
© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 11

Getting Started with
On-chip Memory

Getting Started withGetting Started with
OnOn--chip Memorychip Memory

In this “Getting Started” tutorial you will learn about the various memory types
found on Microchip’s PICmicro® microcontrollers (MCUs). This module will
explain the three different memory spaces that can be used on the PICmicro devices
and the type of memory used for each. The architecture of each memory space will
also be explained, including addressing modes and code examples.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 22

Memory ArchitectureMemory ArchitectureMemory Architecture

l Up to three memory types on PICmicro MCUs
l Program Memory - instructions
l Data Memory - variable data values

l Special Function Registers (SFRs)
(Control device operation)

l General Purpose Registers (GPRs)
(RAM storage)

l Data EEPROM Memory - non-volatile data
storage

l Up to three memory types on PICmicro MCUs
l Program Memory - instructions
l Data Memory - variable data values

l Special Function Registers (SFRs)
(Control device operation)

l General Purpose Registers (GPRs)
(RAM storage)

l Data EEPROM Memory - non-volatile data
storage

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

Each microcontroller may have up to three different memory types depending on the
device family it belongs to.

The first memory type is common to ALL microcontrollers. This is called Program
Memory, and its purpose is to store instructions.

The second memory type, Data Memory, is also common to ALL
microcnontrollers. Data Memory contains the Special Function Registers and
General Purpose RAM. The Special Function registers are commonly referred to as
SFRs and consist of the configuration, control and status registers for peripheral and
port I/O. General Purpose RAM, commonly referred to as GPR, is the area that the
application firmware uses to store and manipulate data.

In addition to Program Memory and Data Memory, some microcontrollers also
contain the third memory type, Data EEPROM Memory. The Data EEPROM
Memory area of a microcontroller provides non-volatile data memory storage that
can be rewritten many times.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 33

Program Memory TypesProgram Memory TypesProgram Memory Types

l Three memory types, but four varieties
l ROM -

Read Only Memory
l EPROM -

Erasable Programmable Read Only Memory
l OTP -

One-Time-Programmable
l FLASH (EEPROM) -

Electrically Erasable Programmable Read
Only Memory

l Three memory types, but four varieties
l ROM -

Read Only Memory
l EPROM -

Erasable Programmable Read Only Memory
l OTP -

One-Time-Programmable
l FLASH (EEPROM) -

Electrically Erasable Programmable Read
Only Memory

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

First we’ll take a look at the Program Memory space. Within the program memory
space there are several available memory technologies, each of which will be
explained in greater detail on the following slides.

ROM memory is the least expensive program memory but is only recommended
when the application code is stable and a high volume of devices are needed.

EPROM and OTP memories actually use the same die, but differ in how they are
packaged. The packaging affects the cost and how a device is used. A die is the
silicon “chip” inside the package that contains all the electronics.

FLASH memory devices have very fast erase/write cycles which allows for fast
code development. The FLASH memory devices may also offer non-volatile data
memory.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 44

Program Memory - ROMProgram Memory Program Memory -- ROMROM

l ROM - Read Only Memory
l Memory is manufactured containing program
l Memory can not be erased or programmed
l Program code must be stable

(will not be changed)
l Least expensive in large quantities
l Device examples - PIC16CR65, PIC16CR72

l ROM - Read Only Memory
l Memory is manufactured containing program
l Memory can not be erased or programmed
l Program code must be stable

(will not be changed)
l Least expensive in large quantities
l Device examples - PIC16CR65, PIC16CR72

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

Let’s take a closer look at the ROM or Read Only Memory. Microcontrollers with
ROM program memory are manufactured with the desired program code already on
them which cannot be changed after they have been manufactured. For this reason,
microcontrollers with the ROM program memory technology are best suited in
applications where the program code will not change and high volumes of the
devices are required. To be cost-effective and less expensive than microcontrollers
with OTP or FLASH program memory, the devices with ROM program memory
must be ordered in large quantities. Devices such as the PIC16CR65 and
PIC16CR72 have ROM program memory and are denoted with an “R” in the part
number.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 55

Program Memory - EPROMProgram Memory Program Memory -- EPROMEPROM

l EPROM - Erasable Programmable Read
Only Memory
l Ceramic package has quartz window
l Erasable with UV light
l Field reprogrammable when erased
l Most expensive due to cost of package
l Example Device - PIC16C74B/JW

l EPROM - Erasable Programmable Read
Only Memory
l Ceramic package has quartz window
l Erasable with UV light
l Field reprogrammable when erased
l Most expensive due to cost of package
l Example Device - PIC16C74B/JW

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

The second type of program memory is actually used in 2 different package types.
This memory type is the Erasable Programmable Read Only Memory or EPROM.

When an EPROM die is mounted in a ceramic package with a quartz window, the
microcontroller can be erased using an ultraviolet eraser and reprogrammed many
times. Erase times depend on the light intensity, light wavelength, the age (operating
time) of the light source, and the device being erased. Typical erase times range
between 5 and 30 minutes. EPROM is the most expensive version of program
memory due the the high cost of the windowed ceramic package. Devices such as
the PIC16C74B/JW are of the EPROM type and are available in a windowed
package. The “/JW” suffix denotes the windowed package.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 66

Program Memory - OTPProgram Memory Program Memory -- OTPOTP

l One Time Programmable (OTP)
l Uses same EPROM die as in windowed

packages
l Not erasable - opaque plastic package
l Field Programmable One Time
l Least expensive programmable version
l Device examples -

l PIC16C72A/P - Plastic DIP
l PIC16C74B/SO - SOIC (surface mount)

l One Time Programmable (OTP)
l Uses same EPROM die as in windowed

packages
l Not erasable - opaque plastic package
l Field Programmable One Time
l Least expensive programmable version
l Device examples -

l PIC16C72A/P - Plastic DIP
l PIC16C74B/SO - SOIC (surface mount)

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

The One-Time-Programmable (OTP) microcontrollers actually use the same die as
the windowed-package EPROM devices. It is the packaging that makes them
unique. Since the OTP microcontrollers are in an opaque plastic package, they
cannot be erased using UV light. OTP devices are shipped to the customer“blank”
from the factory, and can then be programmed only once. This is why they became
know as as “One Time Programmable” or OTP devices. This is the lowest cost
programmable version of a device. OTP dvices such as the PIC16C72A/P (plastic
DIP) and PIC16C74B/SO (SOIC surface mount) are of the EPROM type and are
denoted by a suffix other than “/JW” such as “/P”, “/PQ”, “/SP” and others. Check
the datasheet to see which packages a particular device is offered in.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 77

Program Memory - FLASHProgram Memory Program Memory -- FLASHFLASH

l FLASH (EEPROM) -
Electrically Erasable Programmable Read
Only Memory
l Electrically erased almost instantly
l Reprogrammable
l Firmware can write to program memory
l Often includes data EEPROM memory
l Device examples - PIC16F77, PIC16F877

l FLASH (EEPROM) -
Electrically Erasable Programmable Read
Only Memory
l Electrically erased almost instantly
l Reprogrammable
l Firmware can write to program memory
l Often includes data EEPROM memory
l Device examples - PIC16F77, PIC16F877

Refer to the respective data sheets to determine the typesRefer to the respective data sheets to determine the types
of memories available on specific microcontrollers.of memories available on specific microcontrollers.

The final program memory technology we are looking at is FLASH. FLASH
memory provides the ultimate flexibility because it can be electrically erased by a
programmer in just a few seconds and reprogrammed. UV erasure is not required,
and is not possible. Once erased in a programmer, FLASH devices
can be reprogrammed with new code. Some devices with FLASH can also
self-program using a specific sequence of instructions. These devices often include
a small amount of non-volatile data EEPROM memory that can be rewritten many
thousands of times. Data EEPROM memory will be discussed in greater detail later
in this presentation. Devices such as the PIC16F77 and PIC16F877 use FLASH
program memory, and are denoted with an “F” in the part number.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 88

Processor ArchitectureProcessor ArchitectureProcessor Architecture

l Architecture affects:
l Operational speed
l Available memory structure

l Two main architectures
l Von Neumann
l Harvard

l Architecture affects:
l Operational speed
l Available memory structure

l Two main architectures
l Von Neumann
l Harvard

Now that we’ve reviewed the various on-chip memory spaces and technologies
available, it’s time to take a look at the processor architecture. The architecture
governs the memory sizes and structure, and ultimately, operational speed.

The two most common microcontroller architectures you will find are the
Von Neumann architecture and the Harvard architecture.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 99

Processor ArchitectureProcessor ArchitectureProcessor Architecture

l Fetches instructions and
data from one memory.
l Limits Operating

Bandwidth

l Separate memory spaces
for instructions and data.
l Increases throughput
l Different program and

data bus widths are
possible

l Fetches instructions and
data from one memory.
l Limits Operating

Bandwidth

l Separate memory spaces
for instructions and data.
l Increases throughput
l Different program and

data bus widths are
possible

Program and Program and
Data MemoryData Memory

Von NeumannVon Neumann

88--BitsBits

CPUCPU

ProgramProgram
MemoryMemory

DataData
MemoryMemory

88--BitsBits

12/14/1612/14/16--BitsBits

HarvardHarvard

CPUCPU

Microcontrollers with the Von Neumann architecture have a single memory space
that stores both the program instructions and the stored data. For this reason,
executing instructions means that several “fetches” from the single memory space
must occur. Frequently, instructions require several fetches as they cannot fit in one
memory location. The first fetch retrieves the CPU instruction. Additional fetches
must then retrieve data required for the program instruction. This decreases the
operating bandwidth of the microcontroller because “fetching data” must wait until
“fetching instructions” has completed. This is known as the Von Neumann
bottleneck.

PICmicro MCUs use the Harvard architecture which has separate Program Memory
and Data Memory. This allows simultaneous fetching of instructions and fetching
of data in a single fetch operation resulting in increased throughput.

Another advantage of Harvard architecture is that the program and data bus widths
can also be tailored to the performance requirements. While the data bus is always
8-bits wide, Microchip offers microcontrollers with program memory bus widths of
12-, 14- and 16-bits. Increasing bus widths allows greater numbers of instructions
while still allowing fetching an instruction in a single fetch operation.

For example, the program memory for the 14-bit core microcontroller has a limit of
8K words, and each word contains a single 14-bit wide instruction. The program
memory is divided into 1, 2, or 4 pages of 2K words each.

In our example, the microcontroller uses its data memory (Register file) to move
among the pages. The PCLATH register is used to select which page the next
execution branch will go to. When a GOTO or CALL instruction is executed,
PCLATH<4:3> is used to select the page branched to. When the PCL is modified by
user code, PCLATH<4:0> is used with PCL to form the full PC address of the next
instruction to be executed.

As you can see on this diagram, Page 0 contains the Reset vector at location 0
(0000h). After a reset, code execution begins at the reset vector. Ordinarly, the first
2 instructions set PCLATH to the correct program page, and the third instruction is
a GOTO that causes code execution to branch to another place in program memory.
Otherwise, little useful code can be placed at the start of Program Memory if
interrupts are used.

When an interrupt occurs during code execution, the next instruction address to be
fetched (whatever it is) is saved to the stack and execution branches to the interrupt
vector at location 4. Often, instructions to load PCLATH and a GOTO at this
location will cause execution to branch to somewhere else in memory.
Alternatively, servicing the interrupt can begin at this vector location.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1010

Program MemoryProgram MemoryProgram Memory

l Maximum 8K words
of program memory space
(13 address bits)

l Four Pages each 2K
words (11 address bits)

l Page access using
PCLATH<4:3>

l Reset Vector at 0000h
l Interrupt Vector at 0004h

l Maximum 8K words
of program memory space
(13 address bits)

l Four Pages each 2K
words (11 address bits)

l Page access using
PCLATH<4:3>

l Reset Vector at 0000h
l Interrupt Vector at 0004h

Page 0Page 0

0000h0000h

0004h0004h

07FFh07FFh

InterruptInterrupt

ResetReset

Page 1Page 1

0800h0800h

0FFFh0FFFh

Page 2Page 2

1000h1000h

17FFh17FFh

Page 3Page 3

1800h1800h

1FFFh1FFFh

PCLATH<4:3> = 00PCLATH<4:3> = 00

PCLATH<4:3> = 01PCLATH<4:3> = 01

PCLATH<4:3> = 10PCLATH<4:3> = 10

PCLATH<4:3> = 11PCLATH<4:3> = 11

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1111

Program Memory
Page Size Limit & Absolute Addressing

Program Memory
Page Size Limit & Absolute Addressing

OP CODEOP CODE kk kk kk kk

1414--bit Instruction for call and gotobit Instruction for call and goto

kk kk kk kk kk kk kk

l Used by control instructions GOTO and CALL
to modify the PC (Program Counter)

l Used by control instructions GOTO and CALL
to modify the PC (Program Counter)

xx xx xx kk kk xx xx xx

PCLATH RegisterPCLATH Register

Effective 13Effective 13--bit Program Memory Addressbit Program Memory Address

1111--bits From Instructionbits From Instruction

22--bits bits
FromFrom
PCLATHPCLATH

kk kk kk kk kk kk kk kk kk kk kk kk kk
(Limits address range per page to 2K bytes)(Limits address range per page to 2K bytes)

(Limits # of (Limits # of
pages to 4)pages to 4)

Program memory page size is dictated by the number of addressing bits encoded
into a branch instruction such as the CALL or GOTO instructions.

The first 3 bits of these branch instructions indicate that this instruction will modify
the program counter. In the case of the CALL instruction, they also indicate that a
return address, the address of the next instruction, should be saved on the stack. The
remaining 11 bits are loaded into the 11 least significant bits (LSb) of the program
counter. Using 11 bits for addressing allows up to 2K of addresses. This defines the
size of the program memory page.

For devices with up to 2K of program memory, the 2 Most Significant bits (MSb) of
the program counter are maintained clear by keeping PCLATH clear. Devices with
4K of program memory will require keeping the 5th bit in PCLATH clear while
operating the 4th bit to select one of two pages. Devices with 8K of program
memory will require operating the 4th and 5th bits in PCLATH to select 1 of 4
pages. In the Mid-range PICmicro MCUs, the 3 MSbs of PCLATH are never used.

Because the entire address is explicitly defined using PCLATH and an address
encoded in the instruction, we say that the we are using absolute addressing. Before
a GOTO or CALL instruction is executed, the user must ensure that the PCLATH
register bits 3 and 4 are pointing to the required page in program memory. If this is
not done, execution will branch to the corresponding address in the currently
selected page.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1212

Program Memory
Executing GOTO Instructions

Program Memory
Executing GOTO Instructions

RESET movlw HIGH Main ; Reset vector address
movwf PCLATH ; Loads PCLATH
goto Main ; Branch to the real program
nop

Inter movlw HIGH ISR ; Interrupt vector address
movwf PCLATH ; Loads PCLATH
goto ISR ; Branch to ISR subroutine

Main ; program starts here

ISR ; Interrupt Service Routine starts here

The HIGH directive causes the
assembler to use bits <15:8> of
the address of the label specified
(Main or ISR) in the instruction.

**

**

**

**

This is a code example for correctly executing GOTO instructions.

The word HIGH in the first line of code is an assembler directive that uses bits
<15:8> of the addresses for Main and ISR. The instruction takes the selected 8 bits
and loads them into the W register. The second instruction puts the contents of the
W register in PCLATH to prepare for a branch to another page. The GOTO
instruction actually causes execution to branch to the label Main. PCLATH<4:3>
are used to select the required program memory page when the GOTO instruction is
executed.

The NOP instruction simply occupies the only remaining program word before the
interrupt vector begins, and is never executed. This location does not even have to
be programmed.

The interrupt vector functions the same way as the reset vector.

The labels Main and ISR can be located anywhere in program memory.

Loading PCLATH is not always required. If all program code fits into one memory
page, or the microcontroller has only one page, loading PCLATH is not required.
However, program code is often spread across several pages. A GOTO or CALL
can result in a branch to a page other than the one currently selected, in which case,
PCLATH will need to be loaded with the required page. The absolute list file can be
examined to determine which page is being jumped from, which page a label is in,
and possibly the current contents of PCLATH to decide whether or not loading
PCLATH is required.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1313

Program Memory
PC Relative Addressing

Program MemoryProgram Memory
PCPC Relative Addressing

PCH <5>PCH <5> PCL <8>PCL <8>

1313--Bit Program CounterBit Program Counter

PCLATH <5>PCLATH <5>

Internal Data Bus <8>Internal Data Bus <8>

55

55

88

ll First write high byte to PCLATH.First write high byte to PCLATH.
ll Next write low byte to PCL, this loads the entireNext write low byte to PCL, this loads the entire

1313--bit value to PC.bit value to PC.

movlwmovlw HIGH DelayHIGH Delay
movwfmovwf PCLATHPCLATH
movlwmovlw LOW DelayLOW Delay
movwfmovwf PCLPCL

Note: PCH cannot be readNote: PCH cannot be read

There is another way to execute a program branch when an instruction writes an 8-
bit value to PCL. This can be the result of any operation where the PCL is the
destination for the result. This forms the basis for what is called the “computed
jump.”

The low byte of the program counter can be read and written directly using PCL.
The high byte (PCH) is only writable through PCLATH. PCLATH is loaded by
firmware with bits <15:8> of the address prior to writing to PCL. When PCL is
modified by user code, the contents of PCLATH are also transferred into the high
byte of the program counter, PCH. Only the lower 5 bits of PCLATH actually have
any meaning since only 13-bits of addressing are used in mid-range devices

In this example, PCLATH is loaded with bits<15:8> of the address of Delay. The
LOW directive takes bits<7:0> of the address of Delay and places them in the W
register. When the W register is written to PCL, the contents of PCLATH are also
written to PCH forming the complete 13-bit address to Delay. The next instruction
executed is the first instruction of Delay.

PCH cannot be read, and cannot be written to directly. When PCL is written, the
contents of PCLATH are written to PCH.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1414

Program Memory
CALL Instruction & Relative Addressing

Program Memory
CALL Instruction & Relative Addressing

movlw HIGH String ; Bits<15:8> of address
movwf PCLATH ; of String are loaded to PCLATH.
movf Index,W ; Get index into table String.
call String ; Call table String.
movwf PORTB ; All RETLW’s return here.

String addwf PCL,F ; This is a computed jump
retlw ‘M’ ; using relative addressing.
retlw ‘i’
retlw ‘c’ ; PCLATH is already loaded as
retlw ‘r’ ; required to CALL this table.
retlw ‘o’
retlw ‘c’
retlw ‘h’
retlw ‘i’
retlw ‘p’

**
**
**

This code example shows how to correctly execute a CALL instruction, and how
relative addressing works. A look-up table is implemented using a computed jump
which contains the word “Microchip.” On execution of this code example, one
character of the string “Microchip” will be written to PORTB. The variable Index is
an offset from the start of the table, and points to one of the characters in the table.

The HIGH directive tells the assembler to use bits<15:8> of the address to String for
the MOVLW instruction. The next instruction loads the contents of the W register
into PCLATH. Only bits 3 & 4 of PCLATH are used when a CALL is executed. The
offset into the table String is loaded into the W register and a call to String is made.

The first line of String adds the value in PCL to W. The result is saved back to PCL
as specified by the “,F” at the end of the instruction. When the ADDWF instruction
is executed, the program counter is already pointing to the next line of code, in this
case, RETLW “M”.

Assuming that Index was set to 3, when the ADDWF instruction completes, a NOP
is executed in place of the RETLW ‘M’ instruction already fetched. The next
instruction fetched is the the RETLW ‘r’ instruction pointed to by the new PC. This
takes two cycles, one to execute a NOP in place of the previously fetched
instruction and one to fetch the new instruction.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1515

Program Memory
Computed Jumps - Constraints

Program Memory
Computed Jumps - Constraints

ORG 0x0200 ; Places the table String at the start
; of a 256 instruction boundary.

String addwf PCL,F ; This is a computed jump
retlw ‘M’ ; using relative addressing.
retlw ‘i’
retlw ‘c’ ; PCLATH is already loaded as
retlw ‘r’ ; required to CALL this table.
retlw ‘o’
retlw ‘c’
retlw ‘h’
retlw ‘i’
retlw ‘p’

There are a few constraints on the size and location of computed GOTO tables.

When the index is added to the PCL, and an overflow occurs from the addition, it
will not cause an increment of PCH or PCLATH (the overflow is lost). This means
that such tables should be completely contained between 256 instruction boundaries,
as an attempt to jump to an address outside the current 256 instruction boundaries
will fail. The address jumped to will be formed using the current PCLATH and
resulting PCL.

The ORG directive causes the assembler to locate the next instruction at the address
specified. In this case, the ADDWF instruction is placed at 0x0200 which is a 256
instruction boundary.

Because the ADDWF PCL,F instruction must also be included within the
boundaries, the number of entries is limited to 255.

Several smaller tables can be implemented between the same pair of adjacent
boundaries if they are all completely contained by those boundaries.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1616

Program Memory
Accessing Program Memory

Program MemoryProgram Memory
Accessing Program MemoryAccessing Program Memory

l Some devices can read program memory
l Read checksums, calibration data, tables
l 14-bits of data compared to 8-bits for retlw 0xnn
l Accessed through Special Function Registers
l Check datasheet for availability

l FLASH devices can write to program memory
l Some devices require programming voltage for

write operation

l Some devices can read program memory
l Read checksums, calibration data, tables
l 14-bits of data compared to 8-bits for retlw 0xnn
l Accessed through Special Function Registers
l Check datasheet for availability

l FLASH devices can write to program memory
l Some devices require programming voltage for

write operation

Refer to the respective data sheets to determineRefer to the respective data sheets to determine
if program memory access is available.if program memory access is available.

Some devices can read directly from program memory. This capability makes
possible the reading of program memory to calculate checksums, retrieving
calibration data or using large look-up tables.

The program memory access function allows 14-bit data to be stored directly in
memory (such as calibration data.) This data can be any value and does not have to
be a valid instruction. If the data in a program memory location does not form a
valid instruction and is executed, the result will be a NOP instruction which does not
alter the state of the microcontroller. This function allows more optimized storage of
information when compared to retlw instructions which allow only 8-bits per word
of program memory.

A set of six special function registers control what memory address is accessed.
Two registers are used to select the address, two are used to present the program
memory contents for use as data, and two are used to control memory accesses.

Check the datasheet for your microcontroller to see if this function is offered.

FLASH devices can also write to program memory. Many FLASH microcontrollers
can perform writes using only VDD as the supply voltage. Others require
programming voltage for writes.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1717

Program Memory
Program Memory Access Registers

Program Memory Program Memory
Program Memory Access RegistersProgram Memory Access Registers

R/W Access (PIC16F877)
l EEDATA

l Holds LSbyte of data

l EEDATH
l Holds MSbyte of data

l EEADR
l Holds LSbyte of address

l EEADRH
l Holds MSbyte of address

l EECON1
l Read/Write Control

Register

l EECON2
l Write Control Register

R/W Access (PIC16F877)
l EEDATA

l Holds LSbyte of data

l EEDATH
l Holds MSbyte of data

l EEADR
l Holds LSbyte of address

l EEADRH
l Holds MSbyte of address

l EECON1
l Read/Write Control

Register

l EECON2
l Write Control Register

Read Only Access
(PIC16F77, PIC16C926)

l PMDATA
l Holds LSbyte of data

l PMDATH
l Holds MSbyte of data

l PMADR
l Holds LSbyte of address

l PMADRH
l Holds MSbyte of address

l PMCON1
l Read Control Register

Read Only Access
(PIC16F77, PIC16C926)

l PMDATA
l Holds LSbyte of data

l PMDATH
l Holds MSbyte of data

l PMADR
l Holds LSbyte of address

l PMADRH
l Holds MSbyte of address

l PMCON1
l Read Control Register

Members of the PIC16F87X family have both program memory read and write
access. The special function register set used to access program memory is the
EEDATA and EEDATH register for holding 14-bit data values, EEADR and
EEADRH for holding the 13-bit program memory address, and EECON1 and
EECON2 for controlling the read or write operation.

Some devices with read only access include the PIC16F7X family and the
PIC16C925 and PIC16C926 microcontrollers. These devices have the following
special function registers: PMDATA and PMDATH for holding
14-bit data, PMADR and PMADRH for holding the 13-bit program memory
address, and PMCON1 for controlling the read.

Please refer to the specific microcontroller data sheet for details.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1818

Program Memory
Reading Internal Program Memory

Program Memory Program Memory
Reading Internal Program MemoryReading Internal Program Memory

l Write 8 LSb of desired address to PMADR (EEADR)
l Write 5 MSb of desired address to PMADRH (EEADRH)
l Set the EEPGD bit, EECON1<7>
l Set the RD bit, PMCON1<0> (EECON1<0>)
l The next two instructions are not fetched while the CPU

reads program memory.
l NOPs execute in their places.
l NOPs in code are simply placeholders

l Data available in PMDATH:PMDATA (EEDATH:EEDATA)
registers in the next instruction cycle.

l RD bit is cleared
l EEIF bit in PIR2 is set

l Write 8 LSb of desired address to PMADR (EEADR)
l Write 5 MSb of desired address to PMADRH (EEADRH)
l Set the EEPGD bit, EECON1<7>
l Set the RD bit, PMCON1<0> (EECON1<0>)
l The next two instructions are not fetched while the CPU

reads program memory.
l NOPs execute in their places.
l NOPs in code are simply placeholders

l Data available in PMDATH:PMDATA (EEDATH:EEDATA)
registers in the next instruction cycle.

l RD bit is cleared
l EEIF bit in PIR2 is set

The process of reading internal program memory is straight forward. The address of
the desired program memory location is loaded into the PMADRH:PMADR
registers (or EEADRH:EEADR registers for read/write devices). If using a device
with read/write functions, the EEPGD bit in the EECON1 register needs to be set to
indicate the access must take place in program memory.

To initiate the read operation, the RD bit in the PMCON1 (or EECON1) register is
set. The value of the desired program memory location is automatically read during
the next two instruction cycles and placed in the data registers. The two instructions
that follow setting the RD bit are not fetched and NOPs are executed in their places.
The RD bit is automatically cleared after the operation completes, and the EEIF flag
in PIR2 is set. The data registers contain the contents of the desired program
memory address.

The contents of the address registers are not modified by the read operation. The
data registers continue to hold their values until firmware modifies them.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 1919

Program Memory
Reading FLASH Program Memory

Program Memory Program Memory
Reading FLASH Program MemoryReading FLASH Program Memory

bsf STATUS, RP1 ; select Bank 2
bcf STATUS, RP0
movf ADDRH, W ; write program memory
movwf EEADRH ; address to EEADRH:EEADR
movf ADDRL, W ; registers
movwf EEADR
bsf STATUS, RP0 ; select Bank 3
bsf EECON1, EEPGD ; select program memory*
bsf EECON1, RD ; begin read
nop ; not fetched, placeholder only
nop ; not fetched, placeholder only
bcf STATUS, RP0 ; select Bank 2

; data ready EEDATH:EEDATA
For a device with read only access, substitute “PM” for “EE” forFor a device with read only access, substitute “PM” for “EE” for each of the registers.each of the registers.
* Read* Read--only devices do not have the EEPGD bit.only devices do not have the EEPGD bit.

This is a source code example for reading the program memory on a microcontroller
with read and write access. In a device with read only access, the names of the SFR
registers are changed to their respective PM register names, and the BCF
EECON1,EEPGD instruction is removed.

You will notice that two NOP instructions follow the setting of the RD bit. These
two instructions are not fetched, but are present as placeholders. NOPs are executed
in their place.

RP0 and RP1 are operated to select Bank 2 of data memory. The address to be read
is contained in ADDRH:ADDRL. The high byte of the program memory address to
be read is loaded into the W register. The W register is then loaded into EEARDH.
This is repeated for the low byte of the address.

RP0 is set to select Bank 3 where EECON1 can be accessed. The EEPGD bit in
EECON1 is set to point to program memory. The RD bit in the same register is then
set. During the next 2 instruction cycles, no program instructions are fetched and
NOPs are executed in their places.

When instruction fetching and execution resume, the RD bit is cleared, the EEIF bit
in PIR2 is set, and the EEDATH:EEDATA registers in Bank 2 contain the program
memory word just read from the selected address. Bank 2 is selected by clearing the
RP0 bit.

Not shown is actually reading the EEDATH:EEDATA registers.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2020

Program Memory
Writing FLASH Program Memory

Program Memory Program Memory
Writing FLASH Program MemoryWriting FLASH Program Memory

l Write the desired address to EEADRH:EEADRL
l Write the desired data to EEDATH:EEDATA
l Set the EEPGD bit, EECON1<7>, to select program memory
l Set the WREN bit, EECON1<2> to enable writes
l Disable all interrupts (not shown on next page)
l Write 55h to EECON2
l Write AAh to EECON2
l Set the WR bit, EECON1<1>. The write begins.
l Next two instructions ignored

l CPU now halts while memory is programmed, this is NOT sleep mode as
the clocks and peripherals continue to run

l When the write completes, WR gets cleared, EEIF in PIR2 gets set, and
execution resumes

l Interrupts can now be enabled (not shown on next page)
l Clear the WREN bit, EECON1<2> to disable further writes

l Write the desired address to EEADRH:EEADRL
l Write the desired data to EEDATH:EEDATA
l Set the EEPGD bit, EECON1<7>, to select program memory
l Set the WREN bit, EECON1<2> to enable writes
l Disable all interrupts (not shown on next page)
l Write 55h to EECON2
l Write AAh to EECON2
l Set the WR bit, EECON1<1>. The write begins.
l Next two instructions ignored

l CPU now halts while memory is programmed, this is NOT sleep mode as
the clocks and peripherals continue to run

l When the write completes, WR gets cleared, EEIF in PIR2 gets set, and
execution resumes

l Interrupts can now be enabled (not shown on next page)
l Clear the WREN bit, EECON1<2> to disable further writes

There are more steps required to write to program memory. While both read and
write operations require that the address is loaded into the address registers, the
write function also includes loading the desired data to EEDATH:EEDATA, and
executing a very specific sequence of five instructions to perform the write.

Interrupts should be disabled before the five instruction sequence. If an interrupt
should occur during this sequence, the write will not complete. Interrupts can be re-
enabled after the write operation completes.

There are two safety mechanisms that prevent inadvertent writes to program
memory. The first is a write enable bit called WREN. It must be set before write
operations will work. The second mechanism is a special sequence of 5 instructions
which must take place consecutively without any interruptions. At the conclusion
of these instructions, the write will begin. When writing to program memory, the
execution of instructions will stop while the data is being written. The oscillator
will continue to run and all peripherals will continue to operate as configured.
Interrupts will be disabled, but the interrupt flags can still be set. When the write has
completed, the WR bit is cleared, the EEIF bit in PIR2 is set, and execution of code
resumes. The write enable bit WREN should then be cleared to prevent unintended
write operations. Interrupts can be re-enabled. When interrupts are re-enabled, the
program will branch to the interrupt vector for the interrupt service routine to handle
any pending interrupts.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2121

Program Memory
Writing Internal Program FLASH

Program Memory Program Memory
Writing Internal Program FLASHWriting Internal Program FLASH

BANKSEL EEARDH ; Assembler directive to select Bank2
movf ADDRH, W ; Write the desired address to
movwf EEADRH ; EEADRH:EEADR
movf ADDRL, W
movwf EEADR
movf DATAH, W ; Write the desired data to
movwf EEDATH ; EEDATH:EEDATA
movf DATAL, W
movwf EEDATA
bsf STATUS, RP0 ; select Bank 3
bsf EECON1, EEPGD ; point to program memory
bsf EECON1, WREN ; enable writes
movlw 55h ; required instruction sequence
movwf EECON2 ; required instruction sequence
movlw AAh ; required instruction sequence
movwf EECON2 ; required instruction sequence
bsf EECON1, WR ; required instruction sequence
nop ; NOPs not fetched, placeholders
nop
bcf EECON1, WREN ; disable further writes

This code example demonstrates how to write data to program memory.

The differences between reading and writing program FLASH memory are:

1) Reads retrieve data from the EEDATH:EEDATA register after the operation.
Writes place data to write in these registers before the write.

2) Writes must be enabled by setting the WREN bit. There is no corresponding
requirement for reads.

3) Writes require a specific 5 instruction sequence to perform the write. There are no
corresponding requirements for reads.

4) Writes are started by setting the WR bit. Reads are started by setting the
RD bit.

5) Execution of instructions during reads does not occur for only 2 instruction
cycles. Instruction execution for writes is halted for as long as several ms. (See
programming specification.)

6) When execution resumes, the WR (writes) or RD (reads) bit is cleared
automatically.

6) After a write, the WREN bit should be cleared to prevent another write. There is
no corresponding requirement for reads.

Now that we’ve reviewed the program memory functions, let’s take a closer look at
data memory - location of the variable data values (SFRs, GPRs). The data memory
on the PICmicro MCU may have up to four banks with 128 bytes each. Please refer
to the specific microcontroller data sheet for the composition of data memory banks.

The first 32 bytes in each bank are reserved for Special Function Registers. Some
of these Special Function Registers (SFR) appear in all banks such as the STATUS
and File Select Register (FSR) . Some addresses in these sections have no SFR and
are not implemented.

Some PICmicro devices have a shared data memory region. This memory is shared
across all banks. In other words, the same memory location within a bank can be
accessed in all banks without having to select a different bank. If it is present, this
shared memory is usually the last 16 bytes of each bank.

Labels for variables in the shared memory region should be declared only once, in
any bank, but will be available in all banks.

When direct addressing is used, the RP1 and RP0 bits in the STATUS register select
the desired bank for direct memory access. Within each bank, 7 bits of addressing
select 1 of 128 addresses. Therefore, in a microcontroller with 4 banks of data
memory, 9 bits are required to uniquely address any data memory location.

When indirect addressing is used, the IRP bit is used to select either Banks 0 and 1,
or Banks 2 and 3 for indirect addressing. The FSR register provides the remaining 8
bits of address data.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2222

Data MemoryData MemoryData Memory

l Four banks of 128
bytes of Data
Memory

l Special Function
Registers (SFRs)
are mapped in top
32 locations

l Banks selected by
RP0, RP1 and IRP
bits in STATUS
register

l Four banks of 128
bytes of Data
Memory

l Special Function
Registers (SFRs)
are mapped in top
32 locations

l Banks selected by
RP0, RP1 and IRP
bits in STATUS
register

GPRsGPRs

SFRsSFRs

Bank0Bank0

000h000h

01Fh01Fh

020h020h

07Fh07Fh

GPRsGPRs

SFRsSFRs

Bank1Bank1

080h080h

09Fh09Fh

0A0h0A0h

0FFh0FFh
0F0h0F0h

GPRsGPRs

SFRsSFRs

Bank2Bank2

100h100h

11Fh11Fh

120h120h

17Fh17Fh
170h170h

GPRsGPRs

SFRsSFRs

Bank3Bank3

180h180h

19Fh19Fh

1A0h1A0h

1FFh1FFh
1F0h1F0h

RP<1:0>RP<1:0>
= 00= 00

IRP = 0IRP = 0 IRP = 1IRP = 1

RP<1:0>RP<1:0>
= 01= 01

RP<1:0>RP<1:0>
= 10= 10

RP<1:0>RP<1:0>
= 11= 11

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2323

Data Memory
Direct Addressing

Data MemoryData Memory
Direct AddressingDirect Addressing

l 7-bit direct address from the instruction
l 2-bits from STATUS register
l Access to only 1 bank pointed to by RP1:RP0

l 7-bit direct address from the instruction
l 2-bits from STATUS register
l Access to only 1 bank pointed to by RP1:RP0

Effective 9Effective 9--bit Register Addressbit Register Address

IRPIRP RP1RP1 RP0RP0 OP CODEOP CODETOTO PDPD ZZ DCDC CC

STATUS RegisterSTATUS Register 1414--bit Instructionbit Instruction

ff ff ff ff ff ff ff

RP1RP1 RP0RP0 ff ff ff ff ff ff ff

77--bits From Instruction Wordbits From Instruction Word

22--bits frombits from
STATUS STATUS
RegisterRegister

(Limits address range per bank to 128 bytes)(Limits address range per bank to 128 bytes)
(Limits # of banks to 4)(Limits # of banks to 4)

To access all available data memory, 9 bits of address are required. The 7 Least
Significant bits (LSb) of the address are encoded in the instruction. This allows an
instruction to access one byte in the selected bank.

The upper two bits of the address select the desired bank. These bits are provided by
the RP0 and RP1 bits in the STATUS register. All PICmicro MCUs have at least 2
banks, so the RP0 bit must be set correctly for the desired memory bank. Some
PICmicro MCUs have 4 banks and therefore both the RP0 and RP1 bits must be set
to select the desired bank.

The operation that sets the RP0 and RP1 bits is called banking, and must be
performed in user code. An alternative to setting the individual bits in the STATUS
register is to use the BANKSEL directive. The BANKSEL directive will generate
code to set the RP1 and RP0 bits to select the desired bank.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2424

Data Memory
Direct Addressing & Banking

Data MemoryData Memory
Direct Addressing & BankingDirect Addressing & Banking

bcf STATUS,RP0 ; select bank 0
bcf STATUS,RP1 ; All Banks, Address 0x03

movlw 0x50
movwf PORTB ; Bank 0, Address 0x06

bsf STATUS,RP0 ; select Bank 1

movlw 0x0f ; pins <0:3> inputs, <4:7> outputs
movwf TRISB ; Bank 1, Address 0x06

BANKSEL PORTB ; assembler directive, generates code
; to select the bank that holds PORTB

bcf STATUS,RP0 ; select bank 0
bcf STATUS,RP1 ; All Banks, Address 0x03

movlw 0x50
movwf PORTB ; Bank 0, Address 0x06

bsf STATUS,RP0 ; select Bank 1

movlw 0x0f ; pins <0:3> inputs, <4:7> outputs
movwf TRISB ; Bank 1, Address 0x06

BANKSEL PORTB ; assembler directive, generates code
; to select the bank that holds PORTB

This example shows how banking works, that some registers are in all banks, and
other registers occupy the same address but are in different banks.

We can always access the STATUS register from any bank. Using it, we can select
the banks that other registers are located in.

In the first 2 lines, the RP0 and RP1 bits of the STATUS register are both cleared to
select Bank 0.

The next instruction is a literal instruction that loads some data into the W register.
The contents of the W register are then moved to the PORTB register.

The next 2 lines select Bank 1, which is where the TRISB register is accessed.

Another literal instruction loads the W register with configuration data for the
PORTB pins. This data configures the PORTB pins as inputs or outputs. The
contents of the W register are moved to the TRISB register.

Pins <7:4> are configured as outputs, pins <3:0> as inputs. Pins RB0 and RB2 are
output high, RB1 and RB3 are output low, while RB4:RB7 remain inputs. Before
the TRISB register was loaded, all PORTB pins were configured as inputs.

The last line is an assembler directive to generate code to select the bank that
PORTB can be accessed in. The assembler will generate the same code as in the
first 2 lines of this example.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2525

IRPIRP ff ff ff ff ff ff ff ff

ff

Data Memory
Indirect Addressing

Data MemoryData Memory
Indirect AddressingIndirect Addressing

l 8-bit indirect address from the FSR (File Select
Register).

l 1-bit from STATUS register
l Access to Bank 0 & 1 or Bank 2 & 3 depending on

IRP

l 8-bit indirect address from the FSR (File Select
Register).

l 1-bit from STATUS register
l Access to Bank 0 & 1 or Bank 2 & 3 depending on

IRP

IRPIRP RP1RP1 RP0RP0 TOTO PDPD ZZ DCDC CC ff ff ff ff ff ff ff

STATUS RegisterSTATUS Register 88--bit FSR Registerbit FSR Register

Effective 9Effective 9--bit Register Addressbit Register Address

88--bits From FSRbits From FSR

11--bit Frombit From
STATUS STATUS
RegisterRegister

Indirect addressing uses two registers to read or write data memory locations. The
File Select Register, or FSR, is used to hold the address of the desired data memory
location. The IRP bit in the STATUS register selects pairs of banks. The IRP bit and
the 8 bits of the FSR register are used to form the 9-bit address. In devices with 2
banks, the IRP bit should remain clear. In devices with 4 banks, the IRP bit controls
whether Banks 0 and 1 are accessed, or Banks 2 and 3 are accessed.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2626

Data Memory
Indirect Addressing

Data MemoryData Memory
Indirect AddressingIndirect Addressing

l These two examples perform the same function,
Both read PORTB and store the result in RamVar

l These two examples perform the same function,
Both read PORTB and store the result in RamVar

Indirect addressing

movlw PORTB
movwf FSR
bcf STATUS,IRP
movf INDF,W
movwf RamVar

Indirect addressing

movlw PORTB
movwf FSR
bcf STATUS,IRP
movf INDF,W
movwf RamVar

Direct addressing

movf PORTB,W
movwf RamVar

Direct addressing

movf PORTB,W
movwf RamVar

EquivalentEquivalent
InstructionsInstructions

To select a register using indirect addressing, the FSR register and IRP bit are set to
the desired data memory address. The selected address is accessed by using the
INDF register as the operand in any instruction. INDF is not a physically
implemented register. Any access to INDF exactly mimics an access to the data
memory location with the same address as specified by the IRP bit and FSR register.

For instance, if the program directly reads PORTB, the movf PORTB,W instruction
is used to read the value of PORTB into the W register.

The indirect method would be to load FSR with the address of PORTB and clear the
IRP bit. Then the instruction movf INDF,W would indirectly read the value of
PORTB and put it into the W register.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2727

Data Memory
Indirect Addressing

Data MemoryData Memory
Indirect AddressingIndirect Addressing

l Clear all RAM locations from 0x20 to 0x7F.
l Indirect address is loaded into FSR.
l Every time INDF is used as operand,

register pointed to by FSR is actually used.

l Clear all RAM locations from 0x20 to 0x7F.
l Indirect address is loaded into FSR.
l Every time INDF is used as operand,

register pointed to by FSR is actually used.

bcfbcf STATUS,IRPSTATUS,IRP
movlwmovlw 0x200x20
movwfmovwf FSRFSR

LoopLoop clrfclrf INDFINDF
incfincf FSR, FFSR, F
btfssbtfss FSR, 7FSR, 7
gotogoto LoopLoop
<next instruction><next instruction>

0000 00000000 0000

0000 00000000 0000

FSR = 20hFSR = 20h

INDFINDF00h00h

04h04h

20h20h

7Fh7Fh

Data MemoryData Memory

Here is a short example of indirect addressing which clears all data memory
locations in Bank 0 from address 32 to 127.

First the IRP bit is cleared to point to Banks 0 and 1. Then the file select register is
loaded with hex 20 to point to the starting address.

A loop is then executed:

The contents of the register pointed to by FSR is cleared using a
clrf INDF instruction.

The FSR register is then incremented to the next location.

The btfss FSR,7 instruction tests bit 7 in the FSR register to determine if it is set.
Bit 7 will be set only if the number is 128 or greater.

If bit 7 is clear, the program has not yet cleared all registers up to 127. The
btfss FSR,7 instruction will not perform the skip and the next instruction
executed will branch back to the top of the loop.

If bit 7 is set, indicating a value of 128, then the program has cleared all data
memory locations from 32 to 127 and can continue. The
btfss FSR,7 instruction will skip over the goto Loop instruction by executing
a NOP in its place.

Using indirect addressing allows using a loop to perform repetitive tasks, and
requires only 7 lines of code. If the same task were to be performed with direct
addressing, approximately 95 lines of code would be required.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2828

Data EEPROM MemoryData EEPROM MemoryData EEPROM Memory

l Non-Volatile
l Stores up to 256 bytes of data
l Uses same registers as writes to program

memory
l Offered in FLASH devices that allow writing

to program memory (check datasheet)
l High Endurance

l Data EEPROM can be written to 100K times
l Program FLASH can be written to up to

1K times

l Non-Volatile
l Stores up to 256 bytes of data
l Uses same registers as writes to program

memory
l Offered in FLASH devices that allow writing

to program memory (check datasheet)
l High Endurance

l Data EEPROM can be written to 100K times
l Program FLASH can be written to up to

1K times

Data EEPROM Memory is the third memory type and provides non-volatile storage
of data. Data EEPROM Memory can store up to 256 bytes and is accessed via the
same special function registers that are used for reading and sometimes writing
FLASH Program Memory.

It is offered in FLASH devices that offer writing to program memory using
firmware. Check the data sheet for the amount and functionality of data EEPROM
memory.

Data EEPROM memory has high endurance. In other words, it can be written to
many times, generally more than 100,000 times. Program memory can generally be
written up to 1000 times. Check your specific device datasheet for electrical
specifications and programming specifications.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 2929

Data EEPROM Memory
Data EEPROM Registers

Data EEPROM Memory Data EEPROM Memory
Data EEPROM RegistersData EEPROM Registers

l EEDATA - Holds data byte
l EEADR - Holds address byte
l EECON1 - Read/Write Control Register
l EECON2 - Used only for memory writes

l EEDATA - Holds data byte
l EEADR - Holds address byte
l EECON1 - Read/Write Control Register
l EECON2 - Used only for memory writes

These are the registers that are used for accessing the Data EEPROM Memory.
Their functions are the same as when reading or writing program memory.

The EEDATA register holds the 8-bit data value. The EEDATH register is not used.

The EEADR register holds the address which can be up to 8-bits depending on the
size of data EEPROM memory. EEADRH is not used.

The EECON1 and EECON2 registers control the access as described for program
memory reads and writes.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 3030

Data EEPROM Memory
Reading Data EEPROM Memory
Data EEPROM Memory Data EEPROM Memory

Reading Data EEPROM MemoryReading Data EEPROM Memory

l Write the desired address to EEADR
l Clear the EEPGD bit, EECON1<7>

l Selects EEPROM for read/write access

l Set the RD bit, EECON1<0>
l Initiates a read operation

l Data will be available in the EEDATA
register in the next instruction cycle
l RD is cleared
l EEIF in PIR2 is set

l Write the desired address to EEADR
l Clear the EEPGD bit, EECON1<7>

l Selects EEPROM for read/write access

l Set the RD bit, EECON1<0>
l Initiates a read operation

l Data will be available in the EEDATA
register in the next instruction cycle
l RD is cleared
l EEIF in PIR2 is set

Reading Data EEPROM Memory is similar to reading program memory. The
address of the desired memory location is written to EEADR. The EEDATH and
EEADRH registers are not used.

The EEPGD bit in EECON1 is cleared to indicate the access will be to data
EEPROM memory rather than program memory.

The RD bit in EECON1 is then set to begin the read. The data stored in the desired
address will be available in the EEDATA register in the next instruction cycle.

When the read is completed, the RD bit is cleared, and the EEIF bit in PIR2 is set,
indicating an interrupt request has occurred.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 3131

Data EEPROM Memory
Reading Data EEPROM Memory
Data EEPROM Memory Data EEPROM Memory

Reading Data EEPROM MemoryReading Data EEPROM Memory

bsf STATUS, RP1 ; Select Bank 2
bcf STATUS, RP0
movf ADDRESS,W
movwf EEADR ; data address
bsf STATUS, RP0 ; select bank 3
bcf EECON1, EEPGD ; point to data memory
bsf EECON1, RD ; start a read
bcf STATUS, RP0 ; bank 1, data ready now
movf EEDATA, W ; move data to W

bsf STATUS, RP1 ; Select Bank 2
bcf STATUS, RP0
movf ADDRESS,W
movwf EEADR ; data address
bsf STATUS, RP0 ; select bank 3
bcf EECON1, EEPGD ; point to data memory
bsf EECON1, RD ; start a read
bcf STATUS, RP0 ; bank 1, data ready now
movf EEDATA, W ; move data to W

This is a code example of reading a Data EEPROM Memory location. The address
is stored in a RAM location called ADDRESS. The desired address is written to
EEADR. The EEPGD bit is cleared and the RD bit is then set to start the read
operation. When the read is completed, the RD bit will be cleared, and the EEIF bit
in PIR2 will be set. Data will then be available in the next instruction cycle.

The differences between a data memory read and a program memory read are as
follows:

1) Loading an 8-bit address for data memory, or 13-bit address for program
memory

2) Clearing the EEPGD bit for data memory, or setting it for program memory.

3) When reading program memory, two NOPs must follow the instruction that
sets the RD bit. They are not required for reading data memory

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 3232

Data EEPROM Memory
Writing Data EEPROM Memory
Data EEPROM Memory Data EEPROM Memory

Writing Data EEPROM MemoryWriting Data EEPROM Memory

l Write the desired address to EEADR
l Write the desired data to EEDATA
l Clear the EEPGD bit, EECON1<7>
l Set the WREN bit, EECON1<2>
l Disable all interrupts (not shown on next page)
l Write 55h to EECON2
l Write AAh to EECON2
l Set the WR bit, EECON1<1>
l Clear the WREN bit, EECON1<2>
l Wait for WR to clear or EEIF to set, indicates write

operation has completed
l Enable interrupts (not shown on next page)

l Write the desired address to EEADR
l Write the desired data to EEDATA
l Clear the EEPGD bit, EECON1<7>
l Set the WREN bit, EECON1<2>
l Disable all interrupts (not shown on next page)
l Write 55h to EECON2
l Write AAh to EECON2
l Set the WR bit, EECON1<1>
l Clear the WREN bit, EECON1<2>
l Wait for WR to clear or EEIF to set, indicates write

operation has completed
l Enable interrupts (not shown on next page)

Writing to Data EEPROM Memory is very similar to that of program memory. The
differences are:

1) Loading EEADRH is not required.

2) Loading EEDATH is not required

3) The EEPGD bit is cleared to access the data memory

4) Code execution continues during the write to data EEPROM memory

5) NOPs are not required after setting the WR bit.

The actual erase and write operations occur without affecting code execution. Two
bits may be polled to determine if the write has completed. The write has completed
if either:

1) The WR bit has been cleared, or

2) If the EEIF flag is set (this flag must be cleared before setting the WR bit). If
interrupts are re-enabled after the WR bit is set, an interrupt can be generated
when the write completes.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 3333

Data EEPROM Memory
Writing Data EEPROM Memory

Data EEPROM MemoryData EEPROM Memory
Writing Data EEPROM MemoryWriting Data EEPROM Memory

BANKSEL EEARDH ; Assembler directive
movf ADDRESS, W ; Write the desired address
movwf EEADR ; to EEADR
movf VALUE, W ; Write the desired data
movwf EEDATA ; to EEDATA
bsf STATUS, RP0 ; select Bank 3
bcf EECON1, EEPGD ; point to data memory
bsf EECON1, WREN ; enable writes
movlw 55h ; required instruction sequence
movwf EECON2 ; required instruction sequence
movlw AAh ; required instruction sequence
movwf EECON2 ; required instruction sequence
bsf EECON1, WR ; required instruction sequence
bcf EECON1, WREN ; disable further writes

BANKSEL EEARDH ; Assembler directive
movf ADDRESS, W ; Write the desired address
movwf EEADR ; to EEADR
movf VALUE, W ; Write the desired data
movwf EEDATA ; to EEDATA
bsf STATUS, RP0 ; select Bank 3
bcf EECON1, EEPGD ; point to data memory
bsf EECON1, WREN ; enable writes
movlw 55h ; required instruction sequence
movwf EECON2 ; required instruction sequence
movlw AAh ; required instruction sequence
movwf EECON2 ; required instruction sequence
bsf EECON1, WR ; required instruction sequence
bcf EECON1, WREN ; disable further writes

This is a code example of writing to a Data EEPROM memory location. The
desired address is written to EEADR and is contained in the RAM location called
ADDRESS. The data value to be written is loaded from the RAM location VALUE
into EEDATA. The code clears EEPGD to select data memory and enables write
operations by setting the WREN bit. The special 5 instruction sequence is then
executed followed by clearing the WREN bit.

The differences between the data EEPROM write code and the program memory
write code are

1) Writing the upper byte of the program address is not required

2) Writing the upper byte of the program word is not required

3) Setting the EEPGD bit to select program memory, or clearing it to select
data memory.

4) Inserting two NOP instructions after the instruction that sets the WR bit is
not required

5) Note that a program memory write operation will halt the execution of
instructions while the data memory write operates in the background
allowing instructions to continue executing.

© 2001 Microchip Technology Incorporated. All Rights Reserved. . S0001A RAM/ROM(x14) RAM/ROM(x14) 3434

Want more information?Want more information?Want more information?

l Visit www.microchip.com for the latest
l Datasheets
l User’s Guides
l Application Notes
l Device Errata
l Development tools
l Application Design Centers
l Frequently-Asked Questions (FAQs)
l Latest product announcements
l Recent press releases

l Microchip also offers seminars & workshops
worldwide. Go to www.microchip.com under
“Seminars and Training” for the most current
schedule of classes.

l Visit www.microchip.com for the latest
l Datasheets
l User’s Guides
l Application Notes
l Device Errata
l Development tools
l Application Design Centers
l Frequently-Asked Questions (FAQs)
l Latest product announcements
l Recent press releases

l Microchip also offers seminars & workshops
worldwide. Go to www.microchip.com under
“Seminars and Training” for the most current
schedule of classes.

Now that you’ve gotten started understanding the PICmicro MCUs “On-chip
Memory” you’ll want to learn more about Microchip Technology’s synergistic
product portfolio. A good place to start is the engineering website at
www.microchip.com

