted in the non-split case as follows:
it is symmetric in {λ1, . . . , λm}, and so can be written in terms of
the elementary symmetric functions, and hence in terms of the Chern
classes ci(E).

The first few terms in the Chern character are

ch(E) = [rank(E), c1(E),
c21(E)− 2c2(E)

2
,
c31(E)− 3c1(E)c2(E) + 3c3(E)

6
, . . . ].

Here are some properties of ch(E) which can easily be verified from
the definition (and the splitting principle):

(1) ch(E ⊕ F ) = ch(E) + ch(F ) (More generally, ch is additive in
exact sequences)

(2) ch(E ⊗ F ) = ch(E) · ch(F )
(3) ch(E∗)i = (−1)i ch(E)i.

The Hirzebruch-Riemann-Roch theorem also involves the Todd class
of X, another element of

⊕
H2i(X,Z). This is a bit complicated to

define, but it begins as

td(X) = [1,
c1(X)

2
,
c21(X) + c2(X)

12
,
c1(X)c2(X)

24
, . . . ]

where ci(X) = ci(TX) are the Chern classes of the tangent bundle. The
Hirzebruch-Riemann-Roch theorem says:

χ(E) = (ch(E) · td(X))n.

As an example, consider a line bundle L on a surface X. We have
ct(L) = 1+ c1(L)t and so ch(L) = [1, L, 1

2
L2]. In addition, for a surface

we have td(X) = [1,−1
2
KX , X(OX)]. Thus,

χ(L) = χ(OX) +−1

2
KX · L+

1

2
L2

giving the familiar formula.

We return to the case of a K3 surface X, and consider the vector
bundle E = E(Z,L) on X. We define r + 1 = rankE, d = degZ, and
2g − 2 = L2 = c21(E). In particular, in the special case in which there
is a smooth curve C ∈ |L| containing Z, the linear system |Z| on C
satisfies: genus(C) = g, deg(OC(Z)) = d, h0(OC(Z)) − 1 = r. (It is
also base-point-free, to get the vector bundle E(Z,L).)
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Now comes the miraculous computation of Mukai and Lazarsfeld:

ch(E) = [r + 1, c1(E),
c21(E)− 2c2(E)

2
]

ch(E∗) = [r + 1,−c1(E),
c21(E)− 2c2(E)

2
]

ch(E ⊗ C∗) = [(r + 1)2, 0, rc21(E)− (2r + 2)c2(E)]

td(X) = [1, 0, 2]

since X is a K3 surface. Thus

χ(E ⊗ E∗) = 2(r + 1)2 + rc21(E)− (2r + 2)c2(E)

= 2(r + 1)2 + r(2g − 2)− (2r + 2)d

= 2− 2[−(r + 1)2 − (r + 1)(g − 1) + g + (r + 1)d]

= 2− 2[g − (r + 1)((r + 1) + (g − 1) + d)]

= 2− 2(g − (r + 1)(r − d+ g)).

The miracle is this: the number

ρ(g, r, d) = g − (r + 1)(r − d+ g)

is called the Brill-Noether number, and is very important in the theory
of special linear systems on curves. As an example, we have:

Part of the Brill-Noether Theorem . If C is a general curve of
genus g, then every grd in C (that is, a linear system with h0 = r + 1
and degree d) satisfies ρ(g, r, d) ≥ 0.

So the Mukai-Lazarsfeld computation says: χ(E⊗E∗) = 2−2ρ(g, r, d),
where g = 1

2
c21(E) + 1, r = rank(E)− 1 and d = c2(E). But even more

is true: by Serre duality, since KX = 0 we have

H2(E ⊗ E∗) ∼= H0((E ⊗ E∗)∗ ⊗KX)∗

∼= H0(E∗ ⊗ E)∗

so that h2(E ⊗ E∗) = h0(E ⊗ E∗). In particular

2h0(E ⊗ E∗)− h1(E ⊗ E∗) = 2− 2ρ.

The conclusion is: if ρ < 0 then h0(E⊗E∗) > 1. (To restate in the case
Z ⊂ C: if the linear system OC(Z) has negative Brill-Noether number,
then the vector bundle E(Z,C) has an extra endomorphism.) It is this
extra endomorphism which gives us the weak Bogomolov property.

Proposition . Let E be a vector bundle of rank 2 on a smooth projec-
tive surface X. Suppose that L = c1(E) is nef, and that h0(E⊗E∗) > 1.
Then E has the weak Bogomolov property.
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Proof. H0(E ⊗ E∗) ∼= Hom(E,E); let ϕ : E → E be a (sheaf) homo-
morphism which is not a scalar multiple of the identity 1E. (This exists
since dim Hom(E,E) > 1.)

If we choose a point x ∈ X, and choose an eigenvalue λ of the fiber
map ϕx : Ex → Ex, then ϕ̃ = ϕ− λ · 1E has the property that rank(ϕ̃)
is less than 2 somewhere, while ϕ̃ 6≡ 0. We replace ϕ by ϕ̃, and assume
this about ϕ.

Now Ker(ϕ) is a subsheaf of the locally free sheaf OX(E), and so is
torsion-free. Thus, it has a rank, and away from a set of codimension 2
on X it is locally free of that rank. [In fact, since E/Ker(ϕ) ∼= Im(ϕ) ⊂
E is also torsion-free, Ker(ϕ) is reflexive and hence locally free.] Since

0 $ Ker(ϕ) $ E

we see that rank(Ker(ϕ)) = 1; this implies that Ker(ϕ) is a line bundle.
We have naturally Ker(ϕ) ⊂ Ker(ϕ2) ⊂ E, and Ker(ϕ2) is locally

free. Thus, either it has rank 1 and Ker(ϕ) = Ker(ϕ2), or it has rank
2 and Ker(ϕ2) = E.

If Ker(ϕ) = Ker(ϕ2), then I claim that ϕ : Im(ϕ) → E is injective.
For if x ∈ Im(ϕ) with ϕ(x) = 0 then x = ϕ(y) for some y and thus
ϕ2(y) = 0. But then ϕ(y) = 0 so that x = 0, proving the claim. Thus,
ϕ gives a splitting of the sequence

0 → Ker(ϕ) → E
ϕ
←→ Im(ϕ) → 0

and we have E = Ker(ϕ)⊕ Im(ϕ). If L · c1(Kerϕ) ≥ L · c1(Im(ϕ)) then

0 → Ker(ϕ) → E → Im(ϕ) → 0

provides a Bogomolov sequence; if L · c1(Kerϕ) ≤ L · c1(Imϕ) then

0 → Im(ϕ) → E → Ker(ϕ) → 0

is the desired sequence.
On the other hand, if Ker(ϕ2) = E then Imϕ ⊂ Kerϕ so there is

a non-trivial section O → O(Kerϕ) ⊗ O(Imϕ)∗. Since L is nef, this
implies L · (O(Kerϕ)⊗O(Imϕ)∗) ≥ 0. But then

0 → Kerϕ→ E → Imϕ→ 0

has the weak Bogomolov property. Q.E.D.

We now come to the first main theorem about linear systems on K3
surfaces.

Theorem . Let X be a smooth projective K3 surface, and let L be a
nef line bundle on X.

(I) If P is a base point of |L| and L2 ≥ 2 then there is an effective
divisor D containing P such that L ·D = 1, D2 = 0.
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(II) If P and Q are not base points of |L|, and P and Q are not
separated by the map ϕ|L| (including the infinitely near case in
which the differential of ϕ|L| at P has a kernel in the direction
corresponding to the infinitely near point Q), and if L2 ≥ 4 then
there is an effective divisor D containing P +Q such that either
(a) L ·D = 0, D2 = −2,
(b) L ·D = 1 or 2, D2 = 0, or
(c) L ·D = 4, D2 = 2, L2 = 8, L ∼∼∼ 2D.

Proof. As in the proof of Reider’s theorem, the key step is to show that
bundles E(Z,L) satisfy the weak Bogomolov property when degZ = 1
(for part (I)), and degZ = 2 (for part (II)). (We have Z = P and
Z = P +Q, respectively.) We have r + 1 = 2 and for degZ = d:

ρ = g − 2(1− d+ g) = 2d− 2− g.

Thus, when g > 0 in the case d = 1 (i. e. L2 > 0 to have nef and
big) or when g > 2 in case d = 2 (i. e. L2 ≥ 4) we have ρ < 0; by
the “miraculous computation” of χ(E ⊗E∗) and the previous proposi-
tion, E satisfies the weak Bogomolov property. Thus, by the “Reider’s
method theorem”, there is an effective divisor D containing Z satisfy-
ing (∗)1 resp. (∗)2. Noting that D2 ∈ 2Z for a K3 surface, we get the
solutions listed in the theorem. Q.E.D.

To complete the story of linear systems on K3 surfaces we need some
converse statements.

Proposition 1 . Let X be a smooth projective K3 surface, let L be a
nef and big line bundle on X, and suppose there is an effective divisor
D such that L ·D = 1, D2 = 0. Then |L| has a fixed component.

Proof. Consider the divisor L − gD, where L2 = 2g − 2. We use the
following:

Standard Trick . On a K3 surface, if Γ is a divisor with Γ2 ≥ −2
then Γ or −Γ is effective. If Γ2 ≥ −2 and L ·Γ > 0 for some nef divisor
L, then it is Γ which is effective.

Proof of the Trick.

H2(OX(Γ)) ∼= H0(OX(KX − Γ))∗

∼= H0(OX(−Γ))∗.

Thus, h0(Γ) + h0(−Γ) ≥ χ(Γ) = 1
2
(Γ2) + 2 ≥ 1 so either Γ or −Γ is

effective. If L ·Γ > 0 and L is nef then −Γ cannot be effective. Q.E.D.

Resuming the proof of the proposition, we have

(L− gD)2 = 2g − 2− 2g = −2
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L · (L− gD) = 2g − 2− g = g − 2.

If g ≥ 3 then L−gD is effective; if g = 2 then either L−2D or 2D−L
is effective. In the latter case let D̃ = L−D. Then L · D̃ = 1, (D̃)2 = 0

and L−2D̃ = 2D−L is effective. Thus, replacing D by D̃ if necessary,
we may assume that L− gD is effective.

But now h0(D) ≥ 2 implies h0(gD) ≥ g + 1 while h0(L) = g + 1.
Thus, L− gD is a fixed component of |L|. Q.E.D.

Proposition 2 . Let |L| be a nef and big linear system on a smooth K3
surface without base points. Suppose that there is an effective divisor
D on X such that L · D = 2 and D2 = 0. Then ϕ|L| has degree 2;
moreover, any smooth C ∈ |L| is hyperelliptic.

Proof. By Bertini’s theorem, the general C ∈ |L| is smooth. Now ϕ|L||C
induces the canonical map ϕ|KC | on C. On the other hand, the linear
system OC(D) has degree 2 and dimension 1, so that C is hyperelliptic.
Thus, ϕ|KC | = ϕ|L||C has degree 2; since this is true for the general
hyperplane section ϕ|L| itself has degree 2. Q.E.D.

In the course of proving the next proposition, we will need some facts
about rational double points, whose proofs we omit.

Facts about rational double points . Let C1, . . . , Cn be a collection
of smooth rational curves on a smooth surface X such that C2

i = −2
and ∪Ci is connected, and suppose that the intersection matrix (Ci ·Cj)
is negative definite. Then there is a linear combination C =

∑
niCi

with ni ∈ Z, ni > 0 such that −C · Ci ≥ 0 for all i, and C2 = −2.
Moreover, there is a contraction map π : X → X̄ such that π(∪Ci) = P
is a point, and π|X−∪Ci

: X−∪Ci → X̄−P is an isomorphism. P ∈ X̄
is a rational double point.

Proposition 3 . Let X be a smooth K3 surface, let |L| be a nef and
big base-point-free linear system on X, and suppose there is an effec-
tive curve D such that L · D = 0, D2 = −2. Then every irreducible
component Di of D satisfies L ·Di = 0, D2

i = −2.
Moreover, if C1, . . . , Cn is a maximal connected set of irreducible

curves such that L · Di = 0, C2
i = −2, then there is a contraction

π : X → X̄of ∪Ci to a rational double point, and the map ϕ|L| factors
through π.

Proof. If we write D =
∑
niDi with ni > 0, then 0 = L ·D =

∑
niL ·Di

and each L · Di ≥ 0 implies L · Di = 0 for all i (since L is nef). By
Hodge index, since L · Di = 0 we have D2

i < 0. But then D2
i = −2

and Di is a smooth rational curve. Since Hodge index implies that
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these curves have a negative-definite intersection matrix, the maximal
connected components can be contracted to rational double points.

Now suppose that C1, . . . , Cn is a maximal connected set of such
curves. Also suppose L2 ≥ 4. Suppose that C =

∑
niCi satisfies

C · Ci ≤ 0 for all i, and C2 = −2. Consider the linear system |L− C|.
Note that (L− C)2 = L2 − 2 ≥ 0 and L · (L− C) = 2g − 2, so L− C
is effective.

Suppose that L−C is not nef, and let Γ be an irreducible curve such
that (L − C) · Γ < 0. If Γ2 ≥ 0 then |Γ| moves, so that (L − C) · Γ
cannot be negative since L − C is effective. Thus, Γ2 = −2. We have
C · Γ > L · Γ ≥ 0, so that Γ cannot be a component of C, and must be
connected to Supp(C). By our assumption about the maximality of C,
it follows that L · Γ > 0. If we let x = L · Γ, y = C · Γ and 2g− 2 = L2

(so that g ≥ 3) then 0 < x < y and the intersection matrix for L, C, Γ
is:  2g − 2 0 x

0 −2 y
x y −2


By Hodge index, this must have determinant ≥ 0. Thus, (using also
the relation 0 < x < y):

0 ≤ 2x2 + (4− y2)(2g − 2) < 2y2 + (4− g2)(2g − 2)

which implies (since g > 2):

y2 < 4

(
g − 1

g − 2

)
= 4

(
1

g − 2

)
≤ 8.

It follows that y = 2 and x = 1. But then (C+Γ)2 = 0 and L·(C+Γ) =
1 so that |L| has a fixed component, contrary to hypothesis.

Thus, |L− C| is nef. But now by Riemann-Roch,

h0(L− C) =
1

2
(L− C)2 + 2 =

1

2
L2 + 2− 1 = h0(L)− 1.

Since C imposes only 1 condition on H0(L), ϕ|L|(C) must be a point,
so ϕ|L| factors through the contraction π : X → X̄ of C.

In the case L2 = 2, h0(L− C) ≥ 1
2
(L− C)2 + 2 = 2. Since C is not

a fixed component of L, we have

2 ≤ h0(L− C) < h0(L) = 3

so that h0(L−C) = h0(L)−1 and the result follows as before. Q.E.D.

In sum, we have almost finished the proof of:

Theorem . 17 Let L be a nef and big linear system on a K3 surface.

17Reference for this theorem?
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(1) |L| has base points if and only if there is a divisor D such that
L ·D = 1, D2 = 0.

(2) In the case of no base points:
(a) If π : X → X̄ denotes the contraction of all effective curves

C with L · C = 0, C2 = −2 to rational double points, then
ϕ|L| factors through π.

(b) The induced map ϕ̄ : X̄ → Pg has degree 2 if and only if
either L2 = 2, or L ∼∼∼ 2D for a divisor D with D2 = 2, or
there is a divisor D with L · D = 2, D2 = 0. Otherwise,
ϕ̄ : X̄ → Pg is an embedding.

Notice that in the degree 2 case, the image surface ϕ̄(X̄)red has degree
1
2
(2g−2) = g−1 in Pg. It is thus a surface of minimal degree, and so is

a scroll or the Veronese. (The Veronese case corresponds to L ∼∼∼ 2D.)
Proof: The statement does not say “D is effective”, but that follows
in each case since L ·D > 0, D2 ≥ −2.

The only remaining thing to prove is that ϕ̄ is an embedding when
the degree is not 2. We omit the proof for infinitely near points (which
is complicated for the rational double points), and simply show that ϕ̄
separates distinct points.

Let P̄ , Q̄ ∈ X̄ with P̄ 6= Q̄ and suppose they are not separated by
ϕ̄. Choose P ∈ π−1(P̄ ), Q ∈ π−1(Q̄); then P and Q are not separated
by ϕ|L|. If ϕ̄ (and ϕ) do not have degree 2, there is an effective divisor
D containing P and Q with L ·D = 0, D2 = −2. But since P and Q
do not belong to the same maximal connected set of irreducible curves
Ci with L · Ci = 0, C2

i = −2, this is impossible: any such D would
have D2 ≤ −4 (being supported on 2 different connected components).
(This is another fact about rational double points.) “Q.E.D.”

6.1. Addendum to section 6.

Corollary . If |L| is a nef and big linear system on a K3 surface, then
|3L| induces an embedding of X into projective space.

Proof. If not, either 2 = (3L)2 = 9L2 (impossible), or 3L ∼∼∼ 2D with
D2 = 2 so that L2 = 4

9
D2 (impossible), or there is some D with D2 = 0

and 3L ·D = 1 or 2 (also impossible). Q.E.D.

7. The geometry of canonical curves and K3 surfaces

We now wish to discuss some of the connections between the geom-
etry of K3 surfaces in projective space Pg, and the geometry of their
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hyperplane sections, which are canonical curves. We begin by men-
tioning a theorem of Lazarsfeld, which can be partially proved with
the tools we have developed.

Theorem (Lazarsfeld [13]). Let X be a smooth K3 surface, and let L
be a nef and big line bundle which generates the Picard group Pic(X).
(It is easy to see that this implies that |L| is base-point-free.) Then ev-
ery smooth C ∈ |L| satisfies the Brill-Noether property in the following
form: for each line bundle L on C, ρ(L) ≥ 0.

Partial Proof. We treat the case h0(L) = 2: suppose that L satisfies
h0(L) = 2 and ρ(L) < 0 and write L = OC(Z) for some effective
divisor Z on C. The bundle E(Z,L) has rank 2, and since ρ(E(Z,L)) =
ρ(L) < 0 it satisfies the weak Bogomolov property. Thus, there is an
effective divisor D containing Z such that L and D satisfy (∗)d, where
d = degL. (Note that Z 6= ∅, so that D 6= 0.) By the assumption on
Pic(X), D ∼ kL for some k ∈ Z. But now L · D ≥ 0 implies k ≥ 0
while L ·(L−2D) ≥ 0 implies k ≤ 1

2
. We find that k = 0 and so D = 0,

a contradiction. Q.E.D.

Thus, the general principle is that the existence of a g1
d on C with

ρ < 0 forces the existence of some divisor D on X in addition to C.
We make this more explicit in the low degree cases.

Proposition . Let L be a nef and big linear system without base points
on a K3 surface.

(1) If there is a smooth C ∈ |L| which is hyperelliptic, then ϕ|L|
has degree 2. Conversely, if ϕ|L| has degree 2 then every smooth
C ∈ |L| is hyperelliptic.

(2) Suppose L2 = 8 or L2 ≥ 12. If there is a smooth C ∈ |L|
which is trigonal (that is, which has a g1

3) but not hyperelliptic,
then there is an effective divisor D with L · D = 3, D2 = 0.
Conversely, when such a divisor exists, every smooth C ∈ |L|
is trigonal.

(3) Suppose L2 = 12, 14 or 18. If there is a smooth C ∈ |L| which
is tetragonal (that is, which has a g1

4) but not hyperelliptic or
trigonal, then there is an effective divisor D such that either
L · D = 4, D2 = 0 or L · D = 6, D2 = 2. If L2 = 12 or 14,
the converse also holds: if there is a divisor of either kind, then
every smooth C ∈ |L| is tetragonal.

(We will return to the case of L2 = 18 and a g1
4 on C a bit later.)
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Proof. In each case, we are given a g1
d on C, call it |Z|, with d the

minimum possible value for such systems on C. Because it is the min-
imum, |Z| has no base points. We may thus choose Z ∈ |Z| consisting
of distinct points.

Consider the bundle E(Z,L): this has rank 2, and ρ = g − 2(1 −
d + g) = 2d − 2 − g. Thus, for g > 2d − 2 (which is equivalent to
L2 = 2g− 2 > 4d− 6) we have ρ < 0. For d = 2, 3, 4 this is implied by
L2 > 0, L2 ≥ 8, L2 ≥ 12 respectively.

By the Reider method, there is an effective divisor D containing Z
such that L and D satisfy (∗)d. Notice that C ∈ |L| is irreducible and
is not a component of D (for D − C effective would imply

0 ≤ C · (D − C) = C ·D − C2 ≤ −C ·D ≤ 0

(using C2 ≥ 2C ·D) and hence C ·D = C2 = 0, a contradiction). Thus,
C ·D ≥ # Supp(C ∩D) ≥ # Supp(Z) = d.

By induction on d, we can see that L and D do not satisfy (∗)d−1:
this follows from the “converse statement” for d− 1 in each case. (The
“converse statement” for d−1 = 1 is the statement that |L| has a fixed
component when there is a D satisfying (∗)1.) Thus, we need solutions
to (∗)d under the additional conditions: D · (L − D) = d, L · D ≥ d,
D2 ∈ 2Z. We have done the case d = 2 before: the d = 3 and d = 4
cases are:

Solution Restrictions

L ·D = 5, D2 = 2 10 ≤ L2 ≤ 25
2

d = 3
L ·D = 3, D2 = 0 6 ≤ L2

L ·D = 8, D2 = 4 16 ≤ L2 ≤ 16

d = 4 L ·D = 6, D2 = 2 12 ≤ L2 ≤ 36
2

L ·D = 4, D2 = 0 8 ≤ L2

To match the numerical statements given in to proposition, we need a
lemma:

Lemma . If |L| is a base-point-free linear system on a K3 surface with
L2 = 12 and if there is a divisor D such that L ·D = 5, D2 = 2 then
smooth curves C ∈ |L| are hyperelliptic.
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The proof of this is easy: (L − 2D)2 = 0 and L · (L − 2D) = 2 so
ϕ|L| must have degree 2.

To finish the proof of the proposition, notice that the existence of a
curve D with D2 = 0, L ·D = d implies that each smooth C ∈ |L| has a
g1
d, namely OC(D). The only remaining thing to check is the converse

statement when d = 4, D2 = 2, L ·D = 6. In that case, each smooth
C has a g2

6. But since L2 6= 18 (i. e. g 6= 10), the image of C under this
g2
6 cannot be a smooth plane sextic. The pencil residual to a singular

point of the image is a g1
4 (or smaller—but if there were something

smaller, every C ∈ |L| would be hyperelliptic or trigonal). Q.E.D.

In order to further study the trigonal case, we recall the Enriques-
Babbage-Petri theorem.

Theorem (Enriques-Babbage-Petri; cf. ACGH). A (non-hyperelliptic)
canonical curve C ⊂ Pg−1 is cut out by the quadrics containing it if and
only if C is not trigonal and not a smooth plane quintic. In the case in
which C is not cut out by quadrics, the quadrics containing C cut out
a surface of minimal degree; in the trigonal case, this is a scroll ruled
by the trisecant lines of C spanned by the g1

3.

The following theorem was originally proved by Saint-Donat using
different techniques, and including the case g = 6 (in which the state-
ment must be modified to include the smooth plane quintic hyperplane
section case).

Theorem (Saint-Donat). If a K3 surface X ⊂ Pg, g ≥ 5, is not cut
out by quadrics and g 6= 6, then every smooth hyperplane section of X
is trigonal, and there is a family of curves D of degree 3 with D2 = 0
which cut out the trigonal series on the hyperplane sections. Moreover,
the P2’s spanned by the plane cubics D sweep out a threefold scroll (of
minimal degree), the base locus of the quadrics through X.

Proof. Let P /∈ X be a point contained in all quadrics through X. A
general hyperplane H through P meets X in a smooth curve C (by
Bertini’s theorem).

SinceH1(OPg(1)) = 0 and the natural mapH0(OPg(1)) → H0(OX(1))
is an isomorphism, it follows from the exact sequence

0 → IX(1) → OPg(1) → OX(1) → 0

that H0(IX(1)) = H1(IX(1)) = 0. Now from the exact sequence

0 → IX(1) → IX(2) → IC(2) → 0

it follows that H0(IX(2)) ∼= H0(IC(2)). In particular, P is contained
in all quadrics through C.
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Thus, by the Enriques-Babbage-Petri theorem C is trigonal. By the
previous proposition, there is a D with L · D = 3, D2 = 0 where
OX(L) = OX(1); every smooth C ∈ |L| is then trigonal.

We sketch a proof of the “moreover” statement. The base locus of
the quadrics through C is the intersection of H with the base locus
of the quadrics through X. Since the former is a scroll swept by the
trisecant lines, the latter is a scroll swept by the linear span of the D’s
(which cut C in the trisecant lines)—i. e., by the P2’s containing the
plane cubics D. Q.E.D.

To ensure that you are not left with the wrong impression about
special linear systems on hyperplane sections of K3 surfaces, I return
to the example of L2 = 18 (g = 10) and g1

4’s. I need a lemma.

Lemma . A smooth plane sextic curve has no g1
4.

Proof. We first show: any set of k ≤ 4 distinct points P1, . . . , Pk in P2

impose independent conditions on cubics. This is a fairly straightfor-
ward fact, but it is amusing to prove it as an application of Reider’s
method. If it were false, after re-ordering the points if necessary, upon
blowing up P1, . . . , Pk−1 with a map π : X → P2 the anti-canonical se-
ries |−KX | would have a base point at Pk. It is easy to check that −KX

is nef (the worst case is three collinear points which prevents −KX from
being ample). But since K2

X ≥ 6, the application of Reider’s theorem
to generalized Del Pezzo surfaces given in section 5 implies that |−KX |
can have no base point.

Now given a smooth plane sextic with a g1
k, k ≤ 4, base-point-free,

we would have k distinct points not imposing independent conditions
on |KC |. (Choosing an element in the g1

k with distinct points.) Since
|KC | coincides with OP2(3) restricted to C, any such set of points must
impose independent conditions, a contradiction. Q.E.D.

Example (due to Donagi and the author). Consider again the exam-
ple we gave in the appendix to section 3 (on double covers): the double
cover of P2 branched along a curve of degree 6 with map π : X → P2.
Define L by OX(L) = π∗OP2(3). We have L · π∗OP2(1) = 6 so that for
a smooth C ∈ |L|, either π(C) is a curve of degree 6 or π maps C onto
a cubic curve and deg(π|C) = 2.

The computation we made earlier shows that both cases occur: on a
linear space of codimension 1 in |L|, deg(π|C) = 2 but the generic curve
C ∈ |L| is not the pullback of a curve in P2. Now the curves which are
double covers of elliptic curves all carry a g1

4, which they inherit from a
g1
2 on the elliptic curve. (In fact, there is a 1-parameter family of g1

4’s.)
On the other hand, for general C ∈ |L|, π(C) is a smooth plane sextic
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and so carries no g1
4. We conclude from our proposition that there is a

curve D such that L ·D = 6, D2 = 2, so that every curve carries a g2
6;

something which is obvious from the geometry. (In fact, Hodge index
implies L ∼∼∼ 3D so that the g2

6’s produced by the Reider method are
exactly those induced by the map π : X → P2.)

Quite a bit more is known about the connections between special
linear systems on hyperplane sections of a fixed K3 surface than we have
covered here. To briefly indicate what else is known, consider our basic
setup: a linear system |Z| on C with ρ < 0, the bundle E(Z,L) (where
C ∈ |L|) and the corresponding divisor D on X. Suppose for simplicity
that H1(OX(D − L)) = 0 so that the natural map H0(OX(D)) →
H0(OC(D)) is an isomorphism. (It is easy to see that D−L cannot be
effective.) In this case, the basic inequality D ·(C−D) ≤ d which forms
a part of (∗)d can be interpreted as follows: h0(OC(D)) = 1

2
D2 +2 and

deg(OC(D)) = D · C so that

d ≥ D · (C −D) = deg(OC(D))− 2h0(OC(D)) + 4.

If we define for any line bundle L on C the Clifford index

ν(L) = deg(L)− 2(h0(L)− 1)

(which is “d− 2r” for a grd) then this says:

ν(OC(Z)) ≥ ν(OC(D)).

The Clifford index of C is defined to be:

ν(C) = min{ν(L) | L ∈ Pic(C), h0(L) ≥ 2, h1(L) ≥ 2}.
The theorems are then:

Theorem (Donagi-Morrison). If C is a smooth curve on smooth K3
surface X with C2 > 0 and |Z| is a base-point-free g1

d on C with ρ < 0
then there is a divisor D on X containing Z such that ν(OC(D)) ≤
ν(OC(Z)) and the function C ′ 7→ ν(OC′(D)) is constant for smooth
C ′ ∈ |C|.

Theorem (Green-Lazarsfeld). If C is a smooth curve on a smooth
K3 surface X with C2 > 0 then ν(C ′) = ν(C) for every smooth C ′ ∈
|C|. Moreover if ν(C) <

[
g−1
2

]
(which implies that linear systems at

the minimum have ρ < 0) then there is a divisor D on X such that
ν(C) = ν(OC(D)).

For the proofs (which use techniques related to the ones we have
discussed here). I refer you to the original papers (J. Diff. Geo. 1988
and Inventiones Math. 1987, resp.).
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We now apply our investigations of the geometry of canonical curves
and K3 surfaces to give characterizations of K3 surfaces of low degree,
showing that they almost always coincide with the examples we have
constructed.

Theorem . Let L be a nef line bundle on a smooth K3 surface X. Let
π : X → X̄ be the contraction of all irreducible curves Ci on X with
C2
i = −2, Ci · L = 0 to rational double points.

(1) If L2 = 2 and there does not exist a divisor D with D2 = 0,
L·D = 1 then ϕ|L| induces a map X̄ → P2 of degree 2, expressing
X̄ as the double cover of P2 branched on a curve with only simple
singularities.

(2) If L2 = 4 and there does not exist a divisor D with D2 = 0,
L · D = 1 or 2 then ϕ|L| embeds X̄ as a quartic surface in P3

with only rational double points.
(3) If L2 = 6 and there does not exist a divisor D with D2 = 0,

L ·D = 1 or 2 then ϕ|L| embeds X̄ as a generically transverse
intersection of a quadric and a cubic in P4 with only rational
double points.

(4) If L2 = 8 and there does not exist a divisor D with D2 = 0,
L · D = 1, 2, or 3 then either ϕ|L| embeds X̄ as a generically
transverse intersection of three quadrics in P5 with only rational
double points, or L ∼∼∼ 2D for some divisor D and ϕ|L| induces
a map X̄ → V ⊂ P5 of degree 2 from X̄ to the Veronese V .

Proof. First notice that in all cases we have assumed there is no D with
L · D = 1, D2 = 0 so that |L| has no base points. In addition, our
previous results about when ϕ|L| has degree 2 agree with the statements
made here. In fact, the only thing left to prove for (1) is the statement
that the branch curve has simple singularities. But these are exactly
the singularities producing only rational double points on the double
cover X̄.

In the case L2 = 4, since ϕ|L| is an embedding (X is not hyperellip-
tic), it embeds X̄ as a hypersurface in P3, which has degree L2 = 4.

In the case L2 = 6, consider the sequence

0 → H0(IX̄(2)) → H0(OP4(2)) → H0(OX̄(2)).

Since h0(OP4(2)) = 15 and h0(OX̄(2)) = 1
2
(2L)2 + 2 = 14, we have

h0(IX̄(2)) ≥ 1. Let q ∈ H0(IX̄(2)) and let Q be the corresponding
quadric, so that ϕ|L|(X̄) ⊂ Q. Note that Q is irreducible since ϕ|L|(X̄)
is not contained in any hyperplane of P4.

If x0, . . . , x4 denote coordinates in P4, then xiq ∈ H0(IX̄(3)) for i =
0, . . . , 4. On the other hand, since h0(OP4(3)) = 35 and h0(OX̄(3)) =
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1
2
(3L)2 + L = 29 we have h0(IX̄(3)) ≥ 6. Thus, there is some section
r ∈ H0(IX̄(3)) whose associated cubic R does not contain Q. Then
R ∩ Q is a surface of degree 6 containing ϕ|L|(X̄); since ϕ|L|(X̄) also
has degree L2 = 6 it follows that ϕ|L|(X̄) = R ∩ Q is a generically
transverse intersection.

Finally, if L2 = 8 and ϕ|L| is an embedding we have h0(OP5(2)) = 21
while h0(OX̄(2)) = 1

2
(2L)2 + L = 18 so that h0(IX̄(2)) ≥ 3. By our

assumptions (that there is no D with L · D = 3, D2 = 0), ϕ|L|(X̄)
is cut out by the quadrics containing it. Thus, there are 3 elements
Q1, Q2, Q3 in the linear system |IX̄(2)| whose intersection is generically
transverse so that dim(Q1∩Q2∩Q3) = 2. Since ϕ|L|(X̄) ⊂ Q1∩Q2∩Q3

and degϕ|L|(X̄) = 8 = deg(Q1 ∩ Q2 ∩ Q3) it follows that ϕ|L|(X̄) =
Q1 ∩Q2 ∩Q3. Q.E.D.

Mukai has given some further characterizations using vector bundle
techniques; we will describe his method, and do the case of g = 8 in
detail.

A vector bundle E is simple if it has no endomorphisms other than
scalar multiplies of the identity, that is, if h0(E ⊗ E∗) = 1. Mukai
originally made the computation of X(E ⊗ E∗) for bundles on a K3
surfaceX because of the fact that the tangent space to the moduli space
of vector bundles on X at the point [E] can be naturally identified with
H1(E ⊗ E∗). Thus, in the simple case

X(E ⊗ E∗) = 2− h1(E ⊗ E∗) = 2− 2ρ(g, r, d)

when E = E(Z,L) for a grd (namely Z) on a smooth C ∈ |L| of genus
g. It follows that

h1(E ⊗ E∗) = 2ρ(g, r, d).

We have used this computation previously to see that E(Z,L) can-
not be simple when ρ < 0. Now, however we consider the case of
ρ = 0. The bundles in this case will be rigid (that is, will have no
local deformations), and so form some kind of discrete invariants of the
K3 surface X. It is natural to expect that the embeddings into such
bundles will yield information about the geometry of X.

To apply this idea, we need to recall:

Another Part of the Brill-Noether Theorem (cf. ACGH). Sup-
pose that

ρ(g, r, d) = g − (r + 1)(r − d+ g) ≥ 0

and that r− d+ g ≥ 0, r ≥ 0. Then every smooth curve of genus g has
a line bundle L with degL = d and h0(L) ≥ r + 1.
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Corollary . Every smooth curve of genus 8 has a complete base-point-
free g1

d for some d ≤ 5.

Proof. For g = 8, r = 1, d = 5 we have ρ = 0; thus, there is a line
bundle L = OC(Z) with degZ = 5, h0(OC(Z)) ≥ 2.

Suppose that h0(OC(Z)) = k+ 2 with k ≥ 0. Pick points P1, . . . , Pk
on C such that Pi is not a base point of |Z − P1 − · · · − Pi−1|. Then
h0(OC(Z −P1− · · · −Pk)) = 2 and degree (z−P1− · · · −Pk) = 5− k.
Now if |Z−P1− · · ·−Pk| has as its base points Q1 + · · ·+Q`, we have
h0(OC(Z−∑Pi−

∑
Qj)) = 2 and deg(Z−∑Pi−

∑
Qj) = 5−k− ` ≤

5. Q.E.D.

Theorem (A more precise version of a theorem of Mukai).
Let L be a nef line bundle on a smooth K3 surface X, and let π : X →
X̄ be the contraction of all irreducible curves Ci on X with C2

i = −2,
Ci · L = 0 to rational double points. Suppose that L2 = 14 and there
does not exist a divisor D with D2 = 0, L ·D = 1, 2, 3 or 4 or D2 = 2,
L ·D = 6. Then ϕ|L| embeds X̄ in P8 ∩ Gr(2, 6) of the Grassmannian
Gr(2, 6) in its Plucker embedding Gr(2, 6) ⊂ P14.

Proof. 18 Since there is no D with D2 = 0, L ·D = 1 or 2, the linear
system |L| has no base points, and ϕ|L| defines an embedding of X̄ into
P8.

Let C ∈ |L| be a smooth curve. By the corollary above, C has
a linear system |Z| which is a complete base-point-free g1

d for some
d ≤ 5. Our assumptions about non-existence of divisors D imply that
d cannot be less than 5, so d = 5. Thus, we get a vector bundle E(Z,L)
for which ρ = 0.

I claim that the linear system |KC−Z| on C has no base points. For
if P were a base point of this system, then |Z + P | would be a g2

6 on
C. Since C does not have genus 10, ϕ|Z+P | cannot be an embedding of
C. But this means for some Q ∈ C, |Z + P − 2Q| is a g1

4. We do not
have g1

4’s on C by our assumptions on the non-existence of divisors D.
It follows that E(Z,L) is generated by its global sections. To see

how many sections, we prove a

Lemma . If |Z| is a grd on C ∈ |L| of genus g, then

h0(OX(E(Z,L))) = g + 1− ν(OC(Z))

= g + 1− d+ 2r.

18Mukai’s theorem covers the case of a generic K3 surface, and his proof is quite
different.
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Proof. The sequence

0 → H0((OX)⊕r) → H0(OX(E(Z,L))) → H0(IZ(L)) → 0

is exact since X is regular. Now

h0(IZ(L)) = h0(OX(L))− h0(OZ(L)) + h1(IZ(L))

= g + 1− d+ r.

So h0(OX(E(Z,L))) = r + h0(IZ(L)) = g + 1− d+ 2r. Q.E.D.

In the case of the theorem we are proving, g = 8, r = 1 and d = 5
so that h0(E) = 6.

Since E = E(Z,L) is generated by its global sections, there is a
regular map π : X → Gr(2, H0(E)∗) = Gr(2, 6) defined by

x 7→ {ϕ ∈ H0(E)∗ | if v ∈ H0(E) vanishes at x then ϕ(v) = 0}

(cf. Griffiths and Harris, p. 207).
Moreover, since OX((Λ2E)∗∗) = OX(L), we have

X
ϕ|L|−→ P(H0(OX(L))∗) = P(H0(

∧2E)∗)y y
Gr(2, H0(E)∗)

P`−→ P(
∧2H0(E)∗)

where P` is the Plucker embedding.
(The map between projective spaces is given by the dual of the nat-

ural map ∧2H0(E) → H0(
∧2E).

In non-intrinsic terms, the diagram becomes

X
ϕ|L|−→ P8

ϕE

y y
Gr(2, 6)

P`−→ P14

where the map P8 → P14 is the one referred to above.)
Now dim Gr(2, 6) = 8 and P` maps it to P14; intersecting with the

linear P8 = P(H0(OX(L))∗) produces P8 ∩ Gr(2, 6) of codimension 6
in P8. That is, P8 ∩ Gr(2, 6) is a surface containing ϕ|L|(X̄). Since
deg(P8 ∩ Gr(2, 6)) = deg Gr(2, 6) = 14 and deg(ϕ|L|(X̄)) = L2 = 14 it
follows that ϕ|L|(X̄) = P8 ∩Gr(2, 6). Q.E.D.
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8. Kummer surfaces

In this section we will prove a theorem of Nikulin which says that
a K3 surface is a Kummer surface if and only if it has 16 singular
points of type A1. The proof is rather combinatorial in nature, but
the combinatorial analysis has a nice byproduct: with it, we will be
able to prove a Torelli-type theorem for Kummer surfaces, which is an
important step in proving the Torelli theorem for all K3 surfaces.

We start with a K3 surface X which has A1 singularities at points
P1, . . . , Pk and is smooth elsewhere. Let π : X̃ → X be the mini-
mal desingularization, let Ei = π−1(Pi), and let ei be the class of Ei
in H2(X̃,Z). The combinatorial analysis is devoted to the following
problem: for which subsets J ⊂ {1, . . . , k} is

∑
i∈J Ei divisible by 2 in

Pic(X̃)? (By the Lefschetz (1,1) theorem, this is equivalent to asking

when 1
2

∑
i∈J ei ∈ H2(X̃,Z).) The final step in showing that X is a

Kummer surface when k = 16 will be to use the divisibility by 2 of∑16
i=1Ei to construct a double cover of X̃ and thus recover the complex

torus out of which the Kummer surface is constructed; our goal must
therefore be to show that

∑16
i=1 ei is in fact divisible by 2.

Definition . Let L be a free Z-module of finite rank equipped with a
symmetric bilinear form L×L→ Z (which we denote by (x, y) 7→ x·y).
We define

L# = {x ∈ L⊗Q |x · y ∈ Z for all y ∈ L}
and note the natural map L# → Hom(L,Z) which sends x to the
function y 7→ x · y. The form on L is nondegenerate if this map
is an isomorphism, and in that case the cokernel L#/L is called the
discriminant-group of the form. (This is necessarily a finite group,
since L ⊂ L# and they become isomorphic after tensoring with Q.)

As an example, let L be the Z-span of e1, . . . , ek in H2(X̃,Z), for our
K3 surface X as above. Then ei · ej = −2δij so that L# is generated
by 1

2
e1, . . . ,

1
2
ek. It follows that L#/L ∼= (Z/2Z)k, generated by {1

2
ei}.

In our example, if we augment L by including the elements 1
2

∑
i∈J ei

which are contained in H2(X̃,Z) we get an inclusion L ⊂ M of free
Z-modules of the same rank. This leads to:

Property 1 of Discriminant-Groups . Let L ⊂ M be an inclusion
of free Z-modules of the same (finite) rank, let M be equipped with a
nondegenerate symmetric bilinear form, and consider L ⊂M ⊂M# ⊂
L#. Then

|L#/L| = |M#/M | · [M :L]2,
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where |G| denotes the order of a finite group and [G:H] denotes the
index of H in G.

Proof. We have

|L#/L| = [L#:M#][M#:M ][M :L]

so it suffices to show that [L#:M#] = [M :L]. Now

L#/M# ∼= Hom(L,Z)/Hom(M,Z),

so we must compute the order of this latter group.
There is an exact sequence

0 → Hom(M,Z) → Hom(L,Z)
δ→ Hom(M/L,Q/Z) → 0

constructed as follows: pick an integer n such that nM ⊂ L, and define

δ(ϕ)(x) =
1

n
ϕ(nx) mod Z

for ϕ ∈ Hom(L,Z), x ∈ M mod L. If x ∈ L then 1
n
δ(nx) = δ(x) ∈ Z,

so that this is well-defined. It is easy to see that Ker(δ) = Hom(M,Z):
if ϕ is in the kernel, then 1

n
ϕ(nx) = ϕ(x) ∈ Z for all x ∈ M , and

conversely. To see that δ is surjective, pick a basis e1, . . . , er of M and
for ψ ∈ Hom(M/L,Q/Z) pick gi ∈ Q such that gi ≡ ψ(ei) mod Z for
all i. Then defining ϕ ∈ Hom(M,Q) by ϕ(ei) = gi, we see that ϕ is
integer-valued on L, so ϕ|L ∈ Hom(L,Z), and that δ(ϕ|L) = ψ.

Finally, to compute the order of Hom(M/L,Q/Z): it is well known
that this has the same order as M/L itself. To see this, it suffices to
check it for a cyclic group Z/dZ; the homomorphisms Z/dZ → Q/Z
are classified by the image of 1, which must go to some element of
1
d
Z/Z ⊂ Q/Z. Q.E.D.

Consider now an inclusion L ⊂ Λ of free Z-modules with symmetric
bilinear forms which do not necessarily have the same rank. (We as-
sume that the form on Λ restricts to the form on L.) The saturation
of L in Λ is defined to be M = (L ⊗ Q) ∩ Λ; this has the same rank
as L. If M is saturated, and the form on M is nondegenerate, then
N := M⊥ is also saturated and M ⊕N ⊂ Λ is an inclusion of modules
of the same rank.

A form Λ is unimodular if Λ = Λ#, or equivalently, if the map
Λ → Hom(Λ,Z) is an isomorphism.

Property 2 of Discriminant-Groups . Let Λ be a free Z-module
with a unimodular form, let M be a saturated submodule on which the
form is non-degenerate, and let N = M⊥. Then there is a natural

isomorphism M#/M
∼=→ N#/N .
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Proof. For a given x ∈ M#, there is an associated ϕx ∈ Hom(M,Z)
defined by ϕx(y) = x · y. Now M is saturated means that Λ/M is
torsion-free, so every homomorphism M → Z can be extended to a
homorphism Λ → Z. Pick such an extension ϕ ∈ Hom(Λ,Z); since
Λ is unimodular there is some λ ∈ Λ corresponding to ϕ: we have
x · y = λ · y for all y ∈M .

Now λ−x ∈ N ⊗Q, and for all z ∈ N we have (λ−x) ·z = λ ·z ∈ Z.
Sending x 7→ λ−x defines the homomorphism M#/M → N#/N . It is
easy to check that it is well-defined (i. e. does not depend on the choice
of extension ϕ). To see that it is injective, suppose that λ − x ∈ N .
Then x ∈ Λ ∩ (M ⊗Q) and so (since M is saturated) x ∈M .

Finally, since we have M#/M ↪→ N#/N , if we reverse the roles of
M and N we get N#/N ↪→ M#. This implies that the groups have
the same order, and that the inclusions are isomorphisms. Q.E.D.

To return to our example of a K3 surface with A1 singularities, the
minimal resolution X̃ has a cohomology group H2(X̃,Z) with a sym-
metric bilinear form, which is unimodular by Poincaré duality. We have
the submodule L of Λ = H2(X̃,Z) generated by e1, . . . , ek; its satura-
tion M = (L ⊗ Q) ∩ Λ; and the orthogonal complement N = M⊥.
L#/L ∼= (Z/2Z)k is naturally a vector space over F2, as is any sub-
group of it.

Lemma . Let α = dimF2(M/L). Then

k − 2α ≤ 22− k.

Proof. Since |M/L| = 2α and |L#/L| = 2k, it follows from property
1 that |M#/M | = 2k−2α. Since M#/M is a sub-quotient of L#/L ∼=
(Z/2Z)k, it follows that M#/M ∼= (Z/2Z)k−2α.

Now by property 2, N#/N ∼= (Z/2Z)k−2α. On the other hand, the
second Betti number of a smooth K3 surface is 22, which implies that
N has rank 22−k (since L and M have rank k). Thus, N# and N#/N
can both be generated by 22− k (or fewer) elements; since (Z/2Z)k−2α

requires at least k−2α elements to generate it, k−2α ≤ 22−k. Q.E.D.

Corollary . If the K3 surface X has 16 singular points of type A1, there
is at least a five-dimensional F2-vector space of linear combinations∑
i∈J Ei which are divisible by 2 in the Picard group.

(A nice way to think about this result is: the topology of the K3

surface, as represented by H2(X̃,Z), forces the existence of certain

double covers of X̃ [and X], corresponding to the divisors divisible by
2.)
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To proceed further, we need to investigate the kinds of double covers
which can occur. One kind we already know: the double cover of a
Kummer surface by a complex torus. To investigate the double covers
in general, consider the following set-up: given a subset J ⊂ {1, . . . , k}
such that 1

2 i

∑
i∈J ei ∈M , let XJ → X be the resolution of the singular

points not in J . If we form the double cover Ỹ of X̃ branched on∑
i∈J Ei, we get a diagram

Ỹyη
X̃ → XJ → X.

Let Dj = 1
2
η∗(Ej) for j ∈ J ; then

D2
j =

1

4
η∗(Ej)

2 =
1

4
· 2(Ej)

2 = −1

so that Dj is an exceptional curve of the first kind. Blowing down all

the Dj’s for j ∈ J with a map α : Ỹ → Y , it is easy to see that the
induced rational map Y 99K XJ is in fact regular. So we get a bigger
diagram:

Ỹ
α→ Yyη y

X̃ → XJ → X.

The inverse image of Pj in Y is the point Qj = α(Dj), and the map
Y → XJ is unramified away from the points Pj and Qj (j ∈ J).

We need to compute some invariants of the surface Y . First, we have

K
Ỹ

= η∗(K
X̃

+
1

2

∑
i∈J

Ei) =
∑
i∈J

Di

and

K
Ỹ

= α∗(KY ) +
∑
i∈J

Di

which implies that KY = 0. Second, we can compute the topological
Euler characteristic as follows (using the fact that for an unramified



THE GEOMETRY OF K3 SURFACES 55

cover, the topological Euler characteristic multiplies by degree)

χtop(Y ) = χtop(Y −
⋃
i∈J

Qi) + #(J)

= 2χtop(XJ −
⋃
i∈J

Pi) + #(J)

= 2χtop(X̃ −
⋃
i∈J

Ei) + #(J)

= 2(24− 2 ·#(J)) + #(J)

= 48− 3 ·#(J),

since χtop(X̃) = 24 (always the case for a smooth K3 surface).

Lemma (from classification of surfaces). If J 6= ∅, then #(J) = 8 or
16, with 16 points if and only if X is a Kummer surface and X = XJ .

Proof: Suppose first that Ỹ is Kähler (and so Y is Kähler). The
only connected Kähler surfaces with KY = 0 are K3 surfaces (with
χtop = 24) and complex tori (with χtop = 0). #(J) 6= 0 implies that Y
is connected, and the 2 cases correspond to #(J) = 8 and #(J) = 16
respectively. In the latter case, we must have X = XJ because the
exceptional curves of XJ → X lift to smooth rational curves on Y and
there are no such curves on a complex torus.

To handle the non-Kähler case, there are several options. One can
assume in the definition that X is Kähler in an appropriate sense;
this has the disadvantage that the tools we are developing are used
in the proof that every K3 surface is Kähler, so it is not a good idea
to assume that fact here. Alternatively, there are arguments using
deformation theory, or the analysis of the behavior of the signature
under ramified covers, which can be used to eliminate the non-Kähler
case. Both arguments are too far from our topics here, so we omit
them. “Q.E.D.”

We can construct an example of a cover with #(J) = 8 in the fol-
lowing way. Let T = C2/Γ be a complex torus and let Y = T/ĩ be its
Kummer surface. (We retain the notation of Example Km from section
3.) Pick a point t ∈ 1

2
Γ and let Γ̄ be the group generated by Γ and t.

Translation by t acts naturally on T , and the quotient by that action
is another torus T̄ = C2/Γ̄, which has a Kummer surface X.

T → T̄y y
Y X
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The translation by t descends to an automorphism of Y , because
z 7→ −z 7→ −z + t and z 7→ z + t 7→ −z − t differ by an element
2t ∈ Γ. Since X is the quotient of T by the group generated by ĩ and
our translation, we get an induced map Y → X.

Let us compute the fixed points of the action of the translation on
Y . If the image of z is fixed, then either z + t ≡ z mod Γ or z + t ≡
−z mod Γ. The first is clearly impossible, so we must have the second
case: for some γ ∈ Γ, z = 1

2
(−t+ γ). Since −z = 1

2
(−t+ (2t− γ)) has

the same form, this set of 16 points on T descends to a set of 8 points
on Y . The map Y → X is unramified away from those 8 points.

The set J on X over which Y → X ramifies is the image of {1
2
(−t+

γ) mod (Γ, ĩ)} on X. Each such point satisfies 2(1
2
(−t+γ)) = −t+γ ∈

Γ̄, so that the points all have order 2. There are 8 of them, and they
form a subgroup which can naturally be identified with 1

2
Γ/Γ + t ⊂

1
2
Γ̄/Γ̄. This is the set J ⊂ { points of order 2 on T̄}.
Conversely, if we had started with a hyperplane J ⊂ 1

2
Γ̄/Γ̄ we could

construct the double cover as follows: T̄ → T̄ /J → T̄ /T̄2
∼= T̄ where T̄2

is the subgroup of points of order 2. The map T̄ /J → T̄ is the quotient
by the involution which is the non-trivial element in T̄2/J ∼= Z/2Z and
repeating the construction above (with T̄ /J in place of T ) produces
the cover Y → X branched on the points of J .

In order to efficiently use the fact that #(J) can only be 0, 8 or 16
we change our notation a bit and phrase our constructions in terms of
binary linear codes.

Definition . Let I be a finite set, and let FI2 denote the F2-vector space
of maps from I to F2. A binary linear code is an F2-subspace V ⊂ FI2.

In our situation of a K3 surface X with A1 singularities at P1, . . . , Pk,
we let I = {1, . . . , k} and use the isomorphism L#/L ∼= FI2 induced by
sending 1

2
ei to the map ϕi such that ϕi(j) = δij to produce the associ-

ated code V ⊂ FI2 corresponding to M/L ⊂ L#/L. Explicitly, ϕ ∈ V
if and only if the set Jϕ = {i |ϕ(i) = 1} is one of our distinguished

subsets: 1
2

∑
i∈Jϕ

Ei ∈ Pic(X̃).
Another example of a binary linear code is the universal binary linear

code of dimension α: for an F2-vector space W of dimension α, the
space of linear maps W ∗ = Hom(W,F2) gives a code W ∗ ⊂ FW2 . A
slight variant on this comes from noticing that ϕ(0) = 0 for any linear
map, so that restricting linear maps to W − {0} gives a code W ∗ ⊂
FW−{0}

2 .
The code W ∗ ⊂ FW2 is called “universal” because of the following

construction. Let V ⊂ FI2 be any code with dimV = α, let W =
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Hom(V,F2) and define a tautological map τ : I → W by

τ(i)(ϕ) = ϕ(i)

for ϕ ∈ V . Then τ ∗(W ∗) = V ; the only thing further which must be
specified in order to describe V ⊂ FI2 completely is the fibers of the
map τ .

Theorem . Let V ⊂ FI2 be a binary linear code with α = dimF2 V and
k = #(I). Suppose that for every nonzero ϕ ∈ V , we have #{i |ϕ(i) =
1} = d, a number independent of ϕ. Then 2α | 2d, k ≥ d

2α−1 (2
α − 1),

and for all nonzero w ∈ Hom(V,F2) we have #{i | τ(i) = w} = d
2α−1 ,

where τ : I → Hom(V,F2) is the tautological map.

Before giving the proof, we point out 2 applications to our situation.

Corollary 1 . A K3 surface with 16 A1-singularities is a Kummer
surface.

Corollary 2 . The code of a K3 surface with 15 A1-singularities is

isomorphic to W ∗ ⊂ FW−{0}
2 for an F2-vector space W of dimension 4.

Proof of Corollaries. Suppose that the K3 surface X with k singular-
ities of type A1 is not a Kummer surface. Then for each non-empty
distinguished subset J we have #(J) = 8. This means that the theorem
applies with d = 8, and we find: α ≤ 4 and k ≥ 24−α(2α − 1).

On the other hand, we know that k − 2α ≤ 22 − k, i. e., that
α ≥ k − 11. Since α ≤ 4 we conclude that k ≤ 15. (Hence if there are
16 points, X must be a Kummer surface.) If k = 15, we have d

2α−1 = 1
so that each τ−1(w) has cardinality 1 for w 6= 0; since W−{0} contains
only 15 points, the tautological map induces an isomorphism between

the code of X and the code W ∗ ⊂ FW−{0}
2 . Q.E.D.

Proof of the Theorem. For each w ∈ W = Hom(V,F2), define

aw = #{i | τ(i) = w}.
Now for each ϕ ∈ V we can write

{i |ϕ(i) = 1} =
⋃

w |w(ϕ)=1

{i | τ(i) = w}.

Thus, if ϕ 6= 0 we have ∑
w |w(ϕ)=1

aw = d

which implies ∑
w |w(ϕ)=0

aw = k − d.



58 DAVID R. MORRISON

while if ϕ = 0 then ∑
w |w(ϕ)=1

aw = 0

and ∑
w |w(ϕ)=0

aw = k.

We can combine these formulas as∑
w∈W

(−1)w(ϕ)aw =

{
k − 2d if ϕ 6= 0
k if ϕ = 0.

(*)

Define a matrix A = (Awϕ)w∈W
ϕ∈V

by Awϕ = (−1)w(ϕ). (This is a 2α × 2α

matrix). A is a Hadamard matrix, that is, an N × N matrix whose
entries are all ±1 such that AAT = diag(N, . . . , N). To see this, we
compute

(AAT )wu =
∑
ϕ∈V

AwϕAuϕ

=
∑
ϕ∈V

(−1)w(ϕ)(−1)u(ϕ)

=
∑
ϕ∈V

(−1)(w+u)(ϕ)

= 2αδwu

(since w+u is identically 0 if and only if w = u; otherwise, w+u takes
the values 0 and 1 equally often.)

Now we compute using (*): on the one hand,∑
ϕ∈V

∑
w∈W

(−1)w(ϕ)awAuϕ =
∑
w∈W

aw(AAT )wu = 2αau

while on the other hand,∑
ϕ∈V

∑
w∈W

(−1)w(ϕ)awAuϕ = k(−1)u(0) +
∑

ϕ∈V,ϕ 6=0

(k − 2d)(−1)u(ϕ)

= 2d(−1)u(0) + (k − 2d)
∑
ϕ∈V

(−1)u(ϕ)

=

{
2d if u 6= 0
2d+ 2α(k − 2d) if u = 0.

Thus, au = 2d
2α ∈ Z for u 6= 0 while a0 = k− d

2α−1 (2
α− 1) ≥ 0 for u = 0,

from which the theorem follows. Q.E.D.

We can derive some further structure in the case of Kummer surfaces
on the code by using this theorem.



THE GEOMETRY OF K3 SURFACES 59

Proposition . Let V ⊂ FI2 be the code associated to a K3 surface with
16 A1 singularities. Then dimV = 5, and the set I has a natural
structure of an affine space of dimension 4 over F2 determined by:
J ⊂ I is an affine hyperplane if and only if J = {i |ϕ(i) = 1} for some
ϕ ∈ V with ϕ 6≡ 0, ϕ 6≡ 1.

Proof. Pick a point i0 ∈ I, and define

V0 = {ϕ ∈ V |ϕ(i0) = 0}.

Then V0 has codimension (at most) 1 in V , and V0 ⊂ FI−{i0}2 is a code
satisfying the hypotheses of the theorem with d = 8, k = 15. It follows
that dimV0 = 4 and so that dimV = 5 (since dimV ≥ 5).

Now if W = Hom(V0,F2), then the code V0 ⊂ FI−{i0}2 is isomorphic

to the code W ∗ ⊂ FI−{i0}2 . If we extend the isomorphism I − {i0} ∼=
W − {0} (from corollary 2 above) to an isomorphism I ∼= W , then for
each ϕ ∈ V0, ϕ 6≡ 0 we have that {i |ϕ(i) = 1} is the complement of
a linear hyperplane in W (and so is an affine hyperplane). Moreover,
every element in V −V0 can be written in the form ϕ+ϕ1 with ϕ ∈ V0,
where ϕ1(i) = 1 for all i. For such elements, if ϕ 6≡ 0 (i. e. ϕ+ϕ1 6≡ 1) we
have that {i | (ϕ+ϕ1)(i) = 1} is a linear hyperplane in W (and so also
an affine hyperplane). Thus, I ∼= W has the desired structure. Q.E.D.

An automorphism of a code V ∈ FI2 is an isomorphism σ : I → I
such that σ∗(V ) = V .

Proposition . If V ⊂ FI2 is the code associated to a K3 surface with
16 A1 singularities, then Aut(V ⊂ FI2) ∼= AGL(4,F2), the affine gen-
eral linear group (which is generated by the general linear group, and
by translations). In particular, the affine F2-space structure on I is
uniquely determined.

Proof. We identify I with W = Hom(V0,F2) as in the previous propo-
sition. Consider σ : W → W defined by σ(w) = w+w0 (for some fixed
w0 ∈ W ). Then for ϕ ∈ V , σ∗(ϕ)(w) = ϕ(w + w0) = ϕ(w) + ϕ(w0), so
that

σ∗(ϕ) =

ϕ if ϕ(w0) = 0,

ϕ+ ϕ1 if ϕ(w0) = 1.

In particular, σ∗(V ) = V .
So the translations lie in Aut(V ⊂ FI2). Given an arbitrary σ ∈

Aut(V ⊂ FI2), by composing with a translation we may assume σ(i0) =
i0 (i. e. ϕ(0) = 0 under the identification I ∼= W ). But then σ pre-

serves V0, and so σ ∈ Aut(V0 ⊂ FI−{i0}2 ) = Aut(W ∗ ⊂ FW−{0}
2 ). Now
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σ induces a linear automorphism σ∗ : V0 → V0, and thus a linear auto-
morphism (σ∗)∗ : Hom(V0,F2) → Hom(V0,F2); since this latter space
is ∼= W , we get that σ = σ∗∗ is a linear map on W . Conversely, any
linear map σ ∈ GL(W ) preserves the subspace W ∗ ⊂ FW2 and so acts
on the code. Q.E.D.

The description of the affine space structure we have given above is
an abstract one, based solely on the code. Using however the fact that
the K3 surface in question is actually a Kummer surface, we can give
an alternate description of this structure.

Lemma . let T = C2/Γ, let T2 = 1
2
Γ/Γ, and let X be the Kummer

surface of T . If we fix an origin on T , then T2 has a natural F2-vector
space structure; forgetting the choice of origin leads to an affine F2-
space structure. Under the map T2

∼= Sing(X) induced by the quotient
map ξ : T → X, this coincides with the structure determined by the
code.

Proof. What needs to be checked is that the subsets J ⊂ I such that
1
2

∑
i∈J Ei ∈ Pic(X̃) and |J | = 8 exactly correspond to the affine hyper-

planes of T2. But we already checked that the affine hyperplanes are
among the subsets J (in our construction of an example of the cover
branched on 8 points); since the number of such subsets is 30 (= the
number of hyperplanes), these must be all of the subsets. Q.E.D.

As the final step in our analysis of Kummer surfaces, we consider
again the basic diagram

T̃
ρ→ Tyη

X̃ → X

which relates the surfaces, and consider the map

r = η∗ρ
∗ : H2(T,Z) → H2(X̃,Z).

If x and y are cohomology classes in H2(T,Z), then by the projection
formula, η∗(r(x)) · η∗(r(y)) = 2r(x) · r(y). Thus,

r(x) · r(y) =
1

2
η∗(r(x)) · η∗(r(y))

=
1

2
η∗η∗(ρ

∗(x)) · η∗η∗(ρ∗(y))

=
1

2
(2ρ∗(x)) · (2ρ∗(y))

= 2ρ∗(x) · ρ∗(y)
= 2x · y.



THE GEOMETRY OF K3 SURFACES 61

In other words, the map r induces an inclusion H2(T,Z) ↪→ H2(X̃,Z)
which multiplies the intersection form by 2. Note that Im r ⊂M⊥, and
rankM⊥ = 22− 16 = 6 = rank Im r.

If x1, . . . , x6 is a basis for H2(T,Z), since H2(T,Z) is unimodular
(i. e., is isomorphic to H2(T,Z)#) it is easy to see that (Im r)# is
generated by 1

2
r(x1), . . . ,

1
2
r(x6) and so that

(Im r)#/(Im r) ∼= (Z/2Z)6.

Lemma . M⊥ = (Im r). (That is, in our previous notation, N =
Im r.) In particular, Im r is saturated.

Proof. Since N is the saturation of Im r, we have

26 = |(Im r)#/ Im r| = |N#/N |[N : Im r]2.

On the other hand, N#/N ∼= M#/M ∼= (Z/2Z)k−2α and for a Kummer
surface k = 16, α = 5. Thus, |N#/N | = 26 so that [N : Im r] = 1, i. e.,
N = Im r. Q.E.D.

As a consequence of this lemma, r induces an isomorphism (which
we also denote by r):

r : H2(T,F2)
∼=→ N#/N.

There are several other groups isomorphic to these—we introduce
names for the isomorphisms. First, let T2 = 1

2
Γ/Γ be the set of points

of order 2 on T (which we identify with I ∼= Sing(X) in the natural
way). There is then a isomorphism

s : Hom(Λ2T2,F2)
∼=→ H2(T,F2).

Second, property 2 of discriminant-groups gives us an isomorphism

q : N#/N
∼=→M#/M

(since M and N are saturated). Finally, the identification L#/L ∼= FT2
2

which sends M/L to the code V ⊂ FT2
2 induces an inclusion

p : M#/M → FT2
2 /V.

The image of p is U/V , where U is the subspace of FT2
2 corresponding

to M#/L ⊂ L#/L.
We let t = pqrs : Hom(Λ2T2,F2) → FT2

2 /V be the composite map.

Proposition . Let ϕ, ψ ∈ Hom(T2,F2) be nonzero linear functions,
and let χϕψ ∈ FT2

2 be the (nonlinear) function defined by

χϕψ(i) =

1 if ϕ(i) = ψ(i) = 0,

0 otherwise.



62 DAVID R. MORRISON

(χϕψ is the characteristic function of the intersection of hyperplanes
ϕ = ψ = 0.) Then

t(ϕ ∧ ψ) ≡ χϕψ mod V.

Proof. By definition of p,

p

−1

2

∑
i |ϕ(i)=χ(i)=0

ei

 = χϕψ mod V.

Thus, the definition of q : N#/N
∼=→ M#/M shows that it suffices to

prove that

rs(ϕ ∧ ψ) +−1

2

∑
i |ϕ(i)=χ(i)=0

ei ∈ H2(X̃,Z)

i. e., is an integral class; in other words, that

2rs(ϕ ∧ ψ)−
∑

i |ϕ(i)=χ(i)=0

ei

is divisible by 2 in H2(X̃,Z). (Note that rs(ϕ ∧ ψ) ∈ H2(X̃,Q)!)

Now ϕ, ψ ∈ Hom(T2,F2) are induced by some homomorphisms ϕ̃, ψ̃ ∈
Hom(Γ,Z) (using T2 = 1

2
Γ/Γ ∼= Γ/2Γ), and the cohomology classes in

H1(T,Z) are Poincaré dual to the (real) hypersurfaces ϕ̃ = 0 and ψ̃ = 0

respectively. Thus, the class of ϕ̃ ∧ ψ̃ is dual to {ϕ̃ = ψ̃ = 0}; let x
denote this class. Note that rs(ϕ∧ψ) = 1

2
r(x). We have that x passes

through the points {i |ϕ(i) = ψ(i) = 0} ⊂ T2 (and only those points of

T2), so that the proper transform of x on T̃ is the integral class

ρ∗(x)−
∑

i |ϕ(i)=χ(i)=0

Di ∈ H2(T̃ ,Z).

But this proper transform is invariant under the involution on T̃ , so ap-
plying η∗ yields a cohomology class which is divisible by 2 in H2(X̃,Z).

That is, 2 divides (in H2(X̃,Z)) the class

η∗(ρ
∗(x)−

∑
i |ϕ(i)=χ(i)=0

Di) = η∗ρ
∗(x)−

∑
i |ϕ(i)=χ(i)=0

ei

= r(x)−
∑

i |ϕ(i)=χ(i)=0

ei

= 2rs(ϕ ∧ ψ)−
∑

i |ϕ(i)=χ(i)=0

ei,

as required. Q.E.D.
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As a concluding remark about the combinatorics of Kummer sur-
faces, consider the case of a projective Kummer surface, say a quartic
Kummer surface in P3. There is then a nef line bundle with a class
λ ∈M⊥, λ2 = 4. Let M̃ = M ⊕Z(λ); then M̃#/M̃ ∼= (Z/2Z)6×Z/4Z
while M̃⊥ has rank 5! There must thus be an additional class in
(M̃ ⊗Q) ∩ Λ.

In fact, this class has the form 1
2
(λ −∑6

i=1 ei) where e1, . . . , e6 have
been chosen so that if e6 is the origin of a vector space structure on
T2 then e1, . . . , e4 form a basis and e5“ = ”e1 + · · · + e4 in this basis.
There are 16 such classes, and each leads to a hyperplane in P3 passing
through 6 of the nodes of the quartic, which is everywhere tangent
to the quartic along a plane conic. Moreover, each of the 16 singular
points lies in 6 of these planes, and each of the 16 planes contains 6 of
the singular points. This famous “16-6 configuration” can be viewed
in the photograph from Hudson’s book.

9. The Torelli theorem for Kummer surfaces

A Hodge structure of weight n is a free Z-module of finite rank HZ
together with a direct sum decomposition HZ ⊗C =

⊕n
p=0H

p,n−p such

that Hp,n−p = Hn−p,p. The nth cohomology group of an algebraic va-
riety (or a Kähler manifold) has a natural Hodge structure of weight
n, and the Torelli problem asks whether the Hodge structure deter-
mines the isomorphism type of the variety. Generally in order for the
Torelli problem to have a positive answer, some extra structure (like a
polarization of the Hodge structure) must be added.

The easiest case of a Torelli theorem is that of complex tori (weight 1
Hodge structures). If T = Cn/Γ is a complex torus, then we can iden-
tify H1(T,Z) ∼= Hom(H1(T,Z),Z) and recover the Albanese variety as
(H0,1)∗/Hom(H1

Z,Z). Since a torus is isomorphic to its Albanese, the
Hodge structure determines the isomorphism type.

Since a Kummer surface is built out of a torus, it is reasonable to
expect a similar phenomenon for Kummer surfaces. However, H1 of a
Kummer surface is trivial; we must use H2, which contains H2(T,Z) =
Λ2H1(T,Z) as a subgroup. The difficulties in the Torelli problem for
Kummer surfaces come from the necessity of passing from an isomor-
phism Λ2H1(T ) → Λ2H1(T ′) to an isomorphism H1(T ) → H1(T ′).

In order to solve the Torelli problem, we must consider some ex-
tra structure on the cohomology; we describe this extra structure for
an arbitrary smooth K3 surface X. First, notice that H2,0(X) is nec-
essarily 1-dimensional: if we let ω be a nowhere-vanishing holomor-
phic 2-form and α be any other holomorphic 2-form, then α

ω
defines a
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global holomorphic function and is therefore constant. It follows that
dimCH

2,0(X) = dimCH
0,2(X) = 1, and thus that dimCH

1,1(X) = 20.
(Recall that b2 = 22).

Next, there are certain compatibilities between the intersection form
and the Hodge structure which are guaranteed by the Hodge index the-
orem: we have Hp,q(X) ⊥ Hp′,q′(X) unless p + p′ = q + q′ = 2; more-
over, the intersection form is positive definite on (H2,0(X)⊕H0,2(X))∩
H2(X,R), and has signature (1,19) on H1,1(X)∩H2(X,R). (This last
statement is a more general version of the Hodge index theorem.) It
follows that it has signature (3,19) overall.

Given an isomorphism Φ : X ′ → X between 2 smooth Kähler K3
surfaces, the induced isomorphism Φ∗ : H2(X,Z) → H2(X ′,Z) has
several properties:

(1) Φ∗ preserves the intersection form, i. e., Φ∗(x) · Φ∗(y) = x · y.
(2) Φ∗ preserves the Hodge structure, i. e., Φ∗(Hp,q(X)) = Hp,q(X ′).
(3) Φ∗ preserves the effective classes, i. e., Φ∗(E(X)) = E(X ′),

where

E(X) = {cohomology classes in H2(X,Z) of effective divisors},
(4) for some Kähler class κ on X and some Kähler class κ′ on X ′,

Φ∗(κ) · κ′ > 0.

(Here, a Kähler class is the cohomology class in H1,1(X)∩H2(X,R) of
a Kähler metric on X. Property (4) could have been stated: for every
κ and every κ′, but it is in fact enough to check it for 1 as we will see
in the next section.)

Definition . Let X, X ′ be smooth Kähler surfaces. An effective Hodge
isometry is an isomorphism ϕ : H2(X,Z) → H2(X ′,Z) such that

(1) ϕ(x) · ϕ(y) = x · y if x, y ∈ H2(X,Z)
(2) ϕ(Hp,q(X)) = Hp,q(X ′)
(3) ϕ(E(X)) = E(X ′)
(4) for some Kähler classes κ on X and κ′ on X ′, ϕ(κ) · κ′ > 0.

Remark . If X is the minimal desingularization of a Kummer surface,
then X is Kähler. In fact, if r : H2(T,Z) → H2(X,Z) is the natural
map from the cohomology of the torus, and κ is any Kähler class on T
then r(κ)+ ε

∑16
i=1 ei is a Kähler class on X for sufficiently small ε > 0.

Theorem (The Torelli theorem for Kummer surfaces). Let X be the
minimal desingularization of a Kummer surface, and let X ′ be a smooth
Kähler K3 surface. If ϕ : H2(X,Z) → H2(X ′,Z) is an effective Hodge
isometry, then there is an isomorphism Φ : X ′ → X such that Φ∗ = ϕ.

Proof. There are several steps.
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Step 1. We first check that X ′ is also the minimal desingularization
of a Kummer surface. Let e1, . . . , e16 be the classes of the 16 disjoint
smooth rational curves onX coming from the resolution of the Kummer
surface’s singularities. Since ϕ preserves effective classes, each ϕ(ei) is
effective; we must check that it is irreducible and then it will follow
that X ′ is also the desingularization of a Kummer surface. If we write
ϕ(ei) =

∑
fij where each fij is the class of an irreducible component

of ϕ(ei) (with repetitions allowed), then ϕ−1(fij) must be an effective
curve on X and ei =

∑
ϕ−1(fij). But the curve Ei does not move;

hence there can be only one fij so that ϕ(ei) is irreducible.

Step 2. Now we have tori T and T ′ whose Kummer surfaces are X
and X ′. We use the notation of section 8. The map ϕ induces an
isomorphism between the singular sets Sing(X) ∼= T2 and Sing(X ′) ∼=
T ′2 and an isomorphism L#/L

∼=→ L′#/L′ which sends M/L to M ′/L′

and M#/L to M ′#/L′. Thus, we get an isomorphism of codes V ⊂
FT2

2
∼= V ′ ⊂ FT

′
2

2 . The natural structures of affine spaces on T2 and T ′2
must be preserved by this isomorphism; hence, if we fix origins i0 ∈ T2

and i′0 ∈ T ′2 for T and T ′ such that ϕ(ei0) = ei′0 we have an induced

isomorphism ϕ1 = H1(T,F2) → H1(T ′,F2) (as F2-vector spaces).
Now we also have, by consideringN = M⊥ mapping to ϕ(N) = N ′ =

M ′⊥, a natural isomorphism ϕ2 : H2(T,Z) → H2(T ′,Z). The compat-
ibility condition between N#/N and M#/M then guarantees (since

M#/M is mapped to M ′#/M ′) that ϕ2 ≡ ϕ1∧ϕ1 mod 2. (In fact, we
only checked this for reducible elements in H2(T,F2) = Λ2 Hom(T2,F2),
but the reducible elements generate Λ2 Hom(T2,F2) as an F2-vector
space.)

Step 3. Consists of the following.

Proposition . Let H and H ′ be two free Z-modules of rank 4 on which
an orientation has been chosen. (The orientations determine isomor-
phisms Λ4H ∼= Z and Λ4H ′ ∼= Z and thereby determine symmetric
bilinear forms on Λ2H resp. Λ2H ′ by

Λ2H × Λ2H → Λ4H ∼= Z

and similarly for H ′.) Let ψ : Λ2H → Λ2H ′ be an isomorphism pre-
serving this bilinear form. The following are equivalent:

(i) There exists an isomorphism λ : H → H ′ such that ψ = ±λ∧λ
(ii) There exists an isomorphism λ : G ⊗ F2 → H ′ ⊗ F2 such that

ψ ≡ λ ∧ λ mod 2.
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A proof of this proposition can be found on pp. 103–105 of the sem-
inar notes “Geometrie des surfaces K3 . . . ” edited by Beauville et al.,
or on p. 138 of the book by Barth-Peters-Van de Ven.

To finish the proof, by steps 2 and 3 there is an isomorphism λ :
H1(T,Z) → H1(T ′,Z) such that λ ∧ λ = ±ϕ2 : H2(T,Z) → H2(T ′,Z).
If λ ∧ λ = −ϕ2, let κ and κ′ be Kähler classes on T and T ′. Since λ

is induced by an isomorphism T ′
∼=→ T we have (λ ∧ λ)(κ) · κ′ > 0. On

the other hand,

(λ ∧ λ)(κ) · κ′ = −ϕ2(κ) · κ′

= −ϕ(κ+ ε
∑

ei) · (κ′ + ε′
∑

ei)

< 0.

Since κ + ε
∑
ei, κ

′ + ε
∑
e′i are Kähler classes on X and X ′; this is a

contradiction. Thus, λ ∧ λ = ϕ2.
There is an isomorphism Λ : T ′ → T inducing λ; by composing with a

translation we may assume Λ(i′0) = i0. Since the F2-space structures on
T2, T

′
2 are preserved, we see that the induced isomorphism Φ : X ′ → X

between the Kummer surfaces satisfies Φ∗ = ϕ. Q.E.D.

10. Nef and ample bundles, Kähler classes, and the Weyl
group

We consider in this section only smooth K3 surfaces X. Recall that
every (nonzero) effective irreducible divisor D on X satisfies D2 ≥ −2,
and if D2 ≥ 0 then D moves in a nontrivial linear system (i. e.
h0(OX(D)) ≥ 2); in particular, D2 ≥ 0 implies that D is nef. Now
every effective divisor can be written as a nonnegative linear combina-
tion of irreducible ones, so the effective divisors form a cone generated
by the smooth rational curves (i. e. effective irreducibles withD2 = −2)
and the nef divisors.

Conversely, if D2 ≥ −2 then either D or −D is effective. But even
when D2 ≥ 0 it may fail to be nef, and even if D2 = −2 it may fail to
be irreducible. So the characterization of nef divisors and of smooth
rational curves requires further work.

If X has an ample line bundle L, this bundle can be used to distin-
guish the effective divisors. For L ·D > 0 whenever D is effective, and
thus the sign of L ·D determines whether D or −D is effective (when
D2 ≥ −2). More generally, if X has a Kähler metric with cohomol-
ogy class κ [something which certainly holds in the case of an ample
bundle, whose class becomes κ] then again κ · D > 0 for all effective
divisors. Note that κ2 > 0 (and L2 > 0 in the ample line bundle case)
so that this is also a necessary condition for a class to be Kähler. A
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first attempt at identifying the set of Kähler class is then to consider
the set

{x ∈ H1,1(X) ∩H2(X,R) |x2 > 0, x · d > 0

for all cohomology classes d of effective divisors}. (*)

The Kähler classes certainly lie in this set; but as we will see below,
for non-algebraic K3 surfaces one additional piece of information must
be added.

Dually, we can hope to use the set (*) (or some refinement of it)
to identify the nef divisors and the smooth rational curves: a nonzero
divisor D with D2 ≥ −2 will be effective (we hope!) exactly when
D · x > 0 for some (and hence for every) x in the set (*).

For algebraic K3 surfaces, all of this works without further modi-
fication: this is guaranteed by the Nakai-Moishezon criterion for am-
pleness. In fact, that criterion (combined with the Lefschetz (1,1)-
theorem) says exactly that

{classes of ample divisors on X} = {x ∈ H1,1(X) ∩H2(X,Z) |
x2 > 0, x · d > 0 for all cohomology classes d of effective divisors}.

(The difference between the right hand side of this equation and (*) is
that this time we have required the class to be integral, not just real.)
The set of classes of nef divisors will simply be the closure of the set of
classes of ample divisors.

To introduce the refinement I mentioned in the non-algebraic case,
we need some notation: let H1,1

R (X) = H1,1(X) ∩ H2(X,Z). The in-
tersection form has signature (1,19) when restricted to this space, and
this implies that the set

C(X) = {x ∈ H1,1
R (X) |x2 > 0}

has 2 connected components. The picture is this:
x · x > 0 (first component)
x · x = 0
x · x < 0 (second component)

(x·x = 0 is sometimes called the light cone in analogy with the theory of
special relativity, where forms with this signature [or rather, the oppo-
site signature to this] appear.) The two components are interchanged
by the map x 7→ −x.
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There is a convenient characterization of the components of C(X):
x and y (both in C(X)) belong to the same component if and only
if x · y > 0. To see this, consider the line segment tx + (1 − t)y for
0 ≤ t ≤ 1; since

(tx+ (1− t)y)2 = t2x2 + 2t(1− t)x · y + (1− t)y2 > 0

this never leaves the component. Moreover, if x · y < 0 then x and −y
are in the same component so x and y cannot be.

Similarly if x ∈ C(X), y ∈ C(X) (the closure), then y belongs to the
closure of the component containing x if and only if x · y ≥ 0.

Now fix a Kähler class κ on X; any other Kähler class must satisfy
κ · x > 0, and so belongs to the same component of C(X) as does
κ. (This is because any convex combination tακ + (1− t)αx of Kähler
forms ακ and αx with 0 ≤ t ≤ 1 is again a Kähler form.) Furthermore,
any class d of an effective divisor satisfies κ · d > 0; for such classes d
with d2 ≥ 0 we see that d belongs to the closure of the component of
C(X) containing κ: It automatically follows that x ·d > 0. So consider
the set

{x ∈ H1,1
R (x) |x2 > 0, x · κ > 0 and for all classes of

irreducible effective divisors d with d2 = −2 we have x · d > 0} (**)

This is a subset of the previous one; the only “new” condition that has
been added is x · κ > 0, and all previous conditions continue to hold.

To describe this set more efficiently, we define

∆(X) = {δ ∈ H1,1(X) ∩H2(X,Z) | δ2 = −2}

∆+(X) = {δ ∈ ∆(X) | δ is the class of an effective divisor}.
(So for each δ ∈ ∆(X), either δ ∈ ∆+(X) or −δ ∈ ∆+(X).) We can
now re-describe the set (**) as:

V +(X) = {x ∈ H1,1
R (X) |x2 > 0, x·κ > 0 and x·δ > 0 for all δ ∈ ∆+(X)}.

This set is independent of the choice of Kähler metric κ; it only depends
on the component of C(X) in which κ lies. The remainder of the section
is devoted to studying properties of this set.

For δ ∈ ∆(X), define the reflection in δ to be the mapping

sδ : x 7→ x+ (x · δ)δ.
This acts on H2(X,Z), preserving the Hodge decomposition and the
intersection form, since (x+(x ·δ)δ)2 = x2. (The Hodge decomposition
is preserved since δ ∈ H1,1 and H2,0 ⊕ H0,2 ⊂ δ⊥.) It therefore acts
on H1,1

R (x) as well. We define the Weyl group of X to be the group
W (X) generated by {sδ | δ ∈ ∆}; this can be regarded as a subgroup of
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Aut(H2(X,Z)) or Aut(H1,1
R (X)) ∼= O(1, 19), where the automorphisms

in question are those preserving the intersection form. Note that the
action ofW (X) (even of all of O(1, 19)) onH1,1

R (X) preserves the subset
C(X).

Lemma 1 . W (X) is a discrete group which acts properly discontinu-
ously on C(X).

Proof. There is a W (X)-equivariant isomorphism

C(X) ∼= C1(X)× R+

where C1(X) = {x ∈ H1,1
R (X) |x2 = 1} and R+ denotes the positive

reals. It suffices to show that the action on C1(X) is properly discon-
tinuous. Now Aut(H1,1

R (X)) ∼= O(1, 19) acts transitively on C1(X),
and the stabilizer of a point is a compact group isomorphic to O(19).
W (X), being a subgroup of Aut(H2(X,Z)), is discrete in Aut(H2(X,R))

and hence also in the subgroup Aut(H1,1
R (X)) in which it lies. Thus, the

action of W (X) on O(1, 19) is properly discontinuous, which implies
that the induced action on C1(X) ∼= O(1, 19)/O(19) is also properly
discontinuous. Q.E.D.

Lemma 2 . If a discrete group W acts properly discontinuously on a
space C and if S is a subset of W then

F =
⋃
s∈S
{x | s(x) = x}

is closed in C.

Proof. For y ∈ X − F let Wy = {w ∈ W |w(y) = y} be the stabilizer;
we have Wy ∩ S = ∅. Since the action is properly discontinuous, there
is a neighborhood U of y such that wU ∩ U = ∅ for all w ∈ W −Wy;
in particular, for all w ∈ S. But then no point of U is fixed by any
element of S, so U ⊂ X − F . Q.E.D.

Corollary .
⋃
δ∈∆(x) δ

⊥ is closed in C(X).

(Because δ⊥ is the fixed locus of the reflection Sδ.)

The hyperplanes δ⊥ are called the walls in C(X), and the connected
components of C(X) − ⋂

δ∈∆(x) δ
⊥ are called the chambers of C(X).

Chambers are open subsets of C(X) (and of H1,1
R (X).).

Theorem (it’s in Bourbaki . . . ). The group W (X) × {±1} acts
transitively on the set of chambers of C(X).

The use of this theorem in the study of K3 surfaces is this: a chamber
V is determined by the set ∆V = {δ ∈ ∆(x) | δ · x > 0 for x ∈ V }
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which says which side of each wall V lies on. (V +(X) is one of the
chambers). If we happen to have an isomorphism of Hodge structures
which does not preserve effective classes and Kähler classes (i. e. does
not preserve V +), then this group W (X)× {±1} can be used to alter
the isomorphism so that these things are preserved.

The theorem can also be used to derive conclusions about the ir-
reducible classes in ∆+(X): These are the ones whose walls actually
meet the closure of V +(X). Unfortunately, we do not have sufficient
time to explore this topic.

Proof of the Theorem. Since ±1 interchanges the two connected com-
ponents of C(X) while W (X) preserves them (because: x · sδ(x) =
x2 + (x · δ)(x · δ) > 0), it suffices to check the transitivity of the action
of W (X) on the chambers in one of the components of C(X).

Let x, y ∈ C(x) such that x · y > 0 and x · δ 6= 0, y · δ 6= 0 for all
δ ∈ ∆(X). We must show that for some w ∈ W (X), w(x) and y lie in
the same connected component of C(x)− ⋃

δ∈∆(x) δ
⊥. Let ` = x2.

For each a ∈ R, the set

{z ∈ C(x) | 0 ≤ y · z ≤ a, z2 = `}
is compact. (Pictorially,
z2 = `, y · z > 0
y · z = a
y · z = 0

Since the action of W (X) on C(X) is properly discontinuous, it follows
that

{w ∈ W (x) | y · w(x) ≤ a}
is a finite set. Note that 0 ≤ y ·w(x) and w(x)2 = `. Thus, the function
z 7→ y ·z on the orbit Wx of x attains its minimum at a point z0 = w0x.
But then for all δ ∈ ∆ we have

y · wδ(w0x) ≥ y · w0x

i. e.

y · (z0 + (δ · z0)δ) ≥ y · z0

so that

(δ · z0)(y · δ) ≥ 0.
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Thus, z0 and y are on the same side of every wall ((δ · z0) > 0 if and
only if (y · δ) > 0) and so belong to the same connected component of
C(X)− ⋃

δ∈∆(x) δ
⊥. Q.E.D.

10.1. Addendum to section 10. Two things should be noticed about
the application of this result to K3 surfaces: (1) the set

V +(X) = {x ∈ H1,1
R (X) |x2 > 0, x · κ > 0, x · δ > 0 for all δ ∈ ∆+(X)}

is a chamber (independent of the choice of Kähler class κ), and (2) a
map ϕ : H2(X,Z) → H2(X ′,Z) satisfies ϕ(V +(X)) = V +(X ′) if and
only if it satisfies both (a) ϕ(E(X)) = E(X ′) and (b) ϕ(κ) · κ′ > 0 for
some Kähler classes κ and κ′. In particular, the definition of “effective
Hodge isometry” can be reformulated as: preserves Hodge structures
and intersection forms, and maps V +(X) isomorphically to V +(X ′).

11. The period mapping for K3 surfaces

Recall two key properties of the intersection form on the second
cohomology group of a K3 surface.

Property 1 . If X is a K3 surface, the intersection form on H2(X,Z)
is unimodular, by Poincaré duality. (We first encountered this property
in section 8.)

Property 2 . If X is a K3 surface, the intersection form on H2(X,Z)
has signature (3,19), by the extended version of the Hodge index the-
orem. (We first encountered this property in section 9.)

There are two additional key facts about K3 surfaces which we have
not yet mentioned.

Topological Fact . Let X be a (smooth) compact complex surface.
Suppose that H1(X,Z/2Z) = 0. Then for all γ ∈ H2(X,Z), γ · γ −
c1(X) · γ ≡ 0 mod 2. (This is clear for algebraic classes, i. e. those
coming from divisors D: D · D + KX · D = 2g(D) − 2 must be even.
The proof in general uses the Wu formula and Stiefel-Whitney classes;
a good reference is the book of Milnor and Stasheff.) In particular, for
a smooth K3 surface X we have γ · γ ≡ 0 mod 2 for all γ ∈ H2(X,Z).

Number-Theoretic Fact . There is a unique (up to isomorphism)
free Z-module Λ with a unimodular symmetric bilinear form Λ×Λ → Z
of signature (3,19) such that γ · γ ≡ 0 mod 2 for all γ ∈ Λ. This
form Λ is isomorphic to (−E8)

⊕2 ⊕ U⊕3 where E8 is the unimodular
even positive definite form of rank 8, and U is the hyperbolic plane.
We call Λ the K3 lattice. (A good reference for this is Serre’s Cours
d’Arithmétique.) In particular, for every smooth K3 surface there exists
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an isomorphism α : H2(X,Z) → Λ preserving the bilinear forms; a
choice of such an isomorphism is called a marking of X.

By using a marking α : H2(X,Z) → Λ, we get a Hodge structure on
Λ; we want to describe the set of all Hodge structures of the appropriate
type.

More generally, suppose we have a free Z-module L with bilinear
form of signature (2h2,0 + 1, h1,1 − 1), and we want to consider Hodge
decompositions L ⊗ C = H2,0 ⊕ H1,1 ⊕ H0,2 such that Hp,q ⊥ Hp′,q′

unless p+p′ = q+ q′ = 2, and such that the form is positive definite on
(H2,0⊕H0,2)∩(L⊗R), and has signature (1, h1,1−1) on H1,1∩(L⊗R).
Such a Hodge structure is completely specified by H2,0, since H0,2 =
H2,0 and H1,1 = (H2,0 ⊕H0,2)⊥. In fact, the natural parameter space
for all such Hodge structures is the space

ΩL = {µ ∈ Gr(h2,0, L⊗C) |µ is totally isotropic for the bilinear form,

and for each x ∈ µ, x 6= 0 we have x · x̄ > 0}

(H2,0 = µ, H0,2 = µ̄, H1,1 = (µ⊕ µ̄)⊥ is the Hodge structure).
Now it is not difficult to see that the tangent space to Gr(h2,0, L⊗C)

at µ is given by

Tµ Gr(h2,0, L⊗ C) ∼= Hom(µ, (L⊗ C)/µ)

in a natural way. Slightly more difficult is the isomorphism

TµΩL
∼= Hom(µ, µ⊥/µ).

In fact, since µ⊥ = µ⊕H1,1 we have

TµΩL
∼= Hom(H2,0, H1,1).

Returning to the K3 lattice Λ, we let Ω = ΩΛ; in this case, the
Grassmannian is a projective space and we can write

Ω = {[ω] ∈ P(Λ⊗ C) |ω · ω = 0, ω · ω̄ > 0}
with associated Hodge structure

H2,0 = C(ω), H0,2 = C(ω̄), H1,1 = <ω, ω̄>⊥.

Thus we see that Ω is an open subset in a quadric in P21.

The next topic to be discussed is deformation theory; for lack of time,
I refer you to the chapter by Gauduchon “Théorème de Torelli locale
pour les surfaces K3” in the seminar notes “Géometrie des surfaces K3
. . . ” edited by Beauville et al.

For a smooth K3 surface X, the sheaf of holomorphic vector fields
ΘX is naturally isomorphic to the sheaf of holomorphic 1-forms Ω1

X via
contraction with the nowhere vanishing holomorphic 2-form ω. Thus,
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H2(ΘX) = H2(Ω1
X) = 0; it follows that there is a smooth local universal

deformation of X: this is a map π : X → S with smooth fibers such
that π−1(0) = X and the Kodaira-Spencer map is an isomorphism.
(The Koraira-Spencer map sends T0S to H1(Θ).)

We choose a marking α : H2(X,Z) → Λ, and extend this to a
continuous family of markings αs : H2(π−1(s),Z) → Λ by using the
differentiable triviality of the family X → S. (That is, there is a C∞

isomorphism X ∼=C∞ X × S.) We then get the period mapping of the
family S → Ω which sends s to the Hodge structure on Λ given by
α(H2(π−1(S),Z).

Now we have

T0S
differential−→

of period map
TµΩ

Kodaira-Spencer

y∼= y
H1(ΘX) Hom(H2,0(X), H1,1(X)).

Theorem (The local Torelli theorem for K3 surfaces). The differential
of the period map S → Ω is an isomorphism.

The proof is based on the more general fact that in the diagram
above, the natural mapH1(ΘX) → Hom(H2,0(X), H1,1(X)), orH1(ΘX) →
Hom(H0(Ω2

X), H1(Ω1
X)) is in fact given by the mapping

H1(ΘX)⊗H0(Ω2
X) → H1(Ω1

X)

induced by contraction of a vector field with a 2-form to produce a
1-form. In the case of a K3 surface, as has already been pointed out,
this map is an isomorphism. Q.E.D.

As a consequence of the local Torelli theorem, the set of Hodge struc-
tures corresponding to K3 surfaces is an open set in the 20-dimensional
complex manifold Ω. We can discover a lot about the moduli of K3
surfaces by examining the period space Ω.

Where are the algebraic K3 surfaces in our picture? If we choose a
class λ ∈ Λ with λ2 > 0 (corresponding to an ample divisor under a
marking of X, say), then we can look at the subset

Ωλ = {[ω] ∈ Ω |ω · λ = 0}.

This has codimension 1 in Ω, and parametrizes all K3 surfaces for
which a marking α exists such that α−1(λ) is the class of a divisor. As
a consequence, we see that the set of algebraic K3 surfaces is a union of
codimension 1 subvarieties in the set of all K3 surfaces. In particular,
every algebraic K3 surface has arbitrarily close deformations which are
non-algebraic.
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More generally, given a Hodge structure on Λ, we may consider Λ ∩
H1,1; if α : H2(X,Z) → Λ is a marking of X preserving the Hodge
structures, then α−1(Λ ∩H1,1) is the Neron-Severi group of X (by the
Lefschetz (1,1)-theorem). We can try to pre-assign the structure of
the Neron-Severi group by finding submodules M ⊂ Λ and looking at
Hodge structures for which M lies in H1,1, as follows:

Given M ⊂ Λ such that the signature of M is (1, r − 1) or (0, r),
define

ΩM = {[ω] ∈ Ω |ω · µ = 0 for all µ ∈M}.
It turns out that ΩM is non-empty and has dimension equal to 22−r =
22− rank(M).

As an example of this, let e1, . . . , e16 ∈ Λ be classes coming from
some Kummer surface (so ei · ej = −2δij), and let M be the saturation
of the lattice L which they generate. (M/L ⊂ L#/L is necessarily iso-
morphic to the Kummer code.) The resulting space ΩM has dimension
4, and parametrizes Kummer surfaces. However, for any γ ∈ O(Λ) (the
integral automorphism group of the unimodular form Λ), if we change
the marking on the Kummer surfaces by using γ we discover that Ωγ(M)

also parametrizes Kummer surfaces.

Key Fact .
⋃
γ∈O(Λ) Ωγ(M) is dense in Ω.

This “key fact” is an essential step in the proof of the global Torelli
theorem for K3 surfaces. Using it, one proceeds like this: given an
effective Hodge isometry ϕ : H2(X,Z) → H2(X ′,Z), pick sequences
of Kummer surfaces Xi, X

′
i whose periods tend to those of X, X ′ and

show that isomorphisms ϕi can be chosen “converging” to ϕ. There
exist isomorphisms Φi : X ′

i → Xi with Φ∗
i = ϕi, one needs to know

that these converge in some appropriate sense.
The technical work needed to implement this method is somewhat

difficult, and we will not go into it here.

12. The structure of the period mapping

For a smooth K3 surface X, we have identified a particular chamber
of C(X)

V +(X) = {x ∈ H1,1
R (X) |x2 > 0, x·λ > 0 and for all δ ∈ ∆+(X), x·δ > 0}

which we call the Kähler chambers. (Here, κ is any Kähler class on X.)
Now if X is projective, V +(X) ∩H2(X,Z) is exactly the set of ample
divisors on X. the set of nef and big divisors can be identified with
V +(X) ∩ C(X) ∩H2(X,Z).

Now if λ is the class of a nef and big divisor, λ corresponds to a line
bundle OX(L). The linear system |3L| factors through the contraction
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π : X → X̄ of all curves Ci such that C2
i = −2, Ci ·L = 0, and embeds

the resulting surface X̄. Moreover, OX(L) = π∗(OX̄(L̄)) for an ample
linear system |L̄| on X̄. The ample line bundles on X̄ exactly corre-
spond to classes λ ∈ V +(X) ∩ C(X) ∩H2(X,Z) such that λ⊥ ∩∆(X)
exactly corresponds to the (-2)-classes supported on the exceptional set
exc(π).

To generalize this to the Kähler clase, we should introduce the notion
of a generalized Kähler metric on a singular surface. In fact, we have
no time to do this—please believe that such a notion exists, that it
determines a set of Kähler classes on every K3 surface, and that the
integral Kähler classes always correspond exactly to the ample line
bundles.

Suppose now that X is an arbitrary K3 surface (with rational double

points allowed), fix a Kähler class κ on X, and let π : X̃ → X be the
minimal desingularization. We make several definitions in parallel to
the smooth case.

For R = Z,R, or C, let H2
R(X) denote the orthogonal complement

of the components of the exceptional set exc(π) in H2(X̃, R). H2
Z(X)

inherits a Hodge structure from H2(X̃,Z), since the components of
exc(π) give classes in H1,1

R . H1,1
R (X) denotes H2

R(X) ∩ H1,1(X). We
define

∆(X) = ∆(X̃)

∆+(X) = ∆+(X̃)

R(x) = the root system of X = {δ ∈ ∆(X̃) | ±δ is supported on exc(π)}
V +(x) = {x ∈ H1,1

R (X) |X2 > 0, x · κ > 0 and x · δ > 0

for all δ ∈ ∆+(X)− (∆+(X) ∩R(X)}
(That is, x·δ ≥ 0 for δ ∈ ∆+(X) with equality if and only if δ ∈ R(X).)
Note that when X is projective, V +(X) ∩ H2

Z(X) is the set of ample
classes.

Definition .

(1) A map ϕ : H2
Z(X) → H2

Z(X ′) is an effective Hodge isometry
if and only if ϕ preserves the intersection forms and Hodge
structures, and ϕ(V +(X)) = V +(X ′).

(2) A map ϕ : H2
Z(X) → H2

Z(X ′) is liftable if and only if there

exists an isomorphism ψ : H2(X̃,Z) → H2(X̃ ′,Z) preserving
intersection forms such that ψ|H2

Z(X) = ϕ.

We can now state the 3 main theorems about the structure of the
period mapping for K3 surfaces. For the proofs, we refer to the book of
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Barth-Peters-Van de Ven, the seminar notes “Géométrie des surfaces
K3 . . . ” edited by Beauville et al., and the references contained there.

Global Torelli Theorem . If ϕ : H2
Z(X) → H2

Z(X ′) is a liftable
effective Hodge isometry between K3 surfaces X and X ′, there exists
an isomorphism Φ : X ′ → X such that Φ∗ = ϕ.

Surjectivity Theorem . Given a submodule R ⊂ Λ generated by
classes ei with e2i = −2 on which the form is negative definite, a Hodge
structure {Hp,q} on Λ of K3 type, and a connected component V + of
(R⊥∩C(H1,1))−⋃δ∈∆−R δ

⊥ (where C(H1,1) = {x ∈ H1,1 |x2 > 0} and
∆ = {δ ∈ H1,1∩Λ | δ2 = −2}) there exists a K3 surface X and a mark-

ing α : H2(X̃,Z) → Λ preserving Hodge structures and intersection
forms, such that α(R(X)) = R and α(V +(X)) = V +.

Existence of Kähler Metrics Theorem . Every K3 surface is Kähler.
Moreover, the set of Kähler classes is exactly V +(X).

I want to describe how these theorems can be used to construct K3
surfaces whose Neron-Severi groups have specified properties. Typi-
cally, we are given a free Z-module M with an intersection matrix, and
perhaps some elements µ1, . . . , µk ∈M and we would like to find a K3
surface X such that NS(X) = M , and the µi correspond to effective,
or irreducible, or ample, or very ample divisors. If such is the case,
we have M ⊂ Λ embedded in a saturated way; and the discriminant-
groups give a condition which M must satisfy. Namely, let N = M⊥

so that M#/M ∼= N#/N ; we must have

(minimum number of generators of M#/M) ≤ rank(N).

The converse is a theorem of Nikulin.

Theorem (Nikulin). Let M be a free Z-module with a nondegenerate
symmetric bilinear form of signature (1, r − 1) or (0, r). If

(minimum number of generators of M#/M) ≤ 22− r

then there is an embedding M ⊂ Λ with saturated image.

In any specific application, there are then several further steps to
carry out. We illustrate all of this with an example: a free Z-module
M generated by λ1, λ2 with intersection matrix (4 8

8 4).

Step 1. M can be generated with at most 2 generators, well less than
20. (In general, rank(M) ≤ 11 implies that M can be embedded, since
r ≤ 22− r.)
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Step 2. We construct a Hodge structure on Λ such that Λ∩H1,1 = M ,
as follows. Choose ω ∈ Λ ⊗ C such that ω · ω = 0, ω · ω̄ > 0 and the
smallest Q-vector subspace of Λ⊗Q containing ω is M⊥. (Essentially,
this means choosing the coefficients in a basis of M⊥ to be algebraically
independent transcendentals, except for the relation imposed by ω ·ω =
0.) Then H1,1 ∩ (Λ ⊗ Q) = M⊥⊥ ⊗ Q = M ⊗ Q, so (since M ⊂ Λ is
saturated) H1,1 ∩ Λ = M .

Step 3. Note that for a1λ1 + a2λ2 ∈ M we have (a1λ1 + a2λ2)
2 ≡ 0

mod 4, so that there are no (-2)-classes in M (i. e. ∆ = ∅). Let V + be
the chamber containing λ1—this is simply the connected component of
C(H1,1) containing λ1.

Step 4. By the surjectivity theorem, there is a smooth K3 surface
X and an isomorphism α : H2(X,Z) → Λ preserving Hodge struc-
tures and intersection forms, such that α(V +(X)) = V +. We have
NS(X) = α−1(M) ∼= M , and α−1(λ1) corresponds to an ample line
bundle OX(L1). Since λ1 · λ2 > 0, α−1(λ2) also corresponds to an
ample line bundle L2.

(In more general examples, where M contains (−2)-classes, the anal-
ysis of ∆, V +, the ampleness question, and whether or not X is smooth
is much more complicated.)

Step 5. Are L1 and L2 very ample? Since L2
i 6= 2 or 8, to answer this

we must know whether there can be a class d ∈ M such that d2 = 0,
d ·λi = 1 or 2. We showed in section 1 that this is not the case for this
particular M .

It follows that |L1| and |L2| are very ample, so there is a smooth
C ∈ |L2|. If we embed X by ϕ|L1|, we get a smooth quartic surface
X with a smooth curve C of degree 8 and genus 6. Thus, this set of
lectures ends exactly where it began.
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