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Introduction

A recent newcomer to the center stage of modern mathematics is the area

called combinatorics. Although combinatorial mathematics has been pursued

since time immemorial, and at a reasonable scientific level at least since

Leonhard Euler (1707–1783), the subject has come into its own only in the

last few decades. The reasons for the spectacular growth of combinatorics

come both from within mathematics itself and from the outside.

Beginning with the outside influences, it can be said that the recent

development of combinatorics is somewhat of a cinderella story. It used to

be looked down on by “mainstream” mathematicians as being somehow less

respectable than other areas, in spite of many services rendered to both pure

and applied mathematics. Then along came the prince of computer science

with its many mathematical problems and needs — and it was combinatorics

that best fitted the glass slipper held out.

The developments within mathematics that have contributed to the current

strong standing of combinatorics are more difficult to pinpoint. One is that, after

an era where the fashion in mathematics was to seek generality and abstraction,

there is now much appreciation of and emphasis on the concrete and “hard”

problems. Another is that it has been gradually more and more realized that

combinatorics has all sorts of deep connections with the mainstream areas of

mathematics, such as (to name the most important ones) algebra, geometry,
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probability and topology.

Our aim with this monograph is to give the reader some answers to the

questions “What is combinatorics, and what is it good for ?” We will do that

not by attempting any kind of general survey, but by describing a few selected

problems and results in some detail. We want to bring you some examples of

problems from “pure” combinatorics, some examples illustrating its interactions

with other parts of mathematics, and a few glimpses of its use for computer

science. Fortunately, the problems and results of combinatorics are usually

quite easy to state and explain, even to the layman with a solid knowledge

of high school mathematics. Its accessibility is one of its many appealing

aspects. For instance, most popular mathematical puzzles and games, such as

Rubik’s cube and jigsaw puzzles, are essentially problems in combinatorics.

To achieve our stated purpose it has been necessary to concentrate on

a few topics, leaving many of the specialities within combinatorics without

mention. The choice will naturally reflect our own interests. The discussion in

the Notes section points to some more general accounts that can help remedy

this shortcoming.

With some simplification, combinatorics can be said to be the mathematics

of the finite. One of the most basic properties of a finite collection of objects

is its number of elements. For instance, take words formed from the letters

a , b , and c , using each letter exactly once. There are six such words :

abc, acb, bac, bca, cab, cba.

Now, say that we have n distinct letters. How many words can be formed ?

The answer is n · (n − 1) · (n − 2) · · · 3 · 2 · 1, because the first letter can be

chosen in n ways, then the second one in n−1 ways (since the letter already

chosen as the first letter is no longer available), the third one in n − 2 ways,

and so on. Furthermore, the total number must be the product of the number

of individual choices.

The number of words that can be formed with n letters is an example of

an enumerative problem. Enumeration is one of the most basic and important

aspects of combinatorics. In many branches of mathematics and its applications

you need to know the number of ways of doing something.

One of the classical problems of enumerative combinatorics is to count

partitions of various kinds, meaning the number of ways to break an object into

smaller objects of the same kind. Various kinds of partitions — of numbers, of

sets, and of geometric objects — are considered. In fact, the idea of partition

can be said to be a leading theme in this book.
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The study of partition enumeration was begun by Euler and is very active

to this day. We will exposit some parts of this theory. All along the way

there are interesting connections with algebra, but these are unfortunately too

sophisticated to go into details here. We will, however, give a few hints of

this connection, especially in Chapter 5. We also illustrate (in Chapter 15) the

relevance of partitions to applied problems.

Another, more recent, topic within enumeration is to count the number of

tilings. These are partitions of a geometric region into smaller regions of some

specified kinds. We will give some glimpses of recent progress in this area.

The mathematical roots are in this case mainly from statistical mechanics.

In Chapter 12 we present some progress made in the combinatorial study

of convex polytopes. In three dimensions these are the decorative solid bodies

with flat polygon sides (such as pyramids, cubes and geodesic domes) that

have charmed and intrigued mathematicians and laymen alike since antiquity.

In higher dimensions they can be perceived only via mathematical tools, but

they are just as beautiful and fascinating. Of this huge subject we discuss the

question of laws governing the numbers of faces of various dimensions on

the boundary of a polytope.

Combinatorics is used in many ways in computer science, for instance for

the construction and analysis of various algorithms. (Remark : algorithms are

the logically structured systems of commands that instruct computers how to

perform prescribed tasks.) Of this young but already huge and rapidly growing

area we will give here but the smallest glimpse, namely a couple of examples

from complexity theory. This is the part of theoretical computer science that

concerns itself with questions about computer calculations of the type “How

hard is it ?”, “How much time will it take ?” Proving that you cannot do better

than what presently known methods allow is often the hardest part, and the

part where the most mathematics is needed. Our examples are of this kind.

To illustrate the surprising connections that exist between combinatorics

and seemingly unrelated parts of mathematics we have chosen the links with

topology. This is an area which on first acquaintance seems far removed from

combinatorics, having to do with very general infinite spaces. Nevertheless,

the tools of algebraic topology have proven to be of use for solving some

problems from combinatorics and theoretical computer science. Again, the

theme of enumeration in its various forms pervades some of this border

territory.

Understanding this book should for the most part require no more than

some basic knowledge of mathematical notation and concepts involving sets,

functions, etc., such as taught in a course on precalculus. Some parts should
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be accessible to readers with even less background knowledge while others

are more demanding, at least in some of the details. Generally speaking, we

start out at a very elementary level and assume more and more mathematical

background as we go along. We hope that this way the book is informative for

laymen as well as for students and colleagues from other parts of mathematics.
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Bijective proofs

We mentioned in the introduction that enumeration is a basic aspect of

combinatorics. The fundamental problem of enumeration is determining the

number #S of elements of a finite set S . Usually there will be infinitely

many finite sets, say S1, S2, . . . , and we want to determine the number of

elements of all the sets Sn . There is no precise definition of what is meant by a

“determination” of the number of elements of the Sn ’s. Generally speaking, an

adequate determination should involve a method for computing each #Sn that

involves considerably less effort than a “brute force” listing of the elements

of Sn . For instance, an explicit formula such as #Sn = 2n is certainly a

nice determination. Another way to determine the #Sn ’s is to give a simple

generating function for these numbers. This method is illustrated in Chapters 2

and 3.

BIJECTIONS

Perhaps the nicest way to determine #S is to find another set T whose

number #T of elements is known, and then to give a one­to­one correspondence

or bijection ϕ : S → T . This means that ϕ is a function from S to T such

that (1) if ϕ(a) = ϕ(b) then a = b , and (2) for each t ∈ T there is some

a ∈ S for which ϕ(a) = t . It then follows that ϕ has an inverse ϕ−1 : T → S ,

given by ϕ−1(t) = a if ϕ(a) = t , which is also a bijection. Since the bijection
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ϕ “pairs up” the elements of S with those of T , it follows that #S = #T .

This method of determining #S is known as a bijective proof. All information

we know about T has been “transferred” to S , so in principle we understand

#S as well as we do #T .

In subsequent chapters we will be giving some rather intricate bijective

proofs. In many cases we will just define the bijection ϕ : S → T and omit

the actual proof, which could be quite difficult, that ϕ is indeed a bijection.

In the remainder of this chapter we will give a few relatively simple examples

of bijective proofs as preparation for the more complex bijections yet to come.

The basis for all bijective proofs is the combinatorial or set­theoretic

significance of addition and multiplication. If S and T disjoint finite sets,

then

#(S ∪ T) = #S + #T.

The cartesian product of S and T is given by

S × T = {(s, t) : s ∈ S, t ∈ T},

the set of all ordered pairs whose first coordinate lies in S and second

coordinate in T . By the definition of multiplication as repeated addition it

follows that

#(S × T) = (#S)(#T).

This reasoning extends to a cartesian product of any finite number of finite

sets :

S1 × S2 × · · · × Sk = {(s1, s2, . . . , sk) : si ∈ Si}
#(S1 × S2 × · · · × Sk) = (#S1)(#S2) · · · (#Sk).(1.1)

SUBSETS

Now let us consider a fundamental problem of elementary enumeration, viz.,

determining the number f (n) of subsets of an n ­element set, say {1, 2, . . . , n} .

If we were not particularly inspired, we could argue as follows. Let S be

a subset of {1, 2, . . . , n} , where n ≥ 1. If n ∈ S , then there are f (n − 1)

possibilities for the remaining elements of S (since they can form any subset

of {1, 2, . . . , n − 1} ). Similarly if n 6∈ S there are f (n − 1) possibilities for

the rest of S . Hence

(1.2) f (n) = 2f (n − 1), n ≥ 1.
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This is a recurrence for f (n) . We also have the initial condition f (0) = 1,

since the 0­element set Ø (the empty set) has one subset, namely, itself. It

is clear that the recurrence (1.2), together with the initial condition f (0) = 1,

has a unique solution; we first obtain f (1) = 2 · f (0) = 2 · 1 = 2, then

f (2) = 2 · f (1) = 2 ·2 = 4, etc. Moreover, the recurrence (1.2) is so simple that

it is easy to obtain “by inspection” a formula for the solution : f (n) = 2n . Even

if this answer was only guessed to be correct, it is a simple matter to check

that it satisfies f (0) = 1 and the recurrence (1.2). This technique of finding

and solving recurrences is very common in enumerative combinatorics, and

many sophisticated techniques have been developed for solving recurrences.

Since the number of subsets of {1, 2, . . . , n} turned out to be f (n) = 2n =

2 × 2 × · · · × 2 (n times), we can ask if there is a more direct way to see

it. In other words, is there a simple bijective proof that f (n) = 2n ? Here the

problem is so simple that the bijection is quite transparent. Let Sn denote the

set of all subsets of {1, 2, . . . , n} . For instance,

S3 = {Ø, 1, 2, 3, 12, 13, 23, 123},

where we abbreviate a subset such as {1, 3} by 13. Similarly let

Tn = {(a1, a2, . . . , an) : ai = 0 or 1},

the set of all binary n ­tuples. For instance,

T3 = {000, 100, 010, 001, 110, 101, 011, 111}.

Define a function ϕ : Sn → Tn as follows : if S is a subset of {1, 2, . . . , n}
then set ϕ(S) = (a1, a2, . . . , an) , where

ai =

{
1, i ∈ S

0, i 6∈ S.

For instance, if n = 8 then

ϕ({2, 3, 6}) = (0, 1, 1, 0, 0, 1, 0, 0).

It should be clear that ϕ is a bijection. In other words, for every sequence

α = (a1, a2, . . . , an) ∈ Tn , there is a unique S ∈ Sn such that ϕ(S) = α . In

fact, we simply define i ∈ S if ai = 1 and i 6∈ S if ai = 0. Since #Tn = 2n

by equation (1.1), we conclude that #Sn = 2n .

COMPOSITIONS

Let us consider some less obvious bijective proofs. A composition of an

integer n ≥ 1 is a way of writing n as an ordered sum of positive integers,
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i.e., n = a1 + a2 + · · · + ak , where each ai is a positive integer. (We allow

k = 1, i.e., a sum with the single term n .) The terminology “ordered sum”

means we take into account the order of the summands. Thus 2 + 1 is a

different composition from 1 + 2. For instance, there are eight compositions

of 4, namely,

1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 3, 3 + 1, 2 + 2, 4.

Let c(n) denote the number of compositions of n . A little computation reveals

that c(1) = 1, c(2) = 2, c(3) = 4, c(4) = 8, c(5) = 16, and c(6) = 32,

suggesting that c(n) = 2n−1 . Once this result is guessed, there are numerous

ways to prove it. For instance, the number of compositions α of n whose

first part is 1 is just c(n − 1) (simply remove the first part from α to obtain

a composition of n − 1), while the number of compositions β of n whose

first part is greater than 1 is also c(n − 1) (simply subtract 1 from the first

part of β to obtain a composition of n − 1). We thus obtain the recurrence

c(n) = 2c(n − 1) , which together with the initial condition c(1) = 1 yields

c(n) = 2n−1 .

Since we already know that 2n−1 is the number of subsets of an (n− 1)­

element set, we can ask whether there is a bijection between the subsets of an

(n− 1)­element set and the compositions of n . In fact, there is a very elegant

such bijection. Consider n dots on a horizontal line. There are n − 1 spaces

between the dots, shown in the illustration below as vertical lines (where

n = 8).

We can choose a subset S of these n − 1 lines in 2n−1 ways. When we

retain only the lines in S , these lines divide the n dots into “compartments.”

Reading the number of dots in each compartment from left­to­right yields

a composition of n . For the example above, we obtain the composition

2 + 1 + 1 + 3 + 1 of 8. It should be clear that this argument is bijective, that

is, any composition of n corresponds to a unique way of choosing a subset

of the spaces between the dots. (If the composition is a1 + a2 + · · · + ak ,

then choose the space after the first a1 dots, then after the next a2 dots, etc.)

Note how simple and elegant is this method of representing compositions.

It makes their enumeration transparent and shows that compositions are just

thinly disguised versions of sets.
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We next consider a variation of the previous argument which is not quite

so transparent. Let g(n) be the total number of parts that occur in all the

compositions of n . For instance, g(3) = 8 ; the relevant compositions, with

their number of parts shown in parentheses, are 1 + 1 + 1 (3) , 2 + 1 (2) ,

1 + 2 (2) , and 3 (1) . A first attempt to find a formula for g(n) by a bijective

argument might be to first choose a composition α of n , represented by

dots and vertical lines as above, and then choose a compartment (which

corresponds to one of the parts of α ). The total number of such choices is

g(n) . The problem with this approach is that the number of choices for which

compartment to choose depends on the choice of α . The trick, in a sense, is

to choose the compartment first and then the composition α ! Namely, first

draw one double line between two of the dots or at the left of all the dots.

Then choose a subset of the remaining spaces between the dots, represented

by vertical lines.

The compartments formed by the double line and the single lines define a

composition α as before. Moreover, the compartment immediately to the right

of the double line corresponds to one of the parts of α . Thus the total number

of choices is g(n) . In the example above α is given by 2 + 1 + 1 + 3 + 1,

and we have chosen the third out of the five terms of α .

We don’t quite have complete independence of the number of choices of

single vertical lines from the choice of the double line, but there are only two

different cases. If the double line is chosen at the beginning (in one way),

then there are 2n−1 choices for the single lines. If the double line lies between

two dots (in (n − 1) ways) then there are 2n−2 choices for the single lines.

Hence

g(n) = 2n−1
+ (n − 1)2n−2

= (n + 1)2n−2.

As in our previous examples the bijective proof, once it is understood, makes

the final answer almost obvious.

SUBSETS WITH REPETITION ALLOWED

We will give two further examples of simple bijective proofs. Most readers

are probably familiar with the binomial coefficients
(

n

k

)
. If k, n are nonnegative

integers then
(

n

k

)
has a standard combinatorial interpretation : it is the number

of k ­element subsets of an n ­element set. For instance
(

4
2

)
= 6, since the

subsets of {1, 2, 3, 4} are (abbreviating {a, b} as ab ) 12, 13, 23, 14, 24, 34.
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There is also a simple formula for
(

n

k

)
, namely,

(
n

k

)
=






n!

k!(n − k)!
, if 0 ≤ k ≤ n

0, if 0 ≤ n < k,

where n! (read “n factorial”) is short for 1 · 2 · · · · · n . However, this formula

will not be relevant to us here.

Now define
((

n

k

))
to be the number of ways to choose k elements

from an n ­element set, disregarding order, if repetitions are allowed. For

instance,
((

3
2

))
= 6, since the choices of two elements from {1, 2, 3} , allowing

repetitions, are 11, 22, 33, 12, 13, 23. Similarly
((

2
3

))
= 4, the choices being

111, 112, 122, 222.

There is a nice trick, part of the standard repertoire of enumerative

combinatorics, to reduce the problem of subsets with repetition to those without

repetition. Suppose that the n ­element set is {1, 2, . . . , n} . Choose k elements

with repetition allowed, and arrange these elements in increasing order :

(1.3) 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n.

Let bi = ai + i − 1. The effect of adding i − 1 to ai is to “stretch out” the

sequence a1, . . . , ak so that the elements become distinct. Since a1 is kept

the same and ak is increased by k − 1, the inequalities 1 ≤ a1 and ak ≤ n

become 1 ≤ b1 and bk ≤ n + k − 1. Hence we obtain

(1.4) 1 ≤ b1 < b2 < · · · < bk ≤ n + k − 1,

so b1, b2, . . . , bk form a k ­element subset of {1, 2, . . . , n + k − 1} (no

repetitions). We can easily reverse this process. Given a k ­element subset

of {1, 2, . . . , n + k − 1} , write its elements in increasing order as in equation

(1.4). Define ai = bi − i + 1. Then the ai ’s satisfy equation (1.3). Hence the

correspondence between k ­element subsets {a1, . . . , ak} of {1, 2, . . . , n} with

repetition allowed and ordinary k ­element subsets {b1, . . . , bk} (no repetition)

of {1, 2, . . . , n + k − 1} is a bijection. There follows

((n

k

))
=

(
n + k − 1

k

)
.

We have therefore solved the problem of counting subsets with repetition

by establishing a simple bijection between such subsets and those without

repetition.



1. Bijective proofs 11

There is another elegant bijective proof that
((

n

k

))
=
(

n+k−1
k

)
, based on the

“dots and slots” method we used to prove that there are 2n−1 compositions

of n . In our previous use of dots and slots, we first placed the dots and then

the vertical bars between them to define the slots. For our present purposes

we instead place the dots and bars together. More specifically, suppose we

have k dots and n − 1 bars. We write them one after another in any order.

For instance, suppose we have six dots and seven bars. One way of arranging

them is as follows :

The n − 1 bars form n compartments (slots), including the compartments

before the first bar and after the last. For definiteness, label these compartments

1, 2 . . . , n from left to right :

2 3 4 5 6 7 81

Each of these compartments has some number (which may be 0) of dots

in it. For the example above, compartment 2 has two dots, compartment 4 has

three dots, and compartment 5 has one dot. All the other compartments have

no dots. This placement thus corresponds to choosing 2 twice, 4 three times,

and 5 once from the set {1, 2, 3, 4, 5, 6, 7, 8} . Any choice of k elements from

1, . . . , n with repetition allowed can be depicted in this way as an ordering

of k dots and n − 1 bars. Hence the number
((

n

k

))
of such choices is equal

to the number of ways to order k dots and n − 1 bars. We have an ordering

a1, a2, . . . , an+k−1 of n + k−1 objects in all, of which k of them are dots. In

other words, choose k of the ai ’s to be dots, and the remaining n − 1 to be

bars. Hence the number of possible orderings is the number of ways to choose

k objects from n + k − 1, which is just the binomial coefficient
(

n+k−1
k

)
. We

have therefore given a second bijective proof that
((

n

k

))
=
(

n+k−1
k

)
.
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LABELED TREES

Combinatorics abounds with bijective proofs, many of which are beautiful

and instructive. Some are also quite surprising. Let us present one of the

classics.

By a tree we understand a collection of n objects, called nodes, and n−1

unordered pairs of nodes, called edges, such that the edges connect the nodes.

A picture shows the idea; see Figure 1.

FIGURE 1

A tree.

For instance, we can think of the nodes as towns and the edges as fiber

cable links connecting certain pairs of towns, in such a way that the resulting

network connects all towns with as few links as possible.

A labeled tree is a tree with names attached to the nodes, distinct names

for distinct nodes. If the tree has n nodes we can take as a standard set of

labels the integers 1, 2, . . . , n. Figure 2 shows a labeled tree on eight nodes.

5

4

2

1

3

7

6

8

FIGURE 2

A labeled tree.

Two labeled trees are considered to be distinct if for some pair of numbers

i and j the corresponding nodes are connected by an edge in one tree and

not in the other. We now ask,

how many distinct labeled trees are there on n nodes ?



1. Bijective proofs 13

The answer was found by the British mathematician James Joseph Sylvester

in 1857, though he did not publish a proof. The first proof was given by

the German mathematician Carl Wilhelm Borchardt in 1860. The result is

often attributed to the British mathematician Arthur Cayley and is sometimes

called Cayley’s theorem. Cayley was the first mathematician to systematically

investigate trees, which he did while studying the structure of chemical

molecules.

Cayley’s Theorem. The number of labeled trees on n nodes is nn−2 .

The theorem reveals an instance of what is called “combinatorial explo­

sion”. This refers to the stunning growth of the number of possibilities in

many seemingly simple combinatorial situations. For instance, the theorem

tells us that there are 100 million ways to minimally connect 10 cities by

fiber cables, in the manner described above.

A bijective proof of Cayley’s theorem was given in 1918 by Ernst Paul

Heinz Prüfer . This proof sets up a bijection between the set of labeled trees

on n nodes and the set of strings (a1, . . . , an−2) where each of the entries ai

is one of the numbers 1, 2, . . . , n . The number of such strings is by equation

(1.1) equal to nn−2 .

Here is a description of the bijection. Let T be a labeled tree. Find the

leaf (node with only one neighbor) with the lowest label. Write down the

label of its neighbor, and then delete that leaf. Then just repeat this simple

step until a string of length n − 2 is obtained.

For instance, letting T be the tree in Figure 2, the “smallest” leaf is the

one labeled by 1. Hence we record the label of its neighbor, namely, 2 , and

delete that leaf. The following labeled tree then remains :

5

4

2 3

7

6

8

The smallest leaf is now the one labeled by 4, so we record 5 and delete.

We then have :
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5 2 3

7

6

8

Here the smallest leaf is the one labeled by 5, so we record 2 and delete.

And so on, . . . . After 6 steps we have recorded the string (2, 5, 2, 3, 8, 3) ,

and we are done.

That the string (2, 5, 2, 3, 8, 3) represents the tree of Figure 2 under Prüfer’s

bijection means that only knowing this string we can fully reconstruct the

labeled tree. We leave to the reader to figure out how to construct the tree

corresponding to a string in general. As a hint, note that the smallest missing

label from the string (2, 5, 2, 3, 8, 3) , namely 1, is the label of the first leaf

removed. Hence 1 and 2 are connected by an edge. This is the first step in

reconstructing the tree.

—————————­

We hope that the examples of this chapter have given the reader an idea of

what is meant by a bijective proof and why such proofs are enlightening. In

subsequent chapters we will encounter some much more complicated bijections.
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Partitions

A fundamental concept in combinatorics is that of a partition. In general, a

partition of an object is a way of breaking it up into smaller objects. We will be

concerned here with partitions of positive integers (positive whole numbers).

Later on we will encounter also other kinds of partitions. The subject of

partitions has a long history going back to Gottfried Wilhelm von Leibniz

(1646–1716) and Euler, and has been found to have unexpected connections

with a number of other subjects.

NUMBER PARTITIONS

A partition of a positive integer n is a way of writing n as a sum of positive

integers, ignoring the order of the summands. For instance, 3+4+2+1+1+4

represents a partition of 15, and 4 + 4 + 3 + 2 + 1 + 1 represents the same

partition. We allow a partition to have only one part (summand), so that 5 is

a partition of 5. There are in fact seven partitions of 5, given by
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5

4 + 1

3 + 2

3 + 1 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1.

Contrast the definition of a partition with that of a composition (as defined in

Chapter 1), where the order of the summands does matter.

We denote the number of partitions of n by p(n) , so for instance p(5) = 7.

By convention we set p(0) = 1, and similarly for related partition functions

discussed below. The problem of evaluating p(n) has a long history. There

is no simple formula in general for p(n) , but there are remarkable and quite

sophisticated methods to compute p(n) for “reasonable” values of n . For

instance, as long ago as 1938 Derrick Henry Lehmer computed p(14, 031)

(a number with 127 decimal digits !), and nowadays a computer would have

no trouble computing p(1015) , a number with 35,228,031 decimal digits. In

general, a good approximation to the number of decimal digits of p(n) is

given by

1.1140086280105007831 · · ·
√

n.

For n = 1015 this approximation is (to the nearest integer) 35,228,046. For

those familiar with the natural logarithm log(x) , let us remark that the constant

1.114008 · · · appearing above is equal to π
√

2/3/ log(10) , a consequence of

a famous “asymptotic formula” for p(n) due to Godfrey Harold Hardy and

Srinivasa Aiyangar Ramanujan in 1918. This formula gives not just a good

approximation to the number of decimal digits of p(n) , but in fact a good

approximation to p(n) itself.

GENERATING FUNCTIONS

It is also possible to codify all the numbers p(n) into a single object

known as a generating function. A generating function (in the variable x ) is

an expression of the form

F(x) = a0 + a1x + a2x2
+ a3x3

+ · · · ,

where the coefficients a0, a1, . . . are numbers. (We call an the coefficient of

xn , and call a0 the constant term. The notation x0 next to a0 is suppressed.)

The generating function F(x) differs from a polynomial in x in that it can

have infinitely many terms. We regard x as a formal symbol, and do not think
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of it as standing for some unknown quantity. Thus the generating function

F(x) is just a way to represent the sequence a0, a1, . . . .

It is natural to ask what advantage is gained in representing a sequence in

such a way. The answer is that generating functions can be manipulated in

various ways that often are useful for combinatorial problems. For instance,

letting G(x) = b0 + b1x + b2x2 + · · · , we can add F(x) and G(x) by the rule

F(x) + G(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2
+ · · · .

In other words, we simply add the coefficients, just as we would expect from

the ordinary rules of algebra. Similarly we can form the product F(x)G(x) using

the ordinary rules of algebra, in particular the law of exponents xixj = xi+j .

To perform this multiplication, we pick a term aix
i from F(x) and a term

bjx
j from G(x) and multiply them to get aibjx

i+j . We then add together all

such terms. For instance, the term in the product involving x4 will be

a0 · b4x4
+ a1x · b3x3

+ a2x2 · b2x2
+ a3x3 · b1x + a4x4 · b0

= (a0b4 + a1b3 + a2b2 + a3b1 + a4b0)x4.

In general, the coefficient of xn in F(x)G(x) will be

a0bn + a1bn−1 + a2bn−2 + · · · + an−1b1 + anb0.

Consider for instance the product of F(x) = 1 + x + x2 + x3 + · · · with

G(x) = 1 − x . The constant term is just a0b0 = 1 · 1 = 1. If n > 1 then the

coefficient of xn is anb0 + an−1b1 = 1 − 1 = 0 (since bi = 0 for i > 1, so

we have only two nonzero terms). Hence

(1 + x + x2
+ x3

+ · · · )(1 − x) = 1.

For this reason we write

1

1 − x
= 1 + x + x2

+ x3
+ · · · .

Some readers will recognize this formula as the sum of an infinite geometric

series, though here the formula is “formal,” that is, x is regarded as just a

symbol and there is no question of convergence. Similarly, for any k ≥ 1 we

get

(2.1)
1

1 − xk
= 1 + xk

+ x2k
+ x3k

+ · · · .

Now let P(x) denote the (infinite) product

P(x) =
1

1 − x
· 1

1 − x2
· 1

1 − x3
· · · .
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We may also write this product as

(2.2) P(x) =
1

(1 − x)(1 − x2)(1 − x3) · · · .

Can any sense be made of this product ? According to our previous discussion,

we can rewrite the right­hand side of equation (2.2) as

P(x) = (1 + x + x2
+ · · · )(1 + x2

+ x4
+ · · · )(1 + x3

+ x6
+ · · · ) · · · .

To expand this product as a sum of individual terms, we must pick a term xm1

from the first factor, a term x2m2 from the second, a term x3m3 from the third,

etc., multiply together all these terms, and then add all such products together.

In order not to obtain an infinite (and therefore meaningless) exponent of x ,

it is necessary to stipulate that when we pick the terms xm1 , x2m2 , x3m3 , . . . ,

only finitely many of these terms are not equal to 1. (Equivalently, only

finitely many of the mi are not equal to 0.) We then obtain a single term

xm1+2m2+3m3+··· , where the exponent m1 + 2m2 + 3m3 + · · · is finite. The

coefficient of xn in P(x) will then be the number of ways to write n in

the form m1 + 2m2 + 3m3 + · · · for nonnegative integers m1, m2, m3, . . . . But

writing n in this form is the same as writing n as a sum of m1 1’s, m2 2’s,

m3 3’s, etc. Such a way of writing n is just a partition of n . For instance,

the partition 5 + 5 + 5 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 of 30 corresponds to

choosing m1 = 3, m2 = 4, m4 = 1, m5 = 3, and all other mi = 0. It follows

that the coefficient of xn in P(x) is just p(n) , the number of partitions of n ,

so we obtain the famous formula of Euler

(2.3) p(0) + p(1)x + p(2)x2
+ · · · =

1

(1 − x)(1 − x2)(1 − x3) · · · .

ODD PARTS AND DISTINCT PARTS

Although equation (2.3) is very elegant, one may ask whether it is of

any use. Can it be used to obtain interesting information about the numbers

p(n) ? To answer that, let us show how simple manipulation of generating

functions (due to Euler) gives a surprising connection between two types of

partitions. Let r(n) be the number of partitions of n into odd parts. For

instance, r(7) = 5, the relevant partitions being

7 = 5 + 1 + 1 = 3 + 3 + 1 = 3 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

Let

R(x) = r(0) + r(1)x + r(2)x2
+ r(3)x3

+ · · · .

Exactly as equation (2.3) was obtained we get
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(2.4) R(x) =
1

(1 − x)(1 − x3)(1 − x5)(1 − x7) · · · .

Similarly, let q(n) be the number of partitions of n into distinct parts, that

is, no integer can occur more than once as a part. For instance, q(7) = 5, the

relevant partitions being

7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1.

Note that r(7) = q(7) . In order to explain this “coincidence,” let

Q(x) = q(0) + q(1)x + q(2)x2
+ q(3)x3

+ · · · .

The reader who understands the derivation of equation (2.3) will have no

trouble seeing that

(2.5) Q(x) = (1 + x)(1 + x2)(1 + x3) · · · .

Now we come to the ingenious trick of Euler. Note that by ordinary “high

school algebra,” we have

1 + xn
=

1 − x2n

1 − xn
.

Thus from equation (2.5) we obtain

Q(x) =
1 − x2

1 − x
· 1 − x4

1 − x2
· 1 − x6

1 − x3
· 1 − x8

1 − x4
· · ·

=
(1 − x2)(1 − x4)(1 − x6)(1 − x8) · · ·
(1 − x)(1 − x2)(1 − x3)(1 − x4) · · · .(2.6)

When we cancel the factors 1−x2i from both the numerator and denominator,

we are left with

Q(x) =
1

(1 − x)(1 − x3)(1 − x5) · · · ,

which is just the product formula (2.4) for R(x) . This means that Q(x) = R(x) .

Thus the coefficients of Q(x) and R(x) are the same, so we have proved that

q(n) = r(n) for all n . In other words, we have the following result.

Theorem (Euler). For every n the number of partitions of n into distinct

parts equals the number of partitions of n into odd parts.

The above argument shows the usefulness of working with generating

functions. Many similar generating function techniques have been developed

that make generating functions into a fundamental tool of enumerative

combinatorics.
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Once we obtain a formula such as q(n) = r(n) by an indirect means like

generating functions, it is natural to ask whether there might be a simpler

proof. For the problem at hand, we would like to correspond to each partition

of n into distinct parts a partition of n into odd parts, such that every partition

of n into odd parts is associated with exactly one partition of n into distinct

parts, and conversely every partition of n into distinct parts is associated with

exactly one partition of n into odd parts. In other words, we want a bijective

proof of the formula q(n) = r(n) . Several such proofs are known; we give the

perhaps simplest of these, due to James Whitbread Lee Glaisher. It is based

on the fact that every positive integer n can be uniquely written as a sum

of distinct powers of two — this is simply the binary expansion of n . For

instance, 10000 = 213 + 210 + 29 + 28 + 24 . Suppose we are given a partition

into odd parts, such as

202 = 19 + 19 + 19 + 11 + 11 + 11 + 11 + 9 + 7 + 7 + 7 + 5

+5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 1 + 1 + 1 + 1 + 1 + 1.

We can rewrite this partition as

3 · 19 + 4 · 11 + 1 · 9 + 3 · 7 + 13 · 5 + 6 · 1,

where each part is multiplied by the number of times it appears. This is just

the expression m1 + 2m2 + 3m3 + · · · for a partition discussed above. Now

write each of the numbers mi as a sum of distinct powers of 2. For the above

example, we get

202 = (2 + 1) · 19 + 4 · 11 + 1 · 9 + (2 + 1) · 7 + (8 + 4 + 1) · 5 + (4 + 2) · 1.

Expand each product into a sum (by the distributivity of multiplication over

addition) :

(2.7) 202 = (38 + 19) + 44 + 9 + (14 + 7) + (40 + 20 + 5) + (4 + 2).

We have produced a partition of the same number n with distinct parts. That

the parts are distinct is a consequence of the fact that every integer n can be

uniquely written as the product of an odd number and a power of 2 (keep on

dividing n by 2 until an odd number remains). Moreover, the whole procedure

can be reversed. That is, given a partition into distinct parts such as

202 = 44 + 40 + 38 + 20 + 19 + 14 + 9 + 7 + 5 + 4 + 2,

group the terms together according to their largest odd divisor. For instance,

40, 20, and 5 have the largest odd divisor 5, so we group them together. We
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thus recover the grouping (2.7). We can now factor the largest odd divisor d

out of each group, and what remains is the number of times d appears as a

part. Thus we have recovered the original partition. This reasoning shows that

we have indeed produced a bijection between partitions of n into odd parts

and partitions of n into distinct parts. It provides a “natural” explanation of

the fact that q(n) = r(n) , unlike the generating function proof which depended

on a miraculous trick.

ROGERS­RAMANUJAN AND BEYOND

The subject of partitions is replete with results similar to Euler’s, in which

two sets of partitions turn out to have the same number of elements. The

most famous of these results is called the Rogers­Ramanujan identities, after

Leonard James Rogers and Ramanujan, who in 1894 and 1913 proved these

identities in the form of an identity between generating functions. It was Percy

Alexander MacMahon who interpreted them combinatorially as follows.

First Rogers­Ramanujan Identity. Let f (n) be the number of partitions

of n whose parts differ by at least 2. For instance, f (13) = 10 , the relevant

partitions being

13 = 12 + 1 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 9 + 3 + 1

= 8 + 4 + 1 = 7 + 5 + 1 = 7 + 4 + 2.

Similarly, let g(n) be the number of partitions of n whose parts are of the

form 5k + 1 or 5k + 4 (i.e., leave a remainder of 1 or 4 upon division by

5). For instance, g(13) = 10 :

11 + 1 + 1 = 9 + 4 = 9 + 1 + 1 + 1 + 1 = 6 + 6 + 1 = 6 + 4 + 1 + 1 + 1

= 6 + 1 + 1 + 1 +1 +1+1+1 = 4 + 4 + 4 + 1 = 4 + 4 + 1 + 1 +1 +1+1

= 4+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.

Then f (n) = g(n) for every n.

Second Rogers­Ramanujan Identity. Let u(n) be the number of partitions

of n whose parts differ by at least 2 and such that 1 is not a part. For instance,

u(13) = 6 , the relevant partitions being

13 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 7 + 4 + 2.

Similarly, let v(n) be the number of partitions of n whose parts are of the

form 5k + 2 or 5k + 3 (i.e., leave a remainder of 2 or 3 upon division by

5). For instance, v(13) = 6 :
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13 = 8+3+2 = 7+3+3 = 7+2+2+2 = 3+3+3+2+2 = 3+2+2+2+2+2.

Then u(n) = v(n) for every n.

The Rogers­Ramanujan identities have been given many proofs, but none

of them is really easy. The important role played by the number 5 seems

particularly mysterious. The first bijective proof of the Rogers­Ramanujan

identities was given by Issai Schur in 1917. An interesting later bijective

proof is due in 1980 to Adriano Mario Garsia and Stephen Carl Milne, as

a special case of a general scheme for finding bijective proofs of partition

identities. However, both these proofs are rather complicated and involve

cancellation arguments. It would be greatly desirable to find a simpler, more

direct bijective proof, though a 2004 paper by Igor Pak shows that a certain

type of simple proof does not exist.

The Rogers­Ramanujan identities and related identities are not just num­

ber­theoretic curiosities. They have arisen completely independently in several

seemingly unrelated areas. To give just one example, a famous open problem

in statistical mechanics, known as the hard hexagon model, was solved in

1980 by Rodney James Baxter using the Rogers­Ramanujan identities.

The subject of partition identities has received so much attention since

Euler that one would not expect a whole new class of relatively simple

identities to have remain undiscovered until recently. However, just such a

class of identities was found by Mireille Bousquet­Mélou and Kimmo Eriksson

beginning in 1996. We will state one of the simplest of their identities to give

the reader the striking flavor of their results.

The Lucas numbers Ln are defined by the conditions L1 = 1, L2 = 3,

and Ln+1 = Ln + Ln−1 for n ≥ 2. Thus L3 = 4, L4 = 7, L5 = 11,

L6 = 18, L7 = 29, etc. Those familiar with Fibonacci numbers will see that

the Lucas numbers satisfy the same recurrence as Fibonacci numbers, but

with the initial conditions L1 = 1 and L2 = 3, rather that F1 = F2 = 1 for

Fibonacci numbers. Let f (n) be the number of partitions of n all of whose

parts are Lucas numbers L2n+1 of odd index. For instance, we have f (12) = 5,

corresponding to the partitions

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

4 + 4 + 1 + 1 + 1 + 1

4 + 4 + 4

11 + 1

.
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Let g(n) be the number of partitions of n into parts a1 ≤ a2 ≤ · · · ≤ ak

such that ai/ai−1 > 1
2
(3 +

√
5) = 2.618 · · · for all i . For instance, g(12) = 5,

corresponding to the partitions

12, 11 + 1, 10 + 2, 9 + 3, and 8 + 3 + 1.

Note that the number 1
2
(3+

√
5) used to define g(n) is the square of the “golden

ratio” 1
2
(1 +

√
5) . The surprising result of Bousquet­Mélou and Eriksson is

that f (n) = g(n) for all n .
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Plane partitions

A partition such as 8 + 6 + 6 + 5 + 2 + 2 + 2 + 2 + 1 + 1 may be regarded

simply as a linear array of positive integers,

8 6 6 5 2 2 2 2 1 1

whose entries are weakly decreasing, i.e., each entry is greater than or equal

to the one on its right. Viewed in this way, one can ask if there are interesting

“multidimensional” generalizations of partitions, in which the parts don’t lie

on just a line, but rather on some higher dimensional object. The simplest

generalization occurs when the parts lie in a plane.

COUNTING PLANE PARTITIONS

Rather than having the parts weakly decreasing in a single line, we now

want the parts to be weakly decreasing in every row and column. More

precisely, let λ be a partition with its parts λ1, λ2, . . . , λℓ written in weakly

decreasing order, so λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0. We define a plane partition π

of shape λ to be a left­justified array of positive integers (called the parts

of π ) such that (1) there are λi parts in the i th row, and (2) every row

(read left­to­right) and column (read top­to­bottom) is weakly decreasing. An

example of a plane partition is given in Figure 3.
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7 4 4 4 2 2 1 1 1 1
7 4 4 2 2 1 1 1 1
6 3 2 2 2 1 1 1 1
4 2 2 1 1 1
2 2 1 1 1
2 1 1 1 1
1 1 1 1 1
1 1

FIGURE 3

A plane partition

We say that π is a plane partition of n if n is the sum of the parts of

π . Thus the plane partition of Figure 3 is a plane partition of 100, of shape

(10, 9, 9, 6, 5, 5, 5, 2) . It is clear what is meant by the number of rows and

number of columns of π . For the example in Figure 3, the number of rows

is 8 and the number of columns is 10. The plane partitions of integers up to

3 (including the empty set Ø, which is regarded as a plane partition of 0)

are given by

Ø 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
.

Thus, for instance, there are six plane partitions of 3.

In 1912 MacMahon began a study of the theory of plane partitions.

MacMahon was a mathematician well ahead of his time. He worked in virtual

isolation on a variety of topics within enumerative combinatorics that did not

become fashionable until many years later. A highlight of MacMahon’s work

was a simple generating function for the number of plane partitions of n .

More precisely, let pp(n) denotes the number of plane partitions of n , so that

pp(0) = 1, pp(1) = 1, pp(2) = 3, pp(3) = 6, pp(4) = 13, etc.

MacMahon’s Theorem.

pp(0) + pp(1)x + pp(2)x2
+ pp(3)x3

+ · · ·

(3.1) =
1

(1 − x)(1 − x2)2(1 − x3)3(1 − x4)4 · · · .

Unlike Euler’s formula (2.3) for the generating function for the number p(n) of

ordinary partitions of n , MacMahon’s remarkable formula is by no means easy
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to prove. MacMahon’s proof was an intricate induction argument involving

manipulations of determinants. Only much later was a bijective proof found

by Edward Anton Bender and Donald Ervin Knuth. Their proof was based

on the RSK algorithm, a central result in enumerative combinatorics and its

connections with the branch of mathematics known as representation theory.

This correspondence was first stated by Gilbert de Beauregard Robinson in

a rather vague form in 1938 (with some assistance from Dudley Ernest

Littlewood), and later more explicitly by Craige Eugene Schensted in 1961.

Schensted’s motivation for looking at this correspondence is discussed in

Chapter 6. The version of the RSK algorithm used here is due to Knuth.

Hence the letters RSK stand for Robinson, Schensted, and Knuth.

THE RSK ALGORITHM AND THE BENDER­KNUTH PROOF

We now give a brief account of the proof of Bender and Knuth. Using

equation (2.1), the product on the right­hand side of (3.1) may be written

1

(1 − x)(1 − x2)2(1 − x3)3(1 − x4)4 · · · = (1 + x + x2
+ · · · )(1 + x2

+ x4
+ · · · )

(3.2) (1+x2
+x4

+· · · )(1+x3
+x6

+· · · )(1+x3
+x6

+· · · )(1+x3
+x6

+· · · ) · · · .

In general, there will be k factors of the form 1 + xk + x2k + x3k + · · · . We

must pick a term out of each factor (with only finitely many terms not equal

to 1) and multiply them together to get a term xn of the product. A bijective

proof of (3.1) therefore consists of associating a plane partition of n with

each choice of terms from the factors 1+ xk + x2k + · · · , such that the product

of these terms is xn .

Our first step is to encode a choice of terms from each factor by an array

of numbers called a two­line array. A typical two­line array A looks like

(3.3) A =
3 3 3 2 2 2 2 2 1 1 1 1 1

3 1 1 2 2 2 1 1 4 4 3 3 3
.

The first line is a (finite) weakly decreasing sequence of positive integers.

The second line consists of a positive integer below each entry in the first

line, such that the integers in the second line appearing below equal integers

in the first line are in weakly decreasing order. For instance, for the two­

line array A above, the integers appearing below the 2’s of the first line

are 2 2 2 1 1 (in that order). Such a two­line array encodes a choice of terms

from the factors of the product (3.2) as follows. Let aij be the number of

columns i

j
of A . For instance (always referring to the two­line array (3.3)),
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a33 = 1, a31 = 2, a13 = 3, a23 = 0. Given aij , let k = i+ j−1. Then choose

the term xaij·k from the i th factor of (3.2) of the form 1 + xk + x2k + · · · .

For instance, since a33 = 1 we have k = 5 and choose the term x1·5 = x5

from the third factor of the form 1 + x5 + x10 + · · · . Since a31 = 2 we

have k = 3 and choose the term x2·3 = x6 from the third factor of the form

1 + x3 + x6 + · · · , etc. In this way we obtain a one­to­one correspondence

between a choice of terms from each factor of the product (3.2) (with only

finitely terms not equal to 1) and two­line arrays A .

We now describe the part of the Bender­Knuth bijection which is the

RSK algorithm. We will insert the numbers in each line of the two­line

array A into a successively evolving plane partition, yielding in fact a pair

of plane partitions. These plane partitions will have the special property of

being column­strict, that is, the (nonzero) entries are strictly decreasing in

each column. Thus after we have inserted the first i numbers of the first and

second lines of A , we will have a pair Pi and Qi of column­strict plane

partitions. We insert the numbers of the second line of A successively into Pi

from left­to­right by the following rule. Assuming that we have inserted the

first i − 1 numbers, yielding Pi−1 and Qi−1 , we insert the i th number a of

the second row of A into Pi−1 , by putting it as far to the right as possible

in the first row of Pi−1 so that this row remains weakly decreasing. In doing

so, it may displace (or bump) another number b already in the first row. Then

insert b into the second row according to the same rule, that is, as far to

the right as possible so that the second row remains weakly decreasing. Then

b may bump a number c into the third row, etc. Continue this “bumping

procedure” until finally a number is inserted at the end of the row, thereby not

bumping another number. This yields the column­strict plane partition Pi . (It

takes a little work, which we omit, to show that Pi is indeed column­strict.)

Now insert the i th number of the first row of A (that is, the number directly

above the a in A that we have just inserted into Pi−1 to form Pi )) into Qi−1

to form Qi , by placing it so that Pi and Qi have the same shape, that is, the

same number of elements in each row. If A has m columns, then the process

stops after obtaining Pm and Qm , which we denote simply as P and Q .

Example. Figure 4 illustrates the bumping procedure with the two­line

array A of equation (3.3). The numbers that have bumped other numbers or

occupy a new position are shown in boldface. For instance, to obtain P10 from

P9 we insert 4 into the first row of P9 . The 4 is inserted into the second

column and bumps the 2 into the second row. The 2 is also inserted into the

second column and bumps the 1 into the third row. The 1 is placed at the

end of the third row. To obtain Q10 from Q9 we must place 1 so that P10
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and Q10 have the same shape. Hence 1 is placed at the end of the third row.

From the bottom entry ( i = 13) of Figure 4 we obtain :

(3.4) P =
4 4 3 3 3 1
3 2 2 2 1
1 1

, Q =
3 3 3 2 2 2
2 2 1 1 1
1 1

.

The final step of the Bender­Knuth bijection is to merge the two column­

strict plane partitions P and Q into a single plane partition π . We do this by

merging column­by­column, that is, the k th columns of P and Q are merged

to form the k th column of π . Let us first merge the first columns of P and

Q in equation (3.4). The following diagram illustrates the merging procedure :

r r r

r r r r

r r r r

@
@

@
@

@
@@

The number of dots in each row on or to the right of the main diagonal

(which runs southeast from the upper left­hand corner) is equal to 4, 3, 1,

the entries of the first column of P . Similarly, the number of dots in each

column on or below the main diagonal is equal to 3, 2, 1, the entries of

the first column of Q . The total number of dots in each row is 4, 4, 3, and

we let these numbers be the entries of the first column of π . In the same

way, the second column of π has entries 4, 3, 3, as shown by the following

diagram :

r r r

r r r

r r r r

@
@

@
@

@
@@

When this merging procedure is carried out to all the columns of P and

Q , we obtain the plane partition

(3.5) π =

4 4 3 3 3 1

4 3 3 3 2 1

3 3 1

.

This gives the desired bijection that proves MacMahon’s formula (3.1). Of

course there are many details to be proved in order to verify that this procedure

has all the necessary properties. The key point is that every step is reversible.



30 3. Plane partitions

i Pi Qi

1 3 3

2 3 1 3 3

3 3 1 1 3 3 3

4 3 2 1 3 3 3
1 2

5 3 2 2 3 3 3
1 1 2 2

6 3 2 2 2 3 3 3 2
1 1 2 2

7 3 2 2 2 1 3 3 3 2 2
1 1 2 2

8 3 2 2 2 1 1 3 3 3 2 2 2
1 1 2 2

9 4 2 2 2 1 1 3 3 3 2 2 2
3 1 2 2
1 1

10 4 4 2 2 1 1 3 3 3 2 2 2
3 2 2 2
1 1 1 1

11 4 4 3 2 1 1 3 3 3 2 2 2
3 2 2 2 2 1
1 1 1 1

12 4 4 3 3 1 1 3 3 3 2 2 2
3 2 2 2 2 2 1 1
1 1 1 1

13 4 4 3 3 3 1 3 3 3 2 2 2
3 2 2 2 1 2 2 1 1 1
1 1 1 1

FIGURE 4

The RSK algorithm applied to the two­line array

A =
3 3 3 2 2 2 2 2 1 1 1 1 1
3 1 1 2 2 2 1 1 4 4 3 3 3
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The basis for this observation is that equal entries of Q are inserted left­to­

right. Thus for instance in equation (3.4), the last entry to be inserted into

Q is the rightmost 1, in column 5. A good way to convince yourself of the

accuracy of the entire procedure is to take the plane partition π of equation

(3.5) and try to reconstruct the original choice of terms from the product

1/(1 − x)(1 − x2)2 · · · .

EXTENDING MACMAHON’S THEOREM

By analyzing more carefully the above bijective proof, it is possible to

extend the formula (3.1) of MacMahon. Write [i] as short for 1− xi . Without

going into any of the details, let us simply state that if pprs(n) denotes the

number of plane partitions of n with at most r rows and at most s columns,

where say r ≤ s , then

1 + pprs(1)x + pprs(2)x2
+ · · · =

(3.6)
1

[1][2]2[3]3 · · · [r]r[r + 1]r · · · [s]r[s + 1]r−1[s + 2]r−2 · · · [r + s − 1]
.

For instance, when r = 3 and s = 5 the right­hand side of equation (3.6)

becomes

1

(1 − x)(1 − x2)2(1 − x3)3(1 − x4)3(1 − x5)3(1 − x6)2(1 − x7)

= 1+x+3x2
+6x3

+12x4
+21x5

+39x6
+64x7

+109x8
+175x9

+280x10
+ · · · .

For example, the fact that the coefficient of x4 is 12 means that there are 12

plane partitions of 4 with at most 3 rows and at most 5 columns. These plane

partitions are given by

4 3 1 2 2 2 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 2 1 1
1 2 1 1 1 1 1 1

1 1
.

By more sophisticated arguments (not a direct bijective proof) one can extend

equation (3.6) even further, as follows. Let pprst(n) denote the number of

plane partitions of n with at most r rows, at most s columns, and with

largest part at most t . Then
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1 + pprst(1)x + pprst(2)x2
+ · · · =

[1 + t][2 + t]2[3 + t]3 · · · [r + t]r[r + 1 + t]r · · · [s + t]r

[1][2]2[3]3 · · · [r]r[r + 1]r · · · [s]r

(3.7) × [s + 1 + t]r−1[s + 2 + t]r−2 · · · [r + s − 1 + t]

[s + 1]r−1[s + 2]r−2 · · · [r + s − 1]
.

As a concrete example of equation (3.7), suppose that r = 2, s = 3, and

t = 2. The right­hand side of (3.7) becomes

(1 − x3)(1 − x4)2(1 − x5)2(1 − x6)

(1 − x)(1 − x2)2(1 − x3)2(1 − x4)

= 1 + x + 3x2
+ 4x3

+ 6x4
+ 6x5

+ 8x6
+ 6x7

+ 6x8
+ 4x9

+ 3x10
+ x11

+ x12.

Note that the right­hand sides of equations (3.6) and (3.7) have the same

denominator. The numerator of (3.7) is obtained by replacing each denominator

factor [i] with [i + t] . Equation (3.7) was also first proved by MacMahon

and is the culmination of his work on plane partitions. It is closely related

to some facts in representation theory, a subject that at first sight seems

to have no connection with plane partitions. (See Chapter 5.) MacMahon’s

results have many other variations which give simple product formulas for

enumerating various classes of plane partitions. It seems natural to try to extend

these results to even higher dimensions. Thus a three­dimensional analogue of

plane partitions would be solid partitions. All attempts (beginning in fact with

MacMahon) to find nice formulas for general classes of solid partitions have

resulted in failure. It seems that plane partitions are fundamentally different

in behavior than their higher dimensional cousins.

The RSK algorithm has a number of remarkable properties that were not

needed for the derivation of MacMahon’s formula (3.1). The most striking of

these properties is the following. Consider a two­line array A such as (3.3)

which is the input to the RSK algorithm. Now interchange the two rows, and

sort the columns so that the first row is weakly decreasing, and the part of the

second row below a fixed number in the first row is also weakly decreasing.

Call this new two­line array the transposed array A′ . Thus the number of

columns of A equal to i

j
is the same as the number of columns of A′ equal

to j

i
. For the two­line array A of equation (3.3) we have

(3.8) A′
=

4 4 3 3 3 3 2 2 2 1 1 1 1

1 1 3 1 1 1 2 2 2 3 3 2 2
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Thus the RSK algorithm can be applied to A′ . If (P, Q) is the pair of column­

strict plane partitions obtained by applying the RSK algorithm to A , then

applying this algorithm to A′ produces the pair (Q, P) , that is, the roles of P

and Q are reversed ! Keeping in mind the totally different combinatorial rules

for forming P and Q , it seems almost miraculous when trying a particular

example such as (3.3) and (3.8) that we obtain such a simple result. We

can use this “symmetry property” of the RSK algorithm to enumerate further

classes of plane partitions. In particular, a plane partition is called symmetric if

it remains the same when reflected about the main diagonal running from the

upper left­hand corner in the southeast direction. An example of a symmetric

plane partition is given by

5 3 3 2 1 1 1
3 3 3 2 1
3 3 2 1 1
2 2 1
1 1 1
1
1

Let s(n) denote the number of symmetric plane partitions of n . For instance,

s(5) = 4, as shown by

5 31 21 111
1 11 1

1
.

Without going into any details, let us just say that the symmetry property of

the RSK algorithm just described yields a bijective proof, similar to the proof

we have given of MacMahon’s formula (3.1), of the generating function

s(0) + s(1)x + s(2)x2
+ · · · =

1

D(x)
,

where

D(x) = (1 − x)(1 − x3)(1 − x4)(1 − x5)(1 − x6)(1 − x7)(1 − x8)2

(1 − x9)(1 − x10)2(1 − x11)(1 − x12)3 · · · .

The exponent of 1−x2k−1 in D(x) is 1, and the exponent of 1−x2k is ⌊k/2⌋ ,

the greatest integer less than or equal to k/2.
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4

Standard Young tableaux

There is a special class of objects closely related to plane partitions that

are of considerable interest. Let λ be an ordinary partition of n with parts

λ1 ≥ λ2 ≥ · · · ≥ λℓ . A standard Young tableau (SYT) of shape λ is a left­

justified array of positive integers, with λi integers in the i th row, satisfying

the following two conditions : (1) The entries consist of the integers 1, 2, ..., n ,

each occurring exactly once, and (2) the entries in each row and column are

increasing. An example of an SYT of shape (4, 3, 2) is given by

(4.1)

1 3 4 6

2 7 8

5 9

.

There are exactly ten SYT of size four (that is, with four entries), given by

1 2 3 4 1 2 3 1 2 4 1 3 4 1 2 1 3 1 2 1 3 1 4 1
4 3 2 3 4 2 4 3 2 2 2

4 4 3 3
4

.

THE BALLOT PROBLEM AND THE HOOK LENGTH FORMULA

Standard Young tableaux have a number of interpretations which make them

of great importance in a variety of algebraic, combinatorial, and probabilistic

problems. Here we will only mention a classical problem called the ballot
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problem, which has numerous applications in probability theory. Given a

partition λ = (λ1, . . . , λℓ) as above with λ1 + · · ·+ λℓ = n , we suppose that

an election is being held among ℓ candidates A1, . . . , Aℓ . At the end of the

election candidate Ai receives λi votes. The voters vote in succession one at

a time. We record the votes of the voters as a sequence a1, a2, . . . , an , where

aj = i if the j th voter votes for Ai . The sequence a1, a2, . . . , an is called a

ballot sequence (of shape λ) if at no time during the voting does any candidate

Ai trail another candidate Aj with j > i . Thus the candidates maintain their

relative order (allowing ties) throughout the election. For instance, the sequence

1, 2, 1, 3, 1, 3, 4, 2 is not a ballot sequence, since at the end A2 and A3 receive

the same number of votes, but after six votes A2 trails A3 . On the other hand,

the sequence 1, 2, 1, 3, 1, 2, 4, 3 is a ballot sequence. Despite the difference in

their descriptions, a ballot sequence is nothing more than a disguised version

of an SYT. Namely, if T is an SYT, then define aj = i if j appears in the

i th row of T . A little thought should convince the reader that the sequence

a1, a2, . . . , an is then a ballot sequence, and that all ballot sequences come in

this way from SYT’s. For instance, the SYT of equation (4.1) corresponds to

the ballot sequence 1, 2, 1, 1, 3, 1, 2, 2, 3. We are simply recording in which

rows the numbers 1, 2, . . . , 9 appear.

It is natural (at least for a practitioner of combinatorics) to ask how many

SYT there are of a given shape λ . This number is denoted f λ . For instance,

there are nine SYT of shape (4, 2) , which we write as f 4,2 = 9. These nine

SYT are given by

1 2 3 4 1 2 3 5 1 2 3 6 1 2 4 5 1 2 4 6 1 2 5 6 1 3 4 5 1 3 4 6 1 3 5 6

5 6 4 6 4 5 3 6 3 5 3 4 2 6 2 5 2 4
.

A formula for f λ (defined in terms of ballot sequences) was given by

MacMahon in 1900. A simplified version was given by James Sutherland

Frame, Robinson (mentioned earlier in connection with the RSK algorithm),

and Robert McDowell Thrall in 1954, and is known as the Frame­Robinson­

Thrall hook length formula. To state this formula, we define a Young diagram

of shape λ as a left­justified array of squares with λi squares in the i th row.

For instance, a Young diagram of shape (5, 5, 2) looks like
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An SYT of shape λ can then be regarded as an insertion of the numbers

1, 2, . . . , n (each appearing once) into the squares of a Young diagram of

shape λ such that every row and column is increasing. If s is a square of a

Young diagram, then define the hook length of s to be the number of squares

to the right of s and in the same row, or below s and in the same column,

counting s itself once. In the following figure, we have inserted inside each

square of the Young diagram of shape (5, 5, 2) its hook length.

37 6 4 2

6 5 3 2 1

2 1

The hook product Hλ of a partition λ is the product of the hook lengths

of its Young diagram. Thus for instance from the above figure we see that

H5,5,2 = 7 · 6 · 4 · 3 · 2 · 6 · 5 · 3 · 2 · 1 · 2 · 1 = 362, 880.

The Frame­Robinson­Thrall formula can now be stated. Here λ is a partition

of n and n! = 1 · 2 · · · n .

Hook length Formula.

(4.2) f λ
=

n!

Hλ
.

For instance,

f 5,5,2
=

12!

362, 880
= 1320.

It is remarkable that such a simple formula for f λ exists, and no really

simple proof is known. The proof of Frame­Robinson­Thrall amounts to

simplifying MacMahon’s formula for f λ , which MacMahon obtained by

solving difference equations (the discrete analogue of differential equations).

Other proofs were subsequently given, including several bijective proofs, the

nicest due to the coworkers Jean­Christophe Novelli, Igor Pak and Alexander

V. Stoyanovskii.
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PERMUTATIONS AND STANDARD YOUNG TABLEAUX

In addition to their usefulness in combinatorics, SYT also play a significant

role in a certain kind of symmetry, such as the symmetry between identical

particles in quantum mechanics. This important theory (known in mathematics

as “the representation theory of the symmetric group”) was developed primarily

by Alfred Young, who was a clergyman by profession and a fellow of Clare

College, Cambridge, a Canon of Chelmsford, and Rector of Birdbrook, Essex

(1910–1940). Roughly speaking, this theory describes the possible “symmetry

states” of n objects. See Chapter 5 for more details.

A permutation of the numbers 1, 2, . . . , n is simply a rearrangement, that

is, a way of listing these numbers in some order. For instance, 5, 2, 7, 6, 1, 4, 3

(also written as just 5276143 when no confusion can arise) is a permutation

of 1, 2, 3, 4, 5, 6, 7. The number of permutations of 1, 2, . . . , n is n! =

n(n− 1) · · ·2 · 1. This fact was motivated in the Introduction, where we spoke

about words with n distinct letters, which are easily seen to be equivalent to

permutations.

It is an immediate consequence of the theory of symmetry mentioned

above that the number of ordered pairs of SYT of the same shape and with

n squares is equal to n! , i.e. the number of permutations of n objects. For

instance, when n = 3 we get the six pairs

(
1 2 3 1 2 3

) (
1 2 1 2
3 3

) (
1 2 1 3
3 2

)

(
1 3 1 2
2 3

) (
1 3 1 3
2 2

) (
1 1
2 2
3 3

)
.

The fact that the number of pairs of SYT of the same shape and with n

squares is n! can also be expressed by the formula

(4.3)
∑

λ⊢n

(
f λ
)2

= n!,

where λ ⊢ n denotes that λ is a partition of n . A combinatorialist will

immediately ask whether there is a bijective proof of this formula. In other

words, given a permutation w of the numbers 1, 2, . . . , n , can we associate

with w a pair (P, Q) of SYT of the same shape and with n squares, such that

every such pair occurs exactly once ? In fact we have already seen the solution

to this problem — it is just a special case of the RSK algorithm ! There is

only one minor technicality that needs to be explained before we apply the

RSK algorithm. Namely, the column­strict plane partitions we were dealing
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1 3 4 9 7 6
2 6 8 8 4 2
5 9 5 1
7 3

FIGURE 5

An SYT and its corresponding reverse SYT

with before have every row and column decreasing, while SYT have every

row and column increasing. However, given a plane partition whose entries

are the integers 1, 2, . . . , n , each appearing once (so it will automatically be

column­strict), we need only replace i by n + 1 − i to obtain an SYT of

the same shape. We will call a plane partition whose (nonzero) parts are the

integers 1, 2, . . . , n , each appearing once, a reverse SYT. An example of an

SYT and the corresponding reverse SYT obtained by replacing i with n+1− i

is shown in Figure 5.

So consider now a permutation such as 5, 2, 6, 1, 4, 7, 3. Write this as the

second line of a two­line array whose first line is n, n − 1, . . . , 1. Here we

get the two­line array

A =
7 6 5 4 3 2 1

5 2 6 1 4 7 3
.

When we apply the RSK algorithm to this two­line array, we will obtain

a pair of column­strict plane partitions of the same shape whose parts are

1, 2, . . . , n , each appearing once. Namely, we get

7 4 3 7 6 4
6 2 1 5 3 1
5 2

.

If we replace i by 8− i , we get the following pair of SYT of the same shape

(3, 3, 1) :

1 4 5 1 2 4
2 6 7 3 5 7
3 6

.

The process is reversible; that is, beginning with a pair (P, Q) of SYT of the

same shape, we can reconstruct the permutation that produced it, as a special

case of the reversibility of the RSK algorithm discussed in the previous section.

Therefore the number of pairs of SYT of the same shape and with n entries

is equal to the number of permutations a1, . . . , an of 1, 2, . . . , n , yielding the
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formula (4.3). This remarkable connection between permutations and tableaux

is the foundation for an elaborate theory of permutation enumeration. In

Chapter 6 we give a taste of this theory.
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5

Connections with representation theory

In this chapter, which is independent from the rest of this book, we assume

familiarity with the fundamentals of representation theory.

First we consider the group G = GL(n, C) of all invertible linear

transformations on an n ­dimensional complex vector space V . We will

identify G with the group of n×n invertible complex matrices. A polynomial

representation of G of degree N is a homomorphism ϕ : G → GL(N, C) , such

that for A ∈ G , the entries of the matrix ϕ(A) are polynomials (independent

of the choice of A) in the entries of A . For instance, one can check directly

that the map ϕ : GL(2, C) → GL(3, C) defined by

(5.1) ϕ

[
a b

c d

]
=




a2 2ab b2

ac ad + bc bd

c2 2cd d2





preserves multiplication (and the identity element), and hence is a polynomial

representation of GL(2, C) of degree 3.

Let ϕ : GL(n, C) → GL(N, C) be a polynomial representation. If the

eigenvalues of A are x1, . . . , xn , then the eigenvalues of ϕ(A) are monomials

in the xi ’s. For instance, in equation (5.1) one can check that if x1 and x2

are the eigenvalues of A , then the eigenvalues of ϕ(A) are x2
1 , x1x2 , and

x2
2 . The trace of ϕ(A) (the sum of the eigenvalues) is therefore a polynomial
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in the xi ’s which is a sum of N monomials. This polynomial is called the

character of ϕ , denoted char(ϕ) . For ϕ as in (5.1), we have

char(ϕ) = x2
1 + x1x2 + x2

2.

Some of the basic facts concerning the characters of GL(n, C) are the

following :

• Every polynomial representation (assumed finite­dimensional) of the group

GL(n, C) is completely reducible, i.e., a direct sum of irreducible polyno­

mial representations. The multiset of these irreducible constituents is unique

up to equivalence, that is, up to the choice of basis used to represent the

linear transformations ϕ(A) , A ∈ G , as matrices.

• The characters of irreducible representations are homogeneous symmetric

functions in the variables x1, . . . , xn , and only depend on the representation

up to equivalence.

• The characters of inequivalent irreducible representations are linearly

independent over C .

The effect of these properties is that once we determine the character of

a polynomial representation ϕ of GL(n, C) , then there is a unique way to

write this character as a sum of irreducible characters. The representation

ϕ is determined up to equivalence by the multiplicity of each irreducible

character in char(ϕ) . Hence we are left with the basic question of describing

the irreducible characters of GL(n, C) . The main result is the following.

Fundamental theorem on the polynomial characters of GL(n, C) . The ir­

reducible polynomial characters of GL(n, C) are in one­to­one correspondence

with the partitions λ = (λ1, . . . , λn) with at most n parts. The irreducible

character sλ = sλ(x1, . . . , xn) corresponding to λ is given by

sλ(x1, . . . , xn) =
∑

T

xT ,

where T ranges over all column­strict plane partitions (as defined in

Chapter 3) of shape λ and largest part at most n, and where xT denotes the

monomial

xT
= xnumber of 1’s in T

1 xnumber of 2’s in T
2 · · · .

For instance, let n = 2 and let λ = (2, 0) be the partition with just one part

equal to two (and no other parts). The column­strict plane partitions of shape

(2, 0) with largest part at most 2 are just 11, 21, and 22. Hence (abbreviating

s(2,0) as s2 ),

s2(x1, x2) = x2
1 + x1x2 + x2

2.
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This is just the character of the representation defined by equation (5.1).

Hence this representation is one of the irreducible polynomial representations

of GL(2, C) .

As another example, suppose that n = 3 and λ = (2, 1, 0) . The

corresponding column­strict plane partitions are

2 1 2 2 3 1 3 1 3 2 3 2 3 3 3 3
1 1 1 2 1 2 1 2 .

Hence

sλ(x1, x2, x3) = x2
1x2 + x1x2

2 + x2
1x3 + 2x1x2x3 + x2

2x3 + x1x2
3 + x2x2

3.

The fact that we have eight column­strict plane partitions in this case is closely

related to the famous “Eightfold Way” of particle physics. (The corresponding

representation of GL(3, C) , when restricted to SL(3, C) , is just the adjoint

representation of SL(3, C) .)

The symmetric functions sλ(x1, . . . , xn) are known as Schur functions (in

the variables x1, . . . , xn ) and play an important role in many aspects of repre­

sentation theory, the theory of symmetric functions, and enumerative combina­

torics. In particular, they are closely related to the irreducible representations

of a certain finite group, namely, the symmetric group Sk of all permutations

of the set {1, 2, . . . , k} . This relationship is best understood by a “duality”

between GL(n, C) and Sk discovered by Issai Schur.

Recall that we are regarding GL(n, C) as acting on an n ­dimensional vector

space V . Thus GL(n, C) also acts on the k th tensor power V⊗k of V . On the

other hand, the group Sk acts on V⊗k by permuting tensor coordinates. Schur’s

famous “double centralizer” theorem asserts that the actions of GL(n, C) and

Sk centralize each other, i.e., every endomorphism of V⊗k commuting with

the action of GL(n, C) is a linear combination of the actions of the elements

of Sk , and vice versa. From this one can show that the action of the group

Sk × GL(n, C) on V⊗k breaks up into irreducible constituents in the form

(5.2) V⊗k
=
∐

λ

(
Mλ ⊗ Fλ

)
,

where (a)
∐

denotes a direct sum of vector spaces, (b) λ ranges over all

partitions of k into at most n parts, (c) Fλ is the irreducible GL(n, C) ­module

corresponding to λ , and Mλ is an irreducible Sk ­module. Thus when k ≤ n ,

λ ranges over all partitions of k . The p(k) irreducible Sk ­modules Mλ are

pairwise nonisomorphic and account for all the irreducible Sk ­modules. Hence

the irreducible Sk ­modules are naturally indexed by partitions of k . Using

the RSK algorithm (or otherwise), it is easy to prove the identity
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(x1 + x2 + · · · + xn)k
=
∑

λ

f λsλ(x1, . . . , xn),

where λ ranges over all partitions of k and f λ denotes as usual the number

of SYT of shape λ . Taking the GL(n, C) character of equation (5.2), the

left­hand side becomes (x1 + · · · + xn)k , while the right­hand side becomes∑
λ(dim Mλ)sλ(x1, . . . , xn) . Since the Schur functions are linearly independent,

it follows that dim Mλ = f λ . Thus the f λ ’s for λ a partition of k are the

degrees of the irreducible representations of Sk . Since the sum of the squares

of the degrees of the irreducible representations of a finite group G is equal

to the order (number of elements) of G , we obtain equation (4.3) (with n

replaced by k ).

We have given only the briefest glimpse of the connections between tableau

combinatorics and representation theory, but we hope that it gives the reader

with sufficient mathematical background some of the flavor of this subject.
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6

Increasing and decreasing subsequences

In this chapter we discuss an unexpected connection between the RSK

algorithm and the enumeration of a certain class of permutations. This

connection was discovered by Schensted and was his reason for inventing

his famous correspondence. If w = a1a2 · · · an is a permutation of 1, 2, . . . , n ,

then a subsequence v of length k of w is a sequence of k distinct terms of

w appearing in the order in which they appear in w . In symbols, we have

v = ai1 ai2 · · · aik , where i1 < i2 < · · · < ik . For instance, some subsequences

of the permutation 6251743 are 2573, 174, 6, and 6251743. A subsequence

b1b2 · · · bk of w is said to be increasing if b1 < b2 < · · · < bk , and

decreasing if b1 > b2 > · · · > bk . For instance, some increasing subsequences

of 6251743 are 67, 257, and 3, while some decreasing subsequences are

6543, 654, 743, 61, and 3.

LONGEST MONOTONE SUBSEQUENCES

We will be interestested in the length of the longest increasing and

decreasing subsequences of a permutation w . Denote by is(w) the length

of the longest increasing subsequence of w , and by ds(w) the length of the

longest decreasing subsequence. By careful inspection one sees for instance

that is(6251743) = 3 and ds(6251743) = 4. It is intuitively plausible that

there should be some kind of tradeoff between the values is(w) and ds(w) .
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If is(w) is small, say equal to k , then any subsequence of w of length k + 1

must contain a pair of decreasing elements, so there are “lots” of pairs of

decreasing elements. Hence we would expect ds(w) to be large. An extreme

case occurs when is(w) = 1. Then there is only one choice for w , namely,

n, n − 1, . . . , 1, and we have ds(w) = n .

How can we quantify the feeling that that is(w) and ds(w) cannot both

be small ? A famous result of Pál Erdős and George Szekeres, obtained in

1935, gives an answer to this question and was one of the first results in the

currently very active area of extremal combinatorics. For more about extremal

combinatorics, see Chapter 14.

Erdős­Szekeres Theorem. Let w be a permutation of 1, 2, . . . , n, and let

p and q be positive integers for which n > pq. Then either is(w) > p or

ds(w) > q. Moreover, this is best possible in the sense that if n = pq then

we can find at least one permutation w such that is(w) = p and ds(w) = q.

An equivalent way to formulate the Erdős­Szekeres theorem is by the inequality

(6.1) is(w) · ds(w) ≥ n,

showing clearly that is(w) and ds(w) cannot both be small. For instance, both

can not be less than
√

n , the square root of n .

After Erdős and Szekeres proved their theorem, an extremely elegant proof

was given in 1959 by Abraham Seidenberg based on a ubiquitous mathematical

tool known as the pigeonhole principle. This principle states that if m + 1

pigeons fly into m pigeonholes, then at least one pigeonhole contains more

than one pigeon. As trivial as the pigeonhole principle may sound, it has

numerous nontrivial applications. The hard part in applying the pigeonhole

principle is deciding what are the pigeons and what are the pigeonholes.

We can now describe Seidenberg’s proof of the Erdős­Szekeres theorem.

Given a permutation w = a1a2 · · · an of 1, 2, . . . , n , we define numbers r1, r2 ,

. . . , rn and s1, s2, . . . , sn as follows. Let ri be the length of the longest

increasing subsequence of w that ends at ai , and similarly let si be the

length of the longest decreasing subsequence of w that ends at ai . For

instance, if w = 6251743 as above then s4 = 3 since the longest decreasing

subsequences ending at a4 = 1 are 621 and 651, of length three. More

generally, we have for w = 6251743 that (r1, . . . , r7) = (1, 1, 2, 1, 3, 2, 2) and

(s1, . . . , s7) = (1, 2, 2, 3, 1, 3, 4) .

Key fact. The n pairs (r1, s1), (r2, s2), . . . , (rn, sn) are all distinct.

To see why this fact is true, suppose i and j are numbers such that i < j

and ai < aj . Then we can append aj to the end of the longest increasing
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subsequence of w ending at ai to get an increasing subsequence of greater

length that ends at aj . Hence rj > ri . Similarly, if i < j and ai > aj , then

we get sj > si . Therefore we cannot have both ri = rj and si = sj , which

proves the key fact.

Now suppose n > pq as in the statement of the Erdős­Szekeres theorem.

We therefore have n distinct pairs (r1, s1), (r2, s2), . . . , (rn, sn) of positive

integers. If every ri were at most p and every si were at most q , then there

are only pq possible pairs (ri, si) (since there are at most p choices for ri

and at most q choices for si ). Hence two of these pairs would have to be

equal. (This is where the pigeonhole principle comes in — we are putting

the “pigeon” i into the “pigeonhole” (ri, si) for 1 ≤ i ≤ n . Thus there are

n pigeons, where n > pq , and at most pq pigeonholes.) But if two pairs

are equal, then we contradict the key fact above. It follows that for some i

either ri > p or si > q . If ri > p then there is an increasing subsequence of

w of length at least p + 1 ending at ai , so is(w) > p . Similarly, if si > q

then ds(w) > q , completing the proof of the main part of the Erdős­Szekeres

theorem.

It remains to show that the result is best possible, as explained above. In

other words, given p and q , we need to exhibit at least one permutation w

of 1, 2, . . . , pq such that is(w) = p and ds(w) = q . It is easy to check that

the following choice of w works :

w = (q− 1)p + 1, (q− 1)p + 2, . . . , qp, (q− 2)p + 1, (q− 2)p + 2, . . . , (q− 1)p,

(6.2) . . . , 2p + 1, 2p + 2, . . . , 3p, p + 1, p + 2, . . . , 2p, 1, 2, . . . , p.

For instance, when p = 4 and q = 3 we have

w = 9, 10, 11, 12, 5, 6, 7, 8, 1, 2, 3, 4.

This completes the proof of the Erdős­Szekeres theorem.

MONOTONE SUBSEQUENCES AND THE RSK ALGORITHM

Though the Erdős­Szekeres theorem is very elegant, we can ask for even

more information about increasing and decreasing subsequences. For instance,

rather than exhibiting a single permutation w of 1, 2, . . . , pq satisfying

is(w) = p and ds(w) = q , we can ask how many such permutations there

are. This much harder question can be answered by using an unexpected

connection between increasing and decreasing subsequences on the one hand,

and the RSK algorithm on the other.

There are two fundamental properties of the RSK algorithm that are needed

for our purposes. Suppose we apply the RSK algorithm to a permutation
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w = a1a2 · · · an of 1, 2, . . . , n , getting two reverse SYT P and Q whose parts

are 1, 2, . . . , n . The first property we need of the RSK algorithm is a simple

description of the first row of P .

Property 1. Suppose that the first row of P is b1b2 · · · bk . Then bi is the

last (rightmost) term in w such that the longest decreasing subsequence of

w ending at that term has length i .

For instance, suppose w = 843716925. Then

P =
9 7 6 5
8 3 2
4 1

.

The first row of P is 9765. Consider the third element of this row, which

is 6. Then 6 is the rightmost term of w for which the longest decreasing

subsequence of w ending at that term has length three. Indeed, 876 is a

decreasing subsequence of length three ending at 6, and there is none longer.

The terms to the right of 6 are 9, 2, and 5. The longest decreasing subsequences

ending at these terms have length 1, 4, and 4, respectively, so 6 is indeed the

rightmost term for which the longest decreasing subsequence ending at that

term has length three.

See the appendix to this chapter for a proof by induction of Property 1.

The second property we need of the RSK algorithm was first proved by

Schensted. To describe this property we require the following definition. If λ is

a partition, then the conjugate partition λ′ of λ is the partition whose Young

diagram is obtained by interchanging the rows and columns of the Young

diagram of λ . In other words, if λ = (λ1, λ2, . . . ) , then the column lengths

of the Young diagram of λ′ are λ1, λ2, . . . . For instance, if λ = (5, 3, 3, 2)

then λ′ = (4, 4, 3, 1, 1) , as illustrated in Figure 6.

Property 2. Suppose that when the RSK algorithm is applied to a

permutation w = a1a2 · · · an , we obtain the pair (P, Q) of reverse SYT.

Let w = anan−1 · · · a1 , the reverse permutation of w . Suppose that when the

RSK algorithm is applied to w , we obtain the pair (P, Q) of reverse SYT.

Then the shape of P (or Q ) is conjugate to the shape of P (or Q).

Actually, an even stronger result than Property 2 is true, though we don’t

need it for our purposes. The reverse SYT P is actually the transpose of

P , obtained by interchanging the rows and columns of P . (The connection

between Q and Q is more subtle and has led to much interesting work.) The

proof of Property 2 is too complicated for inclusion here, though it is entirely

elementary.

We now have all the ingredients to state the main result (due to Schensted)

on longest increasing and decreasing subsequences. If we apply the RSK
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FIGURE 6

The Young diagram of a partition and its conjugate

algorithm to the permutation w and get a pair (P, Q) of reverse SYT of

shape λ = (λ1, λ2, . . . ) , then Property 1 tells us that

ds(w) = λ1.

In words, the length of the longest decreasing subsequence of w is equal to

the largest part of λ (the length of the first row of P). Now apply the RSK

algorithm to the reverse permutation w , obtaining the pair (P, Q) of reverse

SYT. When we reverse a permutation, increasing subsequences are changed

to decreasing subsequences and vice versa. In particular, ds(w) = is(w) . By

Property 1, ds(w) is just the length of the first row of P . By Property 2, the

length of the first row of P is just the length of the first column of P . Thus

is(w) = ℓ(λ) , the number of parts of λ .

We have shown that for a permutation w with is(w) = p and ds(w) = q ,

the shape λ of the corresponding reverse SYT P (and Q) satisfies ℓ(λ) = p

and λ1 = q . Hence the number An(p, q) of permutations w of 1, 2, . . . , n

with is(w) = p and ds(w) = q is equal to the number of pairs (P, Q) of

reverse SYT of the same shape λ , where λ is a partition of n with ℓ(λ) = p

and λ1 = q . How many such pairs are there ? Given the partition λ , the

number of choices for P is just f λ , the number of SYT of shape λ . (Recall

that the number of SYT of shape λ and the number of reverse SYT of shape

λ is the same, since we can replace i by n + 1 − i .) Similarly there are f λ

choices for Q , so there are
(
f λ
)2

choices for (P, Q) . Hence we obtain our

main result on increasing and decreasing subsequences :
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Schensted’s Theorem. The number An(p, q) of permutations w of 1, 2, . . . , n

satisfying is(w) = p and ds(w) = q is equal to the sum of all
(
f λ
)2

, where

λ is a partition of n satisfying ℓ(λ) = p and λ1 = q.

Let us see how the Erdős­Szekeres theorem follows immediately from

Schensted’s theorem. If a partition λ of n satisfies ℓ(λ) = p and λ1 = q ,

then

n = λ1 + λ2 + · · · + λp

≤ q + q + · · · + q (p terms in all)

= pq.

Hence if n > pq , then either ℓ(λ) ≥ p+1 or λ1 ≥ q+1. If we apply the RSK

algorithm to a permutation w of 1, 2, . . . , n then we get a pair of reverse

SYT of some shape λ , where λ is a partition of n . We have just shown that

ℓ(λ) ≥ p + 1 or λ1 ≥ q + 1, so by Schensted’s theorem either is(w) ≥ p + 1

or ds(w) ≥ q + 1.

We can evaluate each f λ appearing in Schensted’s theorem by the hook­

length formula. Hence the theorem is most interesting when there are few

partitions λ satisfying ℓ(λ) = p and λ1 = q . The most interesting case

occurs when n = pq . The fact that there is at least one permutation satisfying

is(w) = p and ds(w) = q (when n = pq ) shows that the Erdős­Szekeres

theorem is best possible (see equation (6.2)). Now we are asking for a much

stronger result — how many such permutations are there ? By Schensted’s

theorem, we first need to find all partitions λ of n such that ℓ(λ) = p and

λ1 = q . Clearly there is only one such partition, namely, the partition with p

parts all equal to q . Hence for this partition λ we have An(p, q) =
(
f λ
)2

. We

may assume for definiteness that p ≤ q (since An(p, q) = An(q, p) ). In that

case the hook­lengths of λ are given by 1 (once), 2 (twice), 3 (three times),

. . . , p (p times), p + 1 (p times), . . . , q (p times), q + 1 (p − 1 times),

q + 2 (p− 2 times), . . . , p + q− 1 (once). We finally obtain the remarkable

formula (for n = pq )

An(p, q) =

[
(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1(q + 2)p−2 · · · (p + q − 1)1

]2

.

For instance, when p = 4 and q = 6 we easily compute that

A24(4, 6) =

[
24!

11 22 33 44 54 64 73 82 91

]2

= 19, 664, 397, 929, 878, 416.
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This large number is still only a small fraction .00000003169 of the total

number of permutations of 1, 2, . . . , 24.

TYPICAL SHAPE OF PERMUTATIONS

Much more can be said about increasing and decreasing subsequences.

In particular, rather than asking how many permutations w have a specified

property (such as satisfying is(w) = p and ds(w) = q ), we can ask what

is the typical behavior of a permutation with respect to a specified property.

The study of typical behavior is a wide­ranging mathematical subject with

many important applications. For instance, the whole insurance industry is

based on the typical behavior of various phenomena such as heart attacks,

floods, etc. We will consider here the question of the typical (or average)

value of the length of the longest increasing subsequence of a permutation

w of 1, 2, . . . , n . This question actually has applications to such topics as

airplane boarding and retrieving of information on a computer.

For instance, as a very crude model of airplane boarding, suppose that a

plane has seats 1, 2 . . . , n from front to back. The passengers board in the

order w = a1a2 · · · an (a permutation of 1, 2, . . . , n ). During the first unit of

time, each passenger goes to his seat and sits down if possible, and otherwise

waits behind other passengers. For instance, if the boarding order is 253614,

then 2 and 1 go to their seats and sit down, while 536 wait behind 2 and

4 waits behind 1. The process repeats itself for the waiting passengers. Thus

for the example 253614, during the second unit of time 5 and 3 go to their

seats and sit down, while 64 waits behind 3. Continue until all passengers

are seated. It is easy to see that the amount of time to seat all passengers is

is(w) , the length of the longest increasing subsequence of w . Eitan Bachmat

and his collaborators have developed a much more sophisticated and realistic

model, but the theory of increasing subsequences continues to play a central

role in its analysis.

Let E(n) denote the average value of is(w) for w a permutation of

1, 2, . . . , n . In other words, we obtain E(n) by summing is(w) over all

permutations w of 1, 2, . . . , n and then dividing by n! , the total number

of such permutations. For instance, when n = 3 we obtain the following

table.
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w is(w)

123 3

132 2

213 2

231 2

312 2

321 1

Hence

E(3) =
1

6
(3 + 2 + 2 + 2 + 2 + 1) = 2.

How large do we expect E(n) to be in general ? A simple argument based

on the Erdős­Szekeres theorem in the form given by equation (6.1) shows that

E(n) cannot be too small. Namely, given a permutation w = a1a2 · · · an of

1, 2, . . . , n , let wr denote its reverse an · · · a2a1 as was done earlier in this

chapter. Since reversing a permutation converts an increasing subsequence to

a decreasing one and vice versa, we have

is(wr) = ds(w).

Hence

is(w) + is(wr) = is(w) + ds(w).

Now for any two real numbers x, y ≥ 0, a fundamental inquality known as

the arithmetic­geometric mean inequality asserts that

(6.3)
x + y

2
≥ √

xy.

This inequality follows from (x − y)2 ≥ 0 (the square of any real number is

nonnegative) by expanding out the left­hand side to get x2 − 2xy + y2 ≥ 0,

adding 4xy to both sides and dividing by 4 to get

x2 + 2xy + y2

4
≥ xy,

and then taking the square root of both sides. Since x2 + 2xy + y2 = (x + y)2 ,

we obtain (6.3). Letting x = is(w) and y = is(wr) = ds(w) , we obtain

is(w) + is(wr)

2
≥
√

is(w)ds(w).

By equation (6.1) there follows

(6.4)
is(w) + is(wr)

2
≥

√
n.



6. Increasing and decreasing subsequences 53

When n > 1 we can divide all n! permutations of 1, 2, . . . , n into n!/2 pairs

w and wr . For instance, when n = 3 we have the three pairs {123, 321} ,

{132, 231} , and {213, 312} . Equation (6.4) asserts that the average length

of the longest increasing subsequence of the two permutations within each

pair is at least
√

n . Hence the average of is(w) for all permutations w of

1, 2, . . . , n is also at least
√

n . We have therefore shown that

(6.5) E(n) ≥
√

n.

The question now arises as to how close
√

n is to the actual value of

E(n) . By a more sophisticated but still elementary argument, John Michael

Hammersley established the upper bound

(6.6) E(n) ≤ e
√

n,

where e = 2.718 · · · denotes the base of the natural logarithm. Equations (6.5)

and (6.6) show that E(n) is “about”
√

n , but can we do better ? Is there some

constant c such that E(n) is close to c
√

n in the sense that the ratio E(n)/c
√

n

gets closer and closer to 1 as n becomes larger and larger ? In the language

of calculus, we want limn→∞ E(n)/c
√

n = 1. Equation (6.5) shows that if c

exists, then it satisfies c ≥ 1, while equation (6.6) shows that c ≤ e . The

value of c was finally obtained independently in 1977 by Sergey Kerov and

Anatoly Moiseevich Vershik, on the one hand, and Ben Logan and Lawrence

Shepp on the other. Kerov and Vershik found an ingenious argument based on

the RSK algorithm that c ≤ 2, while Kerov­Vershik and Logan­Shepp showed

that c ≥ 2. It follows that c = 2, so 2
√

n is a good approximation of E(n) .

The argument that c ≥ 2 is quite sophisticated, and we will mention here

only one interesting aspect of it. Recall that if we apply the RSK algorithm to

a permutation w of 1, 2, . . . , n , obtaining a pair (P, Q) of SYT of some shape

λ , then is(w) is equal to λ1 , the first (or largest) part of λ . We call λ the

shape of the permutation w . Because of this connection between increasing

subsequences and RSK, it turns out that we can get information about E(n)

by determining what the shape λ “typically” looks like. It is not unreasonable

to expect that we can make precise the idea of a “typical” shape λ obtained

via the RSK algorithm, and that for this typical shape the largest part λ1 will

be near E(n) .

In order to talk about typical shapes of permutations of 1, 2, . . . , n for

varying values of n , we should scale the shapes so they have the same total

size, i.e., the same total area of their boxes. If λ is partition of n , then the

Young diagram of λ has n boxes. If we take the side length of each box to

be 1/
√

n , then each box has area 1/n . Thus the total area of the boxes is 1.
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FIGURE 7

A large Young diagram

Figure 7 shows the outline of a Young diagram of a partition of n = 154,

where we regard each box as having side length 1/
√

154 = 0.08058 · · · .

The boundary of this Young diagram is approximately a curve indicated by a

dashed line.

We can ask what is this curve (if it exists) for the typical shape of a

permutation of 1, 2, . . . , n when n is very large. The result of Vershik­Kerov

and Logan­Shepp is that indeed such a curve Ψ exists and can be described

explicitly. In other words, if a permutation w of 1, 2, . . . , n is picked at random

for n large, then almost certainly (in a sense that can be made precise) the

outer boundary of the shape of w will be very close (again in a sense that

can be made precise) to a certain curve Ψ . Thus almost all permutations of

1, 2, . . . , n have approximately the same shape, a very surprising result ! The

curve Ψ is shown in Figure 8 (rotated 90◦ counterclockwise).

The curve Ψ turns out to be a new curve never previously encountered

by mathematicians. The length of the line segment from the point marked 0
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FIGURE 8

The curve Ψ(x)

to the intersection of the curve with the vertical line from 0 turns out to be 2.

This corresponds to the length of the largest part of λ , where we have scaled

each box side to have length 1/
√

n . Hence there are typically 2
√

n boxes in

the first row of the Young diagram of λ . This means that is(w) is typically

about 2
√

n , suggesting that the average E(n) of is(w) is also close to 2
√

n .

Vershik­Kerov and Logan­Shepp made this argument completely rigorous, and

thereby proved that indeed c = 2.

NOTE. For readers with sufficient mathematical background, we can

precisely describe the curve Ψ . Namely, Ψ is given parametrically by the

equations

x = y + 2 cos θ

y =
2

π
(sin θ − θ cos θ),

where 0 ≤ θ ≤ π .

Although the result of Vershik­Kerov and Logan­Shepp was a big break­

through in the theory of increasing subsequences, more exciting developments

were yet to come. The number E(n) merely gives the average value of is(w)

for w a permutation of 1, 2, . . . , n . We can get greedy and hope to obtain

even more information about is(w) . How are the values of is(w) distributed
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about the average value ? A definitive answer to this question was given in a

seminal paper by Jinho Baik, Percy Deift, and Kurt Johansson in 1999. Their

result is too sophisticated to state here, but we can explain an interesting

consequence. Namely, what can be said about the error in approximating E(n)

by 2
√

n ? The answer is that a good approximation to the error E(n)−2
√

n is

βn1/6 , where β is a certain constant given numerically as −1.7711 · · · . Thus

the error term is on the order of n1/6 (the sixth root of n ). More precisely,

in the language of calculus we have

lim
n→∞

E(n) − 2
√

n

n1/6
= β.

As n gets larger and larger, the ratio (E(n)−2
√

n)/n1/6 gets closer and closer

to β .

For the benefit of readers familiar with calculus, we will give the definition

of the constant β . The subtlety of this definition is an indication of the depth

of the result of Baik, Deift, and Johansson. Let u(x) denote the unique solution

to the nonlinear second order equation

u′′(x) = 2u(x)3
+ xu(x),

subject to the condition

u(x) ∼ −Ai(x), as x → ∞.

Here Ai(x) denotes the Airy function, a well­known “higher transcendental

function”. Define for all real numbers t the function (known as the Tracy­

Widom distribution)

F(t) = exp

(
−
∫ ∞

t

(x − t)u(x)2 dx

)
.

Then

β =

∫ ∞

−∞

t dF(t).
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APPENDIX

Proof of Property 1. Recall that w = a1a2 · · · an . We prove by induction

on j that after the RSK algorithm has been applied to a1a2 · · · aj , yielding a

pair (Pj, Qj) of column­strict plane partitions, then the i th entry in the first

row of Pj is the rightmost term of the sequence a1a2 · · · aj such that the

longest decreasing subsequence ending at that term has length i . Once this is

proved, then set j = n to obtain Property 1.

The assertion is clearly true for j = 1. Assume it true for j . Suppose

that the first row of Pj is c1c2 · · · cr . By the induction hypothesis, ci is the

rightmost term of the sequence a1a2 · · · aj such that the longest decreasing

subsequence ending at that term has length i . We now insert aj+1 into the

first row of Pj according to the rules of the RSK algorithm. It will bump

the leftmost element ci of this row which is less than aj+1 . (If there is no

element of the first row of Pj which is less than aj+1 , then aj+1 is inserted at

the end of the row. We then set i = r + 1, so that aj+1 is in all cases the i th

element of the first row of Pj+1 .) We need to show that the longest decreasing

subsequence of the sequence a1a2 · · · aj+1 ending at aj+1 has length i , since

clearly aj+1 will be the rightmost element of a1a2 · · · aj+1 with this property

(since it is the rightmost element of the entire sequence).

If i = 1, then aj+1 is the largest element of the sequence a1a2 · · · aj+1 , so

the longest decreasing subsequence ending at aj+1 has length one, as desired.

If i > 1, then there is a decreasing subsequence of a1a2 · · · aj of length i− 1

ending at ci−1 . Adjoining aj+1 to the end of this subsequence produces a

decreasing subsequence of length i ending at aj+1 . It remains to show that

there cannot be a longer decreasing subsequence ending at aj+1 . If there were,

then there would be some term as in w to the left of aj+1 and larger than

aj+1 such that the longest decreasing subsequence ending at as has length i .

Thus when as is inserted into Ps−1 during the RSK algorithm, it becomes

the i th element of the first row. It can only be bumped by terms larger than

as . In particular, when aj+1 is inserted into the first row, the i th element is

larger than as , which is larger than aj+1 . This contradicts the definition of

the bumping procedure and completes the proof.
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7

Reduced decompositions

In this chapter we explore a remarkable and unexpected connection between

standard Young tableaux and the building up of a permutation by interchanging

(transposing) two adjacent entries.

REDUCED DECOMPOSITIONS

We begin with the identity permutation 1, 2, . . . , n . We wish to construct

from it a given permutation as quickly as possible by interchanging adjacent

elements. By “as quickly as possible,” we mean in as few interchanges (called

adjacent transpositions) as possible. This will be the case if we always

transpose two elements a, b appearing in ascending order. For instance, one

way to get the permutation 41352 from 12345 with a minimum number of

adjacent transpositions is as follows, where we have marked in boldface the

pair of elements to be interchanged :

(7.1) 12345 → 13245 → 13425 → 14325 → 41325 → 41352.

Such sequences of interchanges are used in some of the sorting algorithms

studied in computer science (see Chapter 15), although there it is natural

to consider the reverse process whereby a list of numbers such as 41352 is

step­by­step converted to the “sorted” list 12345. Note that the five steps in

the sequence (7.1) are the minimum possible, since in the final permutation
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41352 there are five pairs (i, j) out of order, i.e., i appears to the left of

j and i > j (namely, (4, 1), (4, 3), (4, 2), (3, 2) , (5, 2)), and each adjacent

transposition can make at most one pair which was in order go out of

order. It would be inefficient to transpose a pair (a, b) that is in order in

the final permutation, since we would only have to change it back later.

A pair of elements of a permutation w that is out of order is called an

inversion of w . The number of inversions of w is denoted inv(w) and is an

important invariant of a permutation, in a sense measuring how “mixed up”

the permutation is. For instance, inv(41352) = 5, the inversions being the five

pairs (4, 1), (4, 3), (4, 2), (3, 2), (5, 2) .

A sequence of adjacent transpositions that converts the identity permutation

to a permutation w in the smallest possible number of steps (namely, inv(w)

steps) is called a reduced decomposition of w . Equation (7.1) shows one

reduced decomposition of the permutation w = 41352, but there are many

others. We can therefore ask for the number of reduced decompositions

of w . We denote this number by r(w) . The reader can check that every

permutation of the numbers 1, 2, 3 has only one reduced decomposition,

except that r(321) = 2. The two reduced decompositions of 321 are

123 → 213 → 231 → 321 and 123 → 132 → 312 → 321.

The remarkable connection between r(w) and SYT’s is the following. For

each permutation w , one can associate a small collection Y(w) of Young

diagrams (with repetitions allowed) whose number of squares is inv(w) , such

that r(w) is the sum of the number of SYT whose shapes belong to Y(w) .

We are unable to explain here the exact rule for computing Y(w) , but we

will discuss the most interesting special case. We also will not explain exactly

what is meant by a “small” collection, but in general its number of elements

will be much smaller than r(w) itself.

Example. Here are a few examples of the collection Y(w) .

(a) If w = 41352 (the example considered in equation (7.1)), then Y(w)

consists of the single diagram

of shape (3, 1, 1) . Since there are six SYT of this shape (computed from the

hook­length formula (4.2) or by direct enumeration), it follows that there

are six reduced decompositions of 41352. These reduced decompositions

are
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12345 → 12435 → 14235 → 41235 → 41325 → 41352

12345 → 12435 → 14235 → 14325 → 41325 → 41352

12345 → 12435 → 14235 → 14325 → 14352 → 41352

12345 → 13245 → 13425 → 14325 → 14352 → 41352

12345 → 13245 → 13425 → 14325 → 41325 → 41352

12345 → 13245 → 13425 → 14325 → 14352 → 41352.

(b) If w = 654321 then again Y(w) is given by a single diagram, this time

.

Hence

r(w) = f (5,4,3,2,1)

=
15!

15 · 34 · 53 · 72 · 9

= 292, 864.

(c) If w = 321654, then Y(w) consists of the diagrams whose shapes are

(writing for instance 42 as short for (4, 2)) 42, 411, 33, 321, 321, 3111,

222, 2211. Note that the shape 321 appears twice. We get

r(w) = f 42
+ f 411

+ f 33
+ 2f 321

+ f 3111
+ f 222

+ f 2211

= 9 + 10 + 5 + 2 · 16 + 10 + 5 + 9

= 80.

Clearly the formula for r(w) will be the simplest when Y(w) consists of

a single partition λ , for then we have r(w) = f λ , given explicitly by (4.2). A

simple though surprising characterization of all permutations for which Y(w)

consists of a single partition is given by the next result. Such permutations

are called vexillary after the Latin word vexillum for “flag,” because of a

relationship between vexillary permutations and certain polynomials known as

flag Schur functions.
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Vexillary theorem. Let w = w1w2 · · ·wn be a permutation of 1, 2, . . . , n.

Then Y(w) consists of a single partition λ if and only if there do not exist

a < b < c < d such that wb < wa < wd < wc . Moreover, if αi is the number

of j’s in a vexillary permutation w for which i < j and wi > wj , then the

parts of λ are just the nonzero αi ’s.

As an illustration of the above theorem, let w = 526314. One sees

by inspection that w satisfies the conditions of the theorem. We have

(α1, . . . , α6) = (4, 1, 3, 1, 0, 0) . Hence λ = (4, 3, 1, 1) and r(w) = f (4,3,1,1) =

216.

It is immediate from the above result that all the permutations of 1, . . . , n

for n ≤ 3 are vexillary, and that there is just one nonvexillary permutation

of 1, 2, 3, 4, namely, 2143. It has been computed that if v(n) denotes the

number of vexillary permutations of 1, 2, . . . , n then v(5) = 103 (out of 120

permutations of 1, 2, 3, 4, 5 in all), v(6) = 513 (out of 720), v(7) = 2761 (out

of 5040), and v(8) = 15767 (out of 40320). Simple methods for computing

and approximating v(n) have been given by Julian West and Amitai Regev,

and an explicit formula for v(n) was found by Ira Gessel. In particular, a

good approximation to v(n) (for n large) is given by

v(n) ∼ 39/29n

16πn4
= 2.791102533 · · · 9n

n4
.

REDUCED DECOMPOSITIONS AND SYT OF STAIRCASE SHAPE

There is one class of vexillary permutations of particular interest. These

are the permutations w0 = n, n−1, . . . , 1, for which λ = (n−1, n−2, . . . , 1) .

There is an elegant bijection between the SYT of shape (n − 1, n − 2, . . . , 1)

and the reduced decompositions of w0 , due to Paul Henry Edelman and Curtis

Greene. Begin with an SYT of shape (n−1, n−2, . . . , 1) and write the number

i at the end of the i th row, with n written at the bottom of the first column.

We will call the numbers outside the diagram exit numbers. An example is

given by :
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5

7

5

2

1

4

9

8

3

3

10

4

2

6 1

Now take the largest number in the SYT (in this case 10) and let it “exit”

the diagram to the southeast (between the 2 and 3). Whenever a number exits

the diagram, transpose the two exit numbers that it goes between. Hence we

now have :

5

7

5

2

1

4

9

8

3

2

4

3

6 1

In the hole left by the 10, move the largest of the numbers directly to the

left or above the hole. Here we move the 8 into the hole, creating a new hole.

Continue to move the largest number directly to the left or above a hole into

the hole, until such moves are no longer possible. Thus after exiting the 10,

we move the 8, 3, and 1 successively into holes, yielding :
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5

7

5

2

4

9

3

1

2

8

4

3

6 1

Now repeat this procedure, first exiting the largest number in the diagram

(ignoring the exit numbers), then transposing the two exit numbers between

which this largest number exits, and then filling in the holes by the same

method as before. Hence for our example 9 exits, 5 fills in the hole left by

9, and 2 fills in the hole left by 5, yielding :

5

7

2

2

5

3

1

4

8

4

3

6 1

Continue in this manner until all the numbers are removed from the

original SYT. The remarkable fact is that the exit numbers, read from top

to bottom, will now be n, n − 1, . . . , 1. We began with the exit numbers in

the order 1, 2, . . . , n , and each exit from the diagram transposed two adjacent

exit numbers. The size (number of entries) of the original SYT is equal to

n(n−1)/2, which is the number of inversions of the permutation n, n−1, . . . , 1.

Hence we have converted 1, 2, . . . , n to n, n−1, . . . , 1 by n(n−1)/2 adjacent

transpositions, thereby defining a reduced decomposition of w0 . Edelman
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and Greene prove that this algorithm yields a bijection between SYT of shape

(n−1, n−2, . . . , 1) and reduced decompositions of w0 . For the above example,

the reduced decomposition is given by 12345 → 13245 → 13425 → 14325 →
14352 → 41352 → 41532 → 45132 → 45312 → 45321 → 54321.

The proof of Edelman and Greene that the algorithm just defined is a

bijection is quite sophisticated, and we can say only a few words about it

here. Suppose that the algorithm produces the reduced decomposition R from

the SYT T of shape (n − 1, n − 2, . . . , 1) . In order to prove the bijectivity

of the algorithm, it is necessary to describe how to obtain T from R . This

“inverse bijection” is accomplished with a variation of the RSK algorithm. It

is surprising how the RSK algorithm enters into this problem and illustrates

the “robustness” of the RSK algorithm, that is, how it can be adapted to other

situations. There are now known dozens of variants of the RSK algorithm,

perhaps the most mathematically interesting of all combinatorial algorithms.
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Tilings

The next enumerative topic we will discuss concerns the partitioning of some

planar or solid shape into smaller shapes. Such partitions are called tilings. The

combinatorial theory of tilings is connected with such subjects as geometry,

group theory, and logic, and has applications to statistical mechanics, coding

theory, and many other topics. Here we will be concerned with the purely

enumerative question of counting the number of tilings.

DOMINO TILINGS

The first significant result about the enumeration of tilings was due to

the Dutch physicist Pieter Willem Kasteleyn and independently to the British

physicist Harold Neville Vazeille Temperley and the British­born physicist

Michael Ellis Fisher. Motivated by work related to the adsorption of diatomic

molecules on a surface and other physical problems, they were in the early

1960s led to consider the tiling of a chessboard by dominos (or dimers). More

precisely, consider an m × n chessboard B , where at least one of m and n

is even. A domino consists of two adjacent squares (where “adjacent” means

having an edge in common). The domino can be oriented either horizontally or

vertically. Thus a tiling of B by dominos will require exactly mn/2 dominos,

since there are mn squares in all, and each domino has two squares. The

illustration below shows a domino tiling of a 4 × 6 rectangle.
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Let N(m, n) denote the number of domino coverings of an m×n chessboard.

For instance, N(2, 3) = 3, as shown by :

We have in fact that

(8.1) N(2, n) = Fn+1,

where Fn+1 denotes a Fibonacci number, defined by the recurrence

F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1 if n ≥ 2.

To prove equation (8.1), we need to show that N(2, 1) = 1, N(2, 2) = 2,

and N(2, n + 2) = N(2, n + 1) + N(2, n) . Of course it is trivial to check

that N(2, 1) = 1 and N(2, 2) = 2. In any domino tiling of a 2 × (n + 2)

rectangle, either the first column consists of a vertical domino, or else the

first two columns consist of two horizontal dominos. In the former case we

are left with a 2 × (n + 1) rectangle to tile by dominos, and in the latter

case a 2 × n rectangle. There are N(2, n + 1) ways to tile the 2 × (n + 1)

rectangle and N(2, n) ways to tile the 2 × n rectangle, so the recurrence

N(2, n + 2) = N(2, n + 1) + N(2, n) follows, and hence also (8.1).

The situation becomes much more complicated when dealing with larger

rectangles, and rather sophisticated techniques such as the “transfer­matrix

method” or the “Pfaffian method” are needed to produce an answer. The final

form of the answer involves trigonometric functions (see the Note below), and

it is not even readily apparent (without sufficient mathematical background)

that the formula gives an integer. It follows, however, from the subject

known as Galois theory that N(2n, 2n) is in fact the square or twice the

square of an integer, depending on whether n is even or odd. For instance,
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FIGURE 9

The board R4 .

N(8, 8) = 12, 988, 816 = 36042 , while N(6, 6) = 6728 = 2·582 . It is natural to

ask for a combinatorial reason why these numbers are squares or twice squares.

In other words, in the case when n is even we would like a combinatorial

interpretation of the number M(2n) defined by N(2n, 2n) = M(2n)2 , and

similarly when n is odd. While a formula for M(2n) was known making it

obvious that it was an integer (so not involving trigonometric functions), it

was only in 1992 that William Carl Jockusch found a direct combinatorial

interpretation of M(2n) . In 1996 Mihai Adrian Ciucu found an even simpler

interpretation of M(2n) as the number of domino tilings of a certain region

Rn , up to a power of two. The region Rn is defined to be the board consisting

of 2n− 2 squares in the first three rows, then 2n− 4 squares in the next two

rows, then 2n− 6 squares in the next two rows, etc., down to two squares in

the last two rows. All the rows are left­justified. The board R4 is illustrated

in Figure 9.

If T(n) denotes the number of domino tilings of Rn , then Ciucu’s formula

states that

N(2n, 2n) = 2nT(n)2.

If n is even, say n = 2r , then N(2n, 2n) = (2rT(n))2 , while if n is odd,

say n = 2r + 1, then N(2n, 2n) = 2(2rT(n))2 , so we recover the result that
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N(2n, 2n) is a square or twice a square depending on whether n is even or

odd.

NOTE. For those readers with sufficient background, the formula for the

number N(2m, 2n) of domino tilings of a 2m × 2n chessboard is given by

N(2m, 2n) = 4mn

m∏

s=1

n∏

t=1

(
cos2 sπ

2m + 1
+ cos2 tπ

2n + 1

)
.

AZTEC DIAMONDS

Although the formula for the number of domino tilings of a chessboard

is rather complicated, there is a variant of the chessboard for which a very

simple formula for the number of domino tilings exists. This new board is

called an Aztec diamond and was introduced by Noam David Elkies, Gregory

John Kuperberg, Michael Jeffrey Larsen, and James Gary Propp. Their work

has stimulated a flurry of activity on exact and approximate enumeration

of domino tilings, as well as related questions such as the appearance of a

“typical” domino tiling of a given region.

The Aztec diamond AZn of order n consists of two squares in the first

row, four squares in the second row beginning one square to the left of the

first row, six squares in the third row beginning one square to the left of the

second row, etc., up to 2n squares in the n th row. Then reflect the diagram

created so far about the bottom edge and adjoin this reflected diagram to the

original. For instance, the Aztec diamond AZ3 looks as follows :

Let az(n) be the number of domino tilings of the Aztec diamond AZn .

For instance, AZ1 is just a 2× 2 square, which has two domino tilings (both
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FIGURE 10

Chessboard coloring of Aztec diamond

dominos horizontal or both vertical). Hence az(1) = 2. It’s easy to compute

by hand that az(2) = 8, and a computer reveals that az(3) = 64 = 26 ,

az(4) = 1024 = 210 , az(5) = 32768 = 215 , etc. The evidence quickly becomes

overwhelming for the conjecture that

(8.2) az(n) = 2
1
2

n(n+1).

It is rather mysterious why Aztec diamonds seem to be so much more nicely

behaved regarding their number of domino tilings than the more natural m×n

chessboards.

A proof of the conjecture (8.2) is the main result of Elkies et al. mentioned

above. They gave four different proofs, showing the surprising connections

between Aztec diamonds and various other branches of mathematics. (For

instance, it is not a coincidence that 2
1
2

n(n+1) is the degree of an irreducible

representation of the group GL(n+1, C) .) Of course a combinatorialist would

like to see a purely combinatorial proof, and indeed Elkies et al. gave

such proofs. Other combinatorial proofs have been since given by Ciucu

and Propp. We will sketch the fourth proof of Elkies et al., called a proof

by domino shuffling. The domino shuffling procedure we describe will seem

rather miraculous, and there are many details to verify to see that it actually

works as claimed. Nevertheless, we hope that our brief description will take

some of the mystery out of equation (8.2).

We first color the squares of the Aztec diamond AZn black and white in

the usual chessboard fashion, with the first (leftmost) square in the top row
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colored white. Figure 10 shows a tiling of AZ3 with the chessboard coloring

shown.

Certain pairs of dominos in the tiling will form a 2 × 2 square with the

top left square colored black. Remove all such pairs of dominos (if any exist).

For the tiling of AZ3 shown above there is one such pair, and after removing

it we get the tiling shown in Figure 11

FIGURE 11

A reduced tiling

Let us call a tiling T of AZn with the 2 × 2 squares removed as just

described a reduced tiling of AZn , and call T the reduction of the original

(complete) tiling. Note that if we remove k 2 × 2 squares from a complete

tiling to get a reduced tiling, then there are 2k ways to tile the 2 × 2 holes.

(Each hole can be tiled either by two horizontal or two vertical dominos.) In

other words, given a reduced tiling T of AZn with k 2 × 2 holes, there are

2k corresponding complete tilings of AZn whose reduction is T .

Consider a reduced tiling of AZn . Each domino will have one white square

and one black square. There are four possible colorings and orientations of a

domino, shown in Figure 12. With each of these four possible colored dominos

we associate a direction : up, down, right, and left, as indicated in Figure 12

by an arrow.

We can enlarge the Aztec diamond AZn to AZn+1 by adding squares

around the boundary. Add one square at the beginning and one square at the

end of each row, and two squares at the top and bottom. The next illustration

shows the earlier reduced tiling of AZ3 , with an arrow placed on each domino

according to its coloring and orientation, and the boundary of new squares
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FIGURE 12

Directions of colored dominoes

to give AZ4 . We have also numbered each domino for compatibility with

Figure 14.

1

2 3 4

5 6

7

8 9

10

FIGURE 13

Domino shuffling

Now move each domino one unit in the direction of its arrow. This is the

shuffling operation referred to in the name “domino shuffling.” Let k be the

number of 2 × 2 squares removed before shuffling. It can be shown that (a)

the dominos do not overlap after shuffling, and (b) the squares of AZn+1 that

are not covered by dominos can be uniquely covered with exactly n + k + 1

2 × 2 squares. Figure 14 shows the dominos after shuffling (with the same

numbers as before), together with the leftover five 2 × 2 squares (holes).

We now complete the partial tiling of AZn+1 to a complete tiling by

putting two dominos in each 2 × 2 hole. Since there are two ways to tile

a 2 × 2 square, there are 2n+k+1 ways to tile all n + k + 1 of the 2 × 2

squares. Therefore we have associated 2n+k+1 tilings of AZn+1 with each
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1

2

3

5 7

4

6

8 9

10

FIGURE 14

After the shuffle

k ­hole reduced tiling of AZn . The amazing fact is that every tiling of AZn+1

occurs exactly once in this way ! In other words, given a tiling of AZn+1 ,

we can reconstruct which of the dominos were shuffled from a reduced tiling

of AZn and thus also the n + k + 1 2 × 2 holes that were left over. Since

every k ­hole reduced tiling T of AZn is the reduction of 2k complete tilings

of AZn , and since T corresponds to 2n+k+1 tilings of AZn+1 , we obtain the

recurrence

az(n + 1) = 2n+1az(n).

The unique solution to this recurrence satisfying az(1) = 2 is easily seen (for

instance by mathematical induction) to be

az(n) = 2
1
2

n(n+1),

proving equation (8.2).

We have succeeded in counting the number of domino tilings of the Aztec

diamond of order n . We can go off in a different direction and ask what

the tilings themselves look like. In other words, what are the properties of

a “typical” tiling of AZn ? This question is in the same spirit as asking for

the typical shape of a permutation under the RSK algorithm, as we did in

Chapter 6. It is by no means apparent that anything interesting can be said

about a typical tiling of AZn . Certainly it has certain statistical properties
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such as the number of horizontal dominos being approximately equal to the

number of vertical dominos, but this is not very surprising and has little to

do with the shape of an Aztec diamond. If, however, one looks at a tiling

of a large Aztec diamond chosen randomly by a computer, some remarkable

behaviour becomes evident. Figure 15 shows such a tiling of AZ15 , with the

horizontal dominos shaded.

FIGURE 15

A random tiling

Note that near the four corners the dominos line up in a single direction

(horizontal at the top and bottom, and vertical on the left and right), but in

the middle their orientation looks random. The “chaotic region” where the

dominos look random is roughly a circle. Moreover, if n is very large and the

Aztec diamond is regarded as having area 1, then the boundary of the Aztec

diamond will look like a square standing on one of its corners. (The actual
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staircase boundary will have steps so small that they cannot be seen, so the

staircases will look like straight lines.) The circle enclosing the chaotic region

then appears to be tangent to the four sides of the square boundary. In 1995

it was proved by William Jockusch, James Propp, and Peter Shor that this

circle indeed exists. More precisely, for very large n , almost every (in a sense

that can be made precise) domino tiling of AZn will have dominos lined up

near the four corners (horizontal at the top and bottom, and vertical on the left

and right) and a chaotic region where at a particular point a domino is just as

likely (to a very close approximation) to be horizontal as vertical. Moreover,

this chaotic region is very close to being the interior of the circle tangent to

the four (smoothed out) sides of the Aztec diamond. The circle surrounding

the chaotic region is called the Arctic circle because the orientations of the

dominos outside the circle are “frozen.” This result of Jockusch et al. is a

beautiful example of “typical behavior” and has inspired a lot of subsequent

research.

We cannot go into the details of the proof here, but we can give a little

intuition about the existence of a frozen region. Why, for instance, do dominos

“want” to line up horizontally at the top ? Suppose that the dominos were

vertical in the top row. This forces the orientation of many other dominos, as

illustrated in Figure 16.

FIGURE 16

Frozen dominos

On the other hand, if the top row contains a horizontal domino then there

are no such restrictions on the orientations of other dominos. Thus with the
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horizontal orientation there is a considerably larger board remaining in which

to place the other dominos, so we would expect many more tilings with

the top row occupied by a horizontal domino. Hence a random tiling should

“almost always” have a horizontal domino in the top row. Similar reasoning

then applies to the next row from the top, etc., though it is by no means

apparent from this heuristic reasoning where will lie the exact cutoff between

“frozen” and random behavior.
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9

Tilings and plane partitions

We have encountered several examples of unexpected connections between

seemingly unrelated mathematical problems. This is one of the features of

mathematics that makes it so appealing to its practitioners. In this chapter we

discuss another such connection, this time between tilings and plane partitions.

Other surprising connections will be treated in later chapters.

The tiling problem we will be considering is very similar to the problem

of tiling an m × n chessboard with dominos. Instead of a chessboard (whose

shape is a rectangle), we will be tiling a hexagon. Replacing the squares of

the chessboard will be equilateral triangles of unit length which fill up the

hexagon, yielding a “hexagonal board.” Let H(r, s, t) denote the hexagonal

board whose opposite sides are parallel and whose side lengths (in clockwise

order) are r, s, t, r, s, t . Thus opposite sides of the hexagon have equal length

just like opposite sides of a rectangle have equal length. Figure 17 shows the

hexagonal board H(2, 3, 3) with its 42 equilateral triangles. In general, the

hexagonal board H(r, s, t) has 2(rs + rt + st) equilateral triangles.

Instead of tiling with dominos (which consist of two adjacent squares), we

will be tiling with pieces which consist of two adjacent equilateral triangles.

We will call these pieces simply rhombi, although they are really only special

kinds of rhombi. Thus the number of rhombi in a tiling of H(r, s, t) is

rs + rt + st . The rhombi can have three possible orientations (compared with
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FIGURE 17

The hexagonal board H(2, 3, 3)

the two orientations of a rectangle) :

Here is a typical tiling of H(2, 3, 3) :

LW

F

F

RW

RW
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This picture gives the impression of looking into the corner of an r× s× t

box in which cubes are stacked. The brain will alternate between different

interpretations of this cube stacking. To be definite, we have labelled by F

the floor, by LW the left wall, and by RW the right wall. Shading the rhombi

according to their orientation heightens the impression of a cube stacking,

particularly if the page is rotated slightly counterclockwise :

Regarding the floor as a 3 × 2 parallelogram filled with six rhombi, we

can encode the cube stacking by a 3 × 2 array of numbers which tell the

number of cubes stacked above each floor rhombus :

2 3

0 2

20

Rotate this diagram 45◦ counterclockwise, erase the rhombi, and “straighten

out,” giving the following array of numbers :

3 2 2
2 0 0

.

This array is nothing more than a plane partition whose number of rows

is at most r , whose number of columns is at most s , and whose largest

part is at most t (where we began with the hexagonal board H(r, s, t) ) ! This

correspondence between rhombic tilings of H(r, s, t) and plane partitions with
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at most r rows, at most s columns, and with largest part at most t is a

bijection. In other words, given the rhombic tiling, there is a unique way to

interpret it as a stacking of cubes (once we agree on what is the floor, left

wall, and right wall), which we can encode as a plane partition of the desired

type. Conversely, given such a plane partition, we can draw it as a stacking

of cubes which in turn can be interpreted as a rhombic tiling.

An immediate corollary of the amazing correspondence between rhombic

tilings and plane partitions is an explicit formula for the number N(r, s, t)

of rhombic tilings of H(r, s, t) . For this number is just the number of plane

partitions with at most r rows, at most s columns, and with largest part at

most t . If we set x = 1 in the left­hand side of MacMahon’s formula (3.7)

then it follows that we just get N(r, s, t) . If we set x = 1 in the right­hand

side then we get the meaningless expression 0/0. However, if we write

[i] = 1 − xi
= (1 − x)(1 + x + · · · + xi−1),

then the factors of 1 − x cancel out from the numerator and denominator

of the right­hand side of (3.7). Therefore substituting x = 1 is equivalent to

replacing [i] by the integer i , so we get the astonishing formula

N(r, s, t) =

(1 + t)(2 + t)2 · · · (r + t)r(r + 1 + t)r · · · (s + t)r(s + 1 + t)r−1

1 · 22 · 33 · · · rr(r + 1)r · · · sr(s + 1)r−1

· (s + 2 + t)r−2 · · · (r + s − 1 + t)

(s + 2)r−2 · · · (r + s − 1)
.
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The Möbius function and set partitions

This chapter introduces the Möbius function, a fundamental tool for enumer­

ative combinatorics. It is very useful in situations demanding counting with

“inclusion­exclusion,” meaning that some objects get counted more than once

and then the number of extra counts is subtracted to correct the error. There

may possibly be several stages of corrections, and the pattern of adding and

subtracting in such situations can be very complex. In some such cases, how­

ever, the Möbius function takes care of this bookkeeping for us, producing

clean and computable answers.

Much can be said about the Möbius function, whose theory is very rich. Our

aim here is however modest. We want to introduce this function and exemplify

its use for an interesting and nontrivial enumeration problem, namely that of

counting regions in space. This application is given in the next chapter.

THE MÖBIUS FUNCTION

The Möbius function assigns a very significant integer to every finite poset.

This word is an abbreviation for “partially ordered set.” The precise definition

of a poset is that it is a set P together with a relation ≤ satisfying the

axioms :

• x ≤ x for all x ∈ P .
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• If x ≤ y and y ≤ x , then x = y .

• If x ≤ y and y ≤ z , then x ≤ z .

(Let us point out that it is possible for two elements x, y to satisfy neither

x ≤ y nor y ≤ x .) In the main examples that we will consider, the definition

of x ≤ y has a simple, intuitive meaning such as “x is a subset of y” or “y

is divisible by x .” Thus it is not necessary to think in terms of the axiomatic

definition above to understand our presentation.

For simplicity we assume that all posets considered have a bottom element

less than all other elements and a top element greater than all other elements.

Small posets can be represented as a diagram (graph) in which x < y if there

is a path from x to y moving up in the diagram. For instance, in Figure 18

we have a < h since we can move up from a to h via d and g , for instance.

Note that in this poset, a is the bottom element and h the top element.
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FIGURE 18

A small poset

The Möbius function µ(y) is recursively defined for any finite poset as

follows : Put µ(a) = 1 for the bottom element a of the poset, then require

that

µ(y) = −
∑

x<y

µ(x)
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for all other elements y . This formula means that we are to define µ(y) so

that when we sum µ(x) for all x less than or equal to y the resulting sum

equals zero. This can clearly be done as long as one knows the values µ(x)

for all elements x less than y .

To illustrate how this recursive definition works we compute the Möbius

function of the poset in Figure 18, starting from the bottom. We get recursively :

µ(a) = 1, by definition,

µ(b) = −µ(a) = −1,

µ(c) = −µ(a) = −1,

µ(d) = −µ(a) = −1,

µ(e) = −µ(a) = −1,

µ(f ) = −µ(a) − µ(b) − µ(c) − µ(d) = −1 + 1 + 1 + 1 = 2,

µ(g) = −µ(a) − µ(d) = −1 + 1 = 0,

µ(h) = −µ(a) − µ(b) − µ(c) − µ(d) − µ(e) − µ(f ) − µ(g)

= −1 + 1 + 1 + 1 + 1 − 2 − 0 = 1.

Figure 19 shows the same poset with computed Möbius function values.
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FIGURE 19

Values of the Möbius function

One important property of the Möbius function is that it can be used to

“invert” summations over a partially ordered index set. Here is a statement
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of the “Möbius inversion formula” in a special case. If a function f : P → Z

from a poset P to the integers is related to another function g : P → Z by

the partial summation formula

f (x) =
∑

y≥x

g(y),

then the value g(a) at the bottom element a of P can be expressed in terms

of f via the formula

g(a) =
∑

y∈P

µ(y)f (y).

The Möbius function has its origin in number theory, where it was in­

troduced by August Ferdinand Möbius. (Möbius is best known to nonmathe­

maticians for his eponymous connection with the “Möbius strip.” The Möbius

strip itself was well­known long before Möbius, but Möbius was one of the

first persons to systematically investigate its mathematical properties.) The

posets relevant to number theory are subsets of the positive integers ordered

by divisibility. For these posets, the Möbius function µ(n) as defined above

coincides with the classical Möbius function arising in number theory.

For instance, see the divisor diagram of the number 60 in Figure 20. The

elements of this poset are the positive integers n that are divisors of 60, and

we define m ≤ n in the poset if n is divisible by m . A calculation based

on this diagram, analogous to the one we just carried out over Figure 18,

shows that µ(60) = 0. In the case of the classical Möbius function of number

theory there is however a faster way to compute. Namely, for n > 1 one

has that µ(n) = 0 if the square of some prime number divides n , and that

otherwise µ(n) = (−1)k where k is the number of prime factors in n . Hence,

for example : µ(60) = 0 since 22 = 4 divides 60 ; and µ(30) = −1 since

we have the prime factorization 30 = 2 · 3 · 5 with an odd number of distinct

prime factors.

The Möbius function is of great importance in number theory. Let it

suffice to mention — for those who have the background to know what we

are referring to — that both the Prime Number Theorem and the Riemann

Hypothesis (considered by many to be the most important unsolved problem

in all of mathematics) are equivalent to statements about the Möbius function.

Namely, letting M(n) =
∑n

k=1 µ(k) , it is known that

Prime Number Theorem ⇐⇒ lim
n→∞

M(n)

n
= 0,

Riemann Hypothesis ⇐⇒ |M(n)| < n1/2+ǫ, for all ǫ > 0

and all sufficiently large n.
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FIGURE 20

The divisors of 60

THE POSET OF SET PARTITIONS

Explicit expressions for the Möbius function have been determined for

many posets of importance in combinatorics. In this section we present a

basic example, namely a partial order on the partitions of a finite set.

A partition of a set A is a way of breaking it into smaller pieces, called

blocks, namely a collection of pairwise disjoint nonempty subsets whose union

is A . For instance, here are the 15 partitions of the set {1, 2, 3, 4} :

1234, 12­34, 13­24, 14­23, 1­234, 2­134, 3­124, 4­123,

12­3­4, 13­2­4, 14­2­3, 23­1­4, 24­1­3, 34­1­2, 1­2­3­4

In the following we use {1, 2, . . . , n} as the ground set and consider the

collection of all partitions of this set. Denote this collection by Πn .

There is a natural way to compare set partitions, saying that partition π

is less than partition σ (written π < σ ) if π is obtained from σ by further

partitioning its blocks. This way we get a poset structure on the set Πn , which
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is illustrated in Figure 21 for Π4 . In accordance with the general definition

of the diagram of a poset given earlier, this diagram is to be understood so

that a partition π is less than a partition σ if and only if there is a downward

path from σ to π in the order diagram, corresponding to further breaking up

of σ ’s parts in order to obtain the partition π .

234 1

1234

123 4 13 24 12 34

12 3 4 14 2 3 23 1 4

1 2 3 4

124 3 134 2

34 1 224 1 313 2 4

14 23

FIGURE 21

The poset Π4 of set partitions.

Now we ask, what is the value µn of the Möbius function computed over

the partition poset Πn ? In other words, we want to determine µn = µΠn
(πmax) ,

where πmax denotes the top element of Πn , the partition with only one block.

For example, direct computation over the poset Π4 in Figure 21 shows that

µ4 = −6.

Here is the general answer :

(10.1) µn = (−1)n−1(n − 1)!.

To understand this formula it pays off to ask a more ambitious question.

Let b(σ) denote the number of blocks in a partition σ , and consider the

polynomial

(10.2) Qn(x)
def
=
∑

σ∈Πn

µ(σ) xb(σ)
= µnx + higher­degree terms,
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which is a kind of generating function for the Möbius function of Πn . What

can be said about Qn(x) ?

Again, let us have a look at an example. Direct computation over the poset

Π4 in Figure 21 shows that

Q4(x) = x4 − 6x3
+ 11x2 − 6x.

Observe that this polynomial Q4(x) is a product of some very simple

polynomials of degree one :

Q4(x) = x4 − 6x3
+ 11x2 − 6x = x(x − 1)(x − 2)(x − 3).

This pretty factorization is not accidental. It is a special case of the general

formula

(10.3) Qn(x) = x(x − 1)(x − 2) · · · (x − (n − 1)).

A proof for this will be outlined in the context of certain geometric arguments

in the next chapter ; see equations (11.4) and (11.5). In particular, as claimed

by equation (10.1), we have that

(10.4) µn = (−1)(−2) · · · (−(n − 1)) = (−1)n−1(n − 1)!,

since µnx is the lowest­degree term of the polynomial Qn(x) .
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Arrangements and regions

Drawing a straight line in a plane splits the plane into two parts. Drawing

several lines cuts it into several parts. How many ? This kind of geometric

partitioning problem is discussed here. A moments thought makes it clear that

the answer depends not only on the number of lines, but also on how they

intersect. How, if at all, can the dependence be described ?

FIGURE 22

An arrangement of 5 lines.
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The analogous question can be asked also for higher dimensions, and it

turns out that there is an elegant general answer involving the Möbius function.

ARRANGEMENTS OF LINES

A collection A of straight lines in the plane is called a line arrangement,

and the connected pieces into which the lines partition the plane are called

regions. There are two kinds of regions, the bounded ones (which are contained

inside some circle) and the unbounded ones (running off to infinity). How

many regions are there ? Of these, how many are bounded ? For instance, the

arrangement in Figure 22 has 14 regions, of which 4 are bounded (the shaded

ones).

Suppose that the arrangement A consists of t lines, and let r(A) and b(A)

denote the number of regions and the number of bounded regions, respectively,

into which the plane is divided by A .

If all the lines are parallel we see immediately that r(A) = t + 1 and

b(A) = 0. So, let us assume that there is at least one intersection point where

two lines meet. Let C denote the set of intersection points, and for each point

p in C let mp denote the number of lines passing through p .

Theorem. We have that

(i)

r(A) = 1 + t +
∑

p∈C

(mp − 1),

(ii)

b(A) = 1 − t +
∑

p∈C

(mp − 1).

For instance, the arrangement in Figure 22 has t = 5 lines, six intersection

points with mP = 2 and one intersection point with mP = 3 ; see Figure 23.

(Remark : Disregard for now the labels on points and lines in Figure 23 — they

will be of use later on.) Hence the equations in the theorem produce the correct

answers r(A) = 1 + 5 + 6 · 1 + 1 · 2 = 14, and b(A) = 1− 5 + 6 · 1 + 1 · 2 = 4.

Two more examples of line arrangements are given in Figures 28 and 29.

The reader is invited to compute their numbers of regions using equations (i)

and (ii).

We sketch a proof of the theorem by so­called “mathematical induction.”

A proof by induction works like this : one verifies the statement for some

particular value, in our case t = 2, and then one proves that the truth of the

statement for some value t − 1 implies its truth for the value t . Then the
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FIGURE 23

The seven intersection points.

truth for t = 2 implies the truth for t = 3, which in turn implies the truth

for t = 4, and so on, so that the truth for all t ≥ 2 will follow.

Plugging t = 2 into equations (i) and (ii) we get r(A) = 4 and b(A) = 0,

which is certainly correct for any arrangement consisting of two crossing lines.

Now, assume that the theorem is correct for all arrangements having t − 1

lines. We want to prove it for an arrangement A having t lines. Then argue

as follows. Remove one of the lines, call it L , from A . This leaves a smaller

arrangement A′ with only t − 1 lines. How many new regions are created

when we reintroduce the line L ?

This can be seen in the following way. Imagine that we travel along the

line L , coming in from infinity and after crossing some of the lines of A′

heading out to infinity again in the opposite direction; see Figure 24 where

L is dashed.

Traversing L we encounter some points where L intersects other lines. Let

CL denote the set of such intersection points and suppose that there are k of

them. Then each time we reach a crossing point we complete the splitting of

the region of A′ that we have just traversed. Finally, after the last crossing

point is reached we end by splitting the one remaining region. Thus, we have

created k + 1 new regions in all.

Since the arrangement A′ has only t − 1 lines, we get by the induction

assumption that
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L

FIGURE 24

Traversing the line L through the subarrangement A′ .

r(A′) = 1 + (t − 1) +
∑

p∈C\CL

(mp − 1) +
∑

p∈CL

(mp − 2),

where C \CL = {p ∈ C : p 6∈ CL} . Hence, since there are k + 1 new regions

and CL ⊆ C , we obtain

r(A) = r(A′) + k + 1

= 1 + (t − 1) +
∑

p∈C\CL

(mp − 1) +
∑

p∈CL

(mp − 2) + k + 1

= 1 + (t − 1) +
∑

p∈C\CL

(mp − 1) +
∑

p∈CL

(mp − 1) − k + k + 1

= 1 + t +
∑

p∈C

(mp − 1).

Thus we have verified equation (i). Equation (ii) can be proved by similar

reasoning, observing that exactly k − 1 of the newly created regions are

bounded (all but the first and the last along L ). Another way to reason is

that equation (ii) follows from equation (i) since there must be exactly 2t

unbounded regions. To see this, imagine a circle drawn in the plane and large
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enough that all intersection points of A are in its interior. Then the unbounded

regions are precisely the regions that reach outside the circle, and since the

lines don’t intersect outside the circle it is easy to see by going once around

the circle that they cut out precisely 2t regions there.

ARRANGEMENTS OF HYPERPLANES

Can this kind of reasoning be generalized from 2­dimensional space (the

plane) to 3­dimensional space, or even to higher n ­dimensional space ? Let

us consider for a moment the case of 3 dimensions. The analogue of a line

is here a plane. Mathematically planes can be described by equations of the

form ax+by+ cz = d in three space coordinates x , y and z . Familiarity with

linear algebra is of course helpful, but it should suffice for the following to

have an idea of the intuitive notion of a plane in ordinary 3­space.

A plane cuts space into two regions, several planes cut space into several

regions. As before we ask : how many ? And, how many of these regions are

bounded ? The reader is invited to try to carry out an argument similar to the

one we have given for line arrangements. However, this kind of barehanded

approach is tricky in the 3­dimensional case. Fortunately, to our rescue comes

the Möbius function.

Let us consider a finite collection A = {H1, . . . , Ht} of hyperplanes Hi in

n ­dimensional space Rn . By “hyperplane” is here meant the solution set to a

linear equation a1x1+· · ·+anxn = b . A reader who is not comfortable with the

notion of higher­dimensional space can think about our usual 3­dimensional

space, where “hyperplanes” are just ordinary planes.

The arrangement A cuts space into a number of connected components,

called regions, some of which are bounded. Let r(A) and b(A) denote the

number of regions and the number of bounded regions, respectively.

The theorem on page 92 shows that for lines in the plane the numbers r(A)

and b(A) can be computed from information about how the lines intersect.

It turns out that something similar is true in higher dimensions To describe

the intersection pattern we introduce the intersection poset LA . This is a

poset consisting of all nonempty intersections ∩H∈BH of subfamilies B ⊆ A ,

and also the whole space Rn itself. The partial order is the opposite of set

inclusion : σ ≤ π in LA if and only if π ⊆ σ . In particular, Rn is the bottom

element. Figure 25 shows the intersection poset of the line arrangement of

Figure 23.

It is a remarkable fact that the numbers of regions of A can be computed

from the values of the Möbius function of LA , as shown by the following



96 11. Arrangements and regions

R

N

1 2 3 4 5 6 7

2

J K ML

FIGURE 25

Intersection poset.

theorem proved by Thomas Zaslavsky in 1975.

Zaslavsky’s Theorem. We have that

r(A) =
∑

σ∈LA
| µ(σ) | and b(A) =|

∑
σ∈LA

µ(σ) |

(Remark : The formula for b(A) requires that the arrangement A is

essential, meaning that the normals of the hyperplanes span Rn .)

We have already proved Zaslavsky’s theorem for dimension two, because

for line arrangements in the plane the theorem specializes to the theorem

on page 92. For an example, take the line arrangement in Figure 22. Its

intersection poset is shown in Figure 25 and the Möbius function values are

shown in Figure 26.

−1

1 1 1 2 1 1 1

1

−1 −1 −1 −1

FIGURE 26

Möbius function values of intersection poset.



11. Arrangements and regions 97

A convenient way of collecting the relevant information about the Möbius

function of the intersection poset of an arrangement A is via its characteristic

polynomial, defined as follows :

(11.1) PA (x)
def
=
∑

σ∈LA

µ(σ) xdim(σ)
= xn

+ lower­degree terms.

For instance, for the arrangement A in Figures 22 and 26 we have that

PA (x) = x2 − 5x + 8.

It can be shown that (−1)n−dim(σ)µ(σ) > 0 for all σ ∈ LA . Zaslavsky’s

theorem can therefore be reformulated in the following compact way :

r(A) = | PA(−1) |(11.2)

b(A) = | PA(1) |(11.3)

Thus the characteristic polynomial carries the enumerative information

about regions, bounded and general, in which we are interested. But, how

can one compute this polynomial ? Doesn’t its determination require that we

somehow compute all Möbius function values, in which case no simplification

is achieved, only a reformulation. Or are there shortcuts to computing

characteristic polynomials ?

Yes, there are, but only for some arrangements, namely for those whose

hyperplanes are given by linear equations a1x1 + · · · + anxn = b with integer

coefficients ai and b . Then an interesting method is available that in some

cases allows elegant and easy computations.

Theorem. Let A be a hyperplane arrangement in Rn , determined by

equations a1x1 + · · ·+ anxn = b with integer coefficients ai and b. Then, for

all sufficiently large 1 ) prime numbers p, the value PA(p) of the characteristic

polynomial (i.e., PA(x) evaluated at x = p) equals the number of n­tuples

of integers (q1, q2, . . . , qn) such that

(1) 0 ≤ qi ≤ p − 1 , for all i

(2) the integer a1q1 + · · ·+anqn−b is not divisible by p, for all the equations

a1x1 + · · · + anxn = b that determine A .

It is a consequence of the theorem that in order to count regions of such

an arrangement in real n ­dimensional space we can instead count certain

n ­tuples of integers relative to large prime numbers p . This is so because of

1 ) The meaning of saying that p has to be “sufficiently large” can be made precise. In
particular, there are finitely many “bad” primes that must be avoided.



98 11. Arrangements and regions

the fact that a polynomial is determined by its evaluation at sufficiently many

points, in this case at the infinitely many (sufficiently large) prime numbers

p .

The theorem gives rise to a method for enumerating regions of an

arrangement A via its characteristic poynomial. The first step of the method

is to express PA(p) as a function of p by counting n ­tuples of numbers as

described in the theorem. Then we forget that p is a prime number and think

of p as a variable, and finally we make the substitutions p = −1 and p = 1.

Then by formulas (11.2) and (11.3) we will have computed the number of

regions and the number of bounded regions.

This method will be illustrated in the next three sections.

THE BRAID ARRANGEMENT AND SET PARTITIONS

Consider the hyperplane arrangement Bn in Rn , called the braid arrange­

ment, given by the equations

xi − xj = 0, for 1 ≤ i < j ≤ n.

In spite of its simple appearance, this arrangement plays an important role at the

intersection of several areas of mathematics : algebra, topology, combinatorics,

and more. How many regions are there in its complement ? This is easy to

answer. The following direct argument shows that there are n! regions.

In order to specify which region R a point a = (a1, . . . , an) in Rn belongs

to, we must describe on which side of each hyperplane xi − xj = 0 does a

lie. In other words, for all 1 ≤ i < j ≤ n , we must specify whether ai < aj or

ai > aj . This is the same as specifying a linear ordering of a1, . . . , an , i.e.,

a permutation π of 1, 2, . . . , n such that aπ(1) < aπ(2) < · · · < aπ(n) . Since

there are n! permutations π , it follows that there are n! regions Rπ , defined

by

Rπ = {(a1, a2, . . . , an) ∈ Rn : aπ(1) < aπ(2) < · · · < aπ(n)}.

Let us test the machinery presented in this chapter by computing the number

of regions of Bn via its characteristic polynomial. The question then is : How

many n ­tuples (q1, . . . , qn) of numbers qi are there such that 0 ≤ qi ≤ p− 1

for all i and qi 6= qj for all 1 ≤ i < j ≤ n ? This counting problem is easy.

There are p ways to choose q1 . After that there are p − 1 ways to choose

q2 (all choices are valid except the value already chosen for q1 ). Then there

are p − 2 ways to choose q3 , and so on. We find that there are

p(p − 1)(p − 2) · · · (p − n + 1)
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choices in all. (Remember that we need only consider large prime numbers

p , in particular we may assume that p > n + 1.) By the theorem on page 97

we then obtain the characteristic polynomial

(11.4) PBn
(x) = x(x − 1)(x − 2) · · · (x − n + 1).

Plugging in x = −1 we get the correct number of regions

r(Bn) = | (−1)(−2)(−3) · · · (−n) |= n!

The intersection poset of the braid arrangement has a very concrete

combinatorial description. Consider, for example, what it means for a point

(a1, . . . , a7) ∈ R7 to lie in the intersection of the three hyperplanes x2−x4 = 0,

x3 − x5 = 0 and x4 − x7 = 0 This happens if a2 = a4 , a3 = a5 and a4 = a7 .

In other words, we require precisely that a2 = a4 = a7 and a3 = a5 , and

otherwise the real numbers ai can be arbitrary. All the information is therefore

encoded in the family of sets {1} , {2, 4, 7} , {3, 5} , {6} , indicating which

groups of variables should be set equal. This family of sets is, of course,

nothing other than a partition of the set {1, 2, . . . , 7} .

The general description can be gleaned from this special case. The elements

of Πn , i.e. set partitions, encode the intersections of subfamililes of hyperplanes

from Bn . Furthermore, such an intersection Xπ properly contains another

intersection Xσ if and only if the corresponding partition π is less than σ in

the poset Πn . In other words,

Πn is the intersection poset of the braid arrangement Bn .

Recall the notation b(σ) for the number of blocks in a partition σ . The

dimension of the subspace Xπ equals the number of blocks in the partition

π : dim(Xπ) = b(π) . Hence, recalling the definitions (10.2) and (11.1), we

conclude that the characteristic polynomial of Bn equals the polynomial Qn(x) :

(11.5) PBn
(x) = Qn(x).

Equation (10.3) follows from this and equation (11.4).

FATTENED BRAID ARRANGEMENTS

Here we consider what happens to the number of regions if the braid

arrangement is “fattened up” by adding parallel hyperplanes. Consider the

arrangement Bk
n in Rn defined by the equations

xi − xj ∈ {0,±1,±2, . . . ,±k}, for all 1 ≤ i < j ≤ n .



100 11. Arrangements and regions

Thus, there are (2k + 1)
(

n

2

)
defining equations. For k = 0 we have the braid

arrangement, and in general Bk
n is obtained from B0

n = Bn by adding k

parallel hyperplanes on each side of the
(

n

2

)
original hyperplanes. Figures 27

and 28 show the arrangements B0
3 and B2

3 . The figures actually depict the

intersection of these arranagements with the plane x1 +x2 +x3 = 0, and hence

show 2­dimensional line arrangements — the motivation for this is discussed

at the end of this section. The actual arrangements B0
3 and B2

3 are obtained by

replacing each line L with a plane through L perpendicular to the diagram.

This procedure does not affect the intersection poset or the number of regions,

as explained in more detail in the remark at the end of this chapter.
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FIGURE 27

The braid arrangement B3 = B0
3 intersected with x1 + x2 + x3 = 0.

How many regions does Bk
n have ? We count n ­tuples (q1, q2, . . . , qn)

with 0 ≤ qi ≤ p − 1 such that

qi − qj /∈ {0,±1, . . . ,±k}, for all 1 ≤ i < j ≤ n .

In other words, we want to count n ­tuples (q1, q2, . . . , qn) such that
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FIGURE 28

The arrangement B2
3 intersected with x1 + x2 + x3 = 0

qi ∈ {0, 1, 2, . . . , p − 1}, for all i = 1, 2, . . . , n,(11.6)

the qi are distinct,(11.7)

qi − qj 6= s, for all 1 ≤ i < j ≤ n and all s ∈ {±1, . . . ,±k}.(11.8)

This counting problem has the following reformulation.

Say that we have a round table surrounded by p chairs numbered

consecutively 0, 1, 2, . . . , p − 1. Suppose that a group of n people (with

n < p ) is to be seated around the table in these chairs. We can call these

people X1, X2, . . . Xn .

Let us say that qi = r means that person Xi sits in chair number r . Then

conditions (11.6) and (11.7) mean that they all sit in separate chairs. Condition

(11.8) has the following meaning. Since qi 6= qj + s for s = 1, 2, . . . , k , Xi is

not allowed to sit in any of the k chairs immediately to the right of Xj , and

since qi 6= qj − s for s = 1, 2, . . . , k , Xi is not allowed to sit in any of the k

chairs immediately to the left of Xj . In other words, there must be k empty

chairs between any two people sitting at the table.
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Thus, the enumerative problem we want to solve is the following :

In how many ways can n people be seated in p chairs around a table

so that there are at least k empty chairs between any two of them ?

A small argument, given in the appendix to this chapter, gives the following.

Answer : in p(p − kn − 1)(p − kn − 2) · · · (p − kn − n + 1) ways.

From this we deduce the characteristic polynomial

PBk
n
(x) = x(x − kn − 1)(x − kn − 2) · · · (x − kn − n + 1),

and by setting x = −1 we obtain the number of regions.

r(Bk
n) = (nk + 2)(nk + 3) · · · (nk + n) =

(nk + n)!

(nk + 1)!

For instance, the arrangement B3
3 of 21 planes in R3 has 132 regions.

The following remark is intended for readers with a sufficient knowledge

of geometry. All hyperplanes of the arrangement Bk
n are orthogonal to the

hyperplane H0 given by the equation x1 +x2 + · · ·+xn = 0. We obtain another

arrangement, call it B̂k
n , by intersecting the hyperplanes of Bk

n with H0 . This

gives an essentially equivalent arrangement in the (n − 1)­dimensional space

H0 , in which all dimensions are reduced by one.

One can easily prove that the intersection poset of B̂k
n is isomorphic to that

of Bk
n . The dimension of an intersection is, however, one less in B̂k

n . Therefore

the characteristic polynomial of B̂k
n can be obtained simply by dividing that

of Bk
n by x . Thus,

P bBk
n
(x) = (x − kn − 1)(x − kn − 2) · · · (x − kn − n + 1).

From this we obtain the number of regions and the number of bounded

regions by substituting −x = 1 and x = 1, respectively :

r(B̂k
n) = (nk + 2)(nk + 3) · · · (nk + n) =

(nk + n)!

(nk + 1)!

and

b(B̂k
n) = (nk)(nk + 1) · · · (nk + n − 2) =

(nk + n − 2)!

(nk − 1)!
.

For instance, the line arrangement B̂2
3 of 15 lines in R2 has 72 regions, of

which 42 are bounded. This can also be seen from Figure 28.
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SHI ARRANGEMENTS AND LABELED TREES

Define the arrangement Cn in Rn by the equations

xi = 0 and xi = 1, for all i = 1, 2, . . . , n,

and

xi − xj = 0 and xi − xj = 1, for all 1 ≤ i < j ≤ n .

Figure 29 shows the arrangement C2 . These arrangements are equivalent to

the so called Shi arrangements arising in the study of affine Weyl groups.

Notice that Cn contains the braid arrangement Bn as a subarrangement.
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FIGURE 29

The arrangement C2 .

How many regions does Cn have ? According to the theorem on page 97

we should count n ­tuples (q1, q2, . . . , qn) with 0 ≤ qi ≤ p − 1 such that

qi 6= 0, 1, for all i = 1, 2, . . . , n,

and

qi − qj 6= 0, 1, for all 1 ≤ i < j ≤ n .

In other words, we want to count n ­tuples (q1, q2, . . . , qn) such that

qi ∈ {2, 3, . . . , p − 1}, for all i = 1, 2, . . . , n,(11.9)

the qi are distinct,(11.10)

qi − qj 6= 1, for all 1 ≤ i < j ≤ n.(11.11)
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This counting problem can be dealt with using the following model. Say

that we have a long table with chairs along one side numbered consecutively

2, 3, . . . , p− 1. A group of n people of different ages is to be seated in these

chairs. We call these people X1, X2, . . . Xn , and assume that they are listed in

order of increasing age : X1 is the youngest, then comes X2 , etc, so that Xn

is the oldest.

Let us say that qi = r means that person Xi sits in chair number r . Then

conditions (11.9) and (11.10) mean simply that there is at most one person in

each of the p − 2 chairs (no one is sitting in someone else’s lap). Condition

(11.11), qi 6= qj + 1, is more interesting. It means that if Xi is younger than

Xj , then Xi is not allowed to sit in the chair immediately to the right of Xj .

Thus, the enumerative problem we want to solve is the following.

In how many ways can n people of different ages be seated

in p − 2 linearly arranged chairs so that no one has a younger

person immediately to his/her right ?

A small argument, given in the appendix to this chapter, gives the following.

Answer : In (p − n − 1)n ways.

We have this way, via the theorem on page 97, computed the characteristic

polynomial PCn
(x) = (x − n − 1)n , and by setting x = −1 and x = 1 we can

deduce the number of regions and the number of bounded regions, respectively :

(11.12) r(Cn) = (n + 2)n and b(Cn) = nn.

For instance, the line arrangement C2 has sixteen regions, four of which are

bounded; see Figure 29.

Does the number (n + 2)n ring a bell ? In Chapter 1 we enumerated the

labeled trees on n + 2 vertices and came up with exactly this number (see

Cayley’s theorem, p. 13). Is there any connection ?

It would take us too far afield to continue this discussion here, but the

answer is yes : explicit and natural bijections between the set of regions of

Cn and the set of labeled trees on n + 2 vertices have been described. Via

such bijections one can obtain an alternative, bijective proof of the formula

(11.12) for r(Cn) .
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APPENDIX : COUNTING TABLE SEATING PLACEMENTS

1. Let U(n, p, k) denote the number of ways in which n people can be

seated in p chairs around a table so that there are at least k empty chairs

between any two of them. To determine U(n, p, k) we need the following.

Observation. There are
(

p − k(m − 1)

m

)

ways to choose an m­set a1 < a2 < · · · < am from {1, 2, . . . , p} so that

ai+1 − ai > k for all i .

Proof. For any such sequence a1 < a2 < · · · < am , let bi = ai − k(i− 1) .

Then

bi+1 − bi = ai+1 − ai − k.

Hence, ai+1 − ai > k if and only if bi+1 − bi > 0. We may therefore instead

count sequences b1 < b2 < · · · < bm from {1, 2, . . . , p − k(m − 1)} such that

bi+1 − bi > 0 for all i . This is the same as counting m­element subsets of

{1, 2, . . . , p−k(m−1)} , a number given by the binomial coefficient, completing

the proof of the observation.

p−2k−1 

0

2

3

1

k k

C

C

C

C

C

FIGURE 30

The seating arrangement : choosing among the grey chairs

Now we return to the determination of U(n, p, k) . The first person chooses

a chair C0 and sits down. This can be done in p ways, since there are p
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chairs around the table. Now the chair C0 and the k chairs to its immediate

right as well as the k chairs to its immediate left are “forbidden,” so there

are p − (1 + 2k) chairs left for the others to choose. Call these chairs

C1, . . . , Cp−2k−1 , listed in their clockwise order. They are shaded grey in

Figure 30.

A moment’s thought shows that a sequence of chairs Cai
is allowed to be

chosen if and only if the sequence of indices a1 < a2 < · · · < an−1 satisfies

the requirement that ai+1 − ai > k for all i . Therefore, the observation above

gives the number of ways that the n − 1 remaining chairs can be chosen.

Finally, there are (n − 1)! ways that the n − 1 people can be distributed to

the chosen chairs, so in all we get

U(n, p, k) = p (n − 1)!

(
(p − 2k − 1) − k (n − 2)

n − 1

)

= p (n − 1)!
(p − kn − 1)!

(n − 1)! (p − kn − n)!

= p(p − kn − 1)(p − kn − 2) · · · (p − kn − n + 1).

2. Let W(n, p) denote the number of ways in which n people of different

ages can be seated in p−2 chairs, linearly arranged along one side of a table,

so that no one has a younger person immediately to his/her right.

Suppose we have such a seating arrangement. Then n of the p− 2 chairs

are taken, so p− n− 2 empty ones remain. The empty chairs partition the set

N of people into p − n − 1 groups, namely the group N1 of people sitting

to the left of the first empty chair, the group N2 sitting between the first and

second empty chairs, and so on until the last group Np−n−1 sitting to the

right of the last empty chair. Notice that some of these groups may be empty,

which happens when there are two empty chairs next to each other.

The sequence N1, N2, . . . , Np−n−1 of groups, is a weak ordered partition

of the set N of n people, by which we mean an ordered sequence of pairwise

disjoint subsets Ni (empty set allowed, hence the term “weak”) whose union

is N .

The crucial observation is that the seating arrangement is completely

determined by the weak ordered partition, since each group Ni of people

must sit in order of increasing age and the positions of the empty chairs are

determined. Hence, we want to know : how many weak ordered partitions of

N with p − n − 1 blocks are there ?
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Think of it this way. To create a weak ordered partition with p − n − 1

blocks, each of the n people must be placed in one of p − n − 1 groups,

with no further restrictions. For each person there are p− n− 1 choices, each

choice independent of the other ones. Hence, for the total number of choices

W(n, p) = (p − n − 1)n
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Face numbers of polytopes

Among the many results of Euler that have initiated fruitful lines of devel­

opment in combinatorics, the one that is perhaps most widely known is his

famous counting formula for boundaries of 3­dimensional polytopes from

1752. Here we trace parts of a story that spans a couple of centuries and

involves several branches of mathematics.

FIGURE 31

A 3­dimensional convex polytope.
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EULER’S FORMULA

A 3 ­polytope P (or 3­dimensional convex polytope, to be more precise)

is a bounded region of space obtained as the intersection of finitely many

halfspaces (and not contained in any plane). It is precisely the kind of geometric

object that can arise as a “bounded region” of an arrangement of planes in

3­dimensional space, in the sense explained in Chapter 11. For the layman it

can be described as the kind of solid body you can create from a block of

cheese with a finite number of plane cuts with a knife.

FIGURE 32

The cube.

For instance, take the ordinary cube shown in Figure 32 — it can be cut out

with six plane cuts. The cube is one of the five Platonic solids : tetrahedron,

cube, octahedron, dodecahedron and icosahedron, known and revered by the

Greek mathematicians in antiquity. A more general example of a 3­polytope

is shown in Figure 31.

A polytope that is dear to all combinatorialists is the “permutohedron,”

shown in Figure 33. Its 24 corners correspond to the 24 = 4·3·2·1 permutations

of the set {1, 2, 3, 4} . The precise rule for constructing the permutohedron and

for labelling its vertices with permutations is best explained in 4­dimensional

space and will be left aside. Note that the pairs of permutations that correspond

to edges of the permutohedron are precisely pairs that differ by a switch of two

adjacent entries, such as 2143 — 2134 or 3124 — 3214. Thus, edge­paths

on the boundary of the permutohedron are precisely paths consisting of such

“adjacent transpositions,” giving geometric content to the topic of reduced

decompositions that was discussed in Chapter 7.
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FIGURE 33

The permutohedron.

The boundary of a 3­polytope is made up of pieces of dimension 0, 1

and 2 called its faces. These are the possible areas of contact if the polytope

is made to touch a plane surface, such as the top of a table. The 0­faces are

the corners, or vertices, of the polytope. The 1­faces are the edges, and the

2­faces are the flat surfaces, such as the six squares bounding the cube. The

permutohedron has fourteen 2­faces, six of which are 4­sided and eight are

6­sided.

Euler’s formula has to do with counting the number of faces of dimensions

0, 1 and 2. Namely, let fi be the number of i­dimensional faces.

Euler’s Formula. For any 3 ­polytope :

f0 − f1 + f2 = 2.

Let us verify this relation for the cube and the permutohedron :

f0 f1 f2 f0 − f1 + f2

Cube 8 12 6 8 − 12 + 6 = 2

Permutohedron 24 36 14 24 − 36 + 14 = 2
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From a modern mathematical point of view there is no difficulty in

defining higher­dimensional polytopes. Thus, a d ­polytope is a full­dimensional

bounded intersection of closed halfspaces in Rd . Such higher­dimensional

polytopes have taken on great practical significance in the last fifty years due

to their importance for linear programming. The term “linear programming”

refers to techniques for optimizing a linear function subject to a collection of

linear constraints. The linear constraints cut out a feasible region of space,

which is a d ­polytope (possibly unbounded in this case). The combinatorial

study of the structure of polytopes has interacted very fruitfully with this

applied area.

It can be shown that the same definition of the faces of a polytope works

also in higher dimensions (namely, “the possible areas of contact if the polytope

is made to touch a (d − 1)­dimensional hyperplane in Rd ”), and that there

are only finitely many faces of each dimension 0, 1, . . . , d − 1. Thus we may

define the number fi of i­dimensional faces for i = 0, 1, . . . , d − 1. These

numbers for a given polytope P are collected into a string

f (P) = (f0, f1, . . . , fd−1),

called the f ­vector of P . For instance, we have seen that f (cube) = (8, 12, 6)

and f (permutohedron) = (24, 36, 14) .

Is there an Euler formula for f ­vectors in higher dimensions ? This ques­

tion was asked early on, and by the mid­1800’s some mathematicians had

discovered the following beautiful fact.

Generalized Euler Formula. For any d ­polytope :

f0 − f1 + f2 − · · · + (−1)d−1fd−1 = 1 + (−1)d−1.

The early discoverers experienced serious difficulty with proving this

formula. It is generally considered that the first complete proof was given

around the year 1900 by Jules Henri Poincaré.

MORE RELATIONS AMONG FACE NUMBERS ?

Having seen this formula it is natural to ask : What other relations, if any,

do the face numbers fi satisfy ? This question opens the doors to a huge and

very active research area, pursued by combinatorialists and geometers. Many

equalities and inequalities are known for various classes of polytopes, such as

upper bounds and lower bounds for the numbers fi in terms of the dimension

d and the number f0 of vertices.
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The boldest hope one can have for the study of f ­vectors of polytopes is

to obtain a complete characterization. By this is meant a reasonably simple

set of conditions by which one can recognize if a given string of numbers is

the f ­vector of a d ­polytope or not. For instance, one may ask whether

(12.1) (14, 89, 338, 850, 1484, 1834, 1604, 971, 380, 76)

is the f ­vector of a 10­dimensional polytope ? We find that

14 − 89 + 338 − 850 + 1484 − 1834 + 1604 − 971 + 380 − 76 = 0,

in accordance with the generalized Euler formula. Had this failed we would

know for sure that we are not dealing with a true f ­vector, but agreeing with

the Euler formula is certainly not enough to draw any conclusion. What other

“tests” are there, strong enough to tell for sure whether this is the f ­vector

of a 10­polytope ?

An answer is known for dimension 3 ; namely, (f0, f1, f2) is the f ­vector

of a 3­polytope if and only if

(i) f0 − f1 + f2 = 2,

(ii) f0 ≤ 2f2 − 4,

(iii) f2 ≤ 2f0 − 4.

However, already the next case of 4 dimensions presents obstacles that with

present methods are unsurmountable. Thus, no characterization of f ­vectors

of general polytopes is known. But if one narrows the class of polytopes to

the so called “simplicial” ones there is a very substantial result that we now

describe.

A d ­simplex is a d ­polytope which is cut out by exactly d +1 plane cuts.

In other words, it has d + 1 maximal faces, which is actually the minimum

possible for a d ­polytope. A 1­simplex is a line segment, a 2­simplex is a

triangle, a 3­simplex is a tetrahedron, and so on; see Figure 34. In general,

a d ­simplex is the natural d ­dimensional analogue of the tetrahedron.

A d ­polytope is said to be simplicial if all its faces are simplices. It

comes to the same to demand that all maximal faces are (d − 1)­simplices.

For instance, a 3­polytope is simplicial if all 2­faces are triangular, as in

Figure 31; so the octahedron and icosahedron are examples of simplicial

polytopes but the cube and permutohedron are not.

The class of simplicial polytopes is special from some points of view,

but nevertheless very important in polytope theory. For instance, if one seeks

to maximize the number of i­faces of a d ­polytope with n vertices, the

maximum is obtained simultaneously for all i by certain simplicial polytopes.
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FIGURE 34

A d ­simplex, d = 1, 2, 3.

In 1971 Peter McMullen made a bold conjecture for a characterization of

the f ­vectors of simplicial polytopes. A key role in his proposed conditions

was played by certain “g ­numbers,” so his conjecture became known as

the “g ­conjecture.” In 1980 two papers, one by Louis Joseph Billera and

Carl William Lee and one by Richard Peter Stanley, provided the two major

implications that were needed for a proof of the conjecture. Their combined

efforts thus produced what is now known as the “g ­theorem.” To state the

theorem we need to introduce an auxiliary concept.

By a multicomplex we mean a nonempty collection M of monomials in

indeterminates x1, x2, . . . , xn such that if m ∈ M and m′ divides m then m′ ∈
M . Figure 35 shows the multicomplex M = {1, x, y, z, x2, xy, yz, z2, x2y, z3}
ordered by divisibility.

xy

y z

x yz z

x

2 2

2y z 3
2

4

3

11

x

FIGURE 35

A multicomplex.
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An M ­sequence is a sequence (1, a1, a2, a3, . . . ) such that each ai is the

number of monomials of degree i in some fixed multicomplex. For instance,

the M ­sequence coming from the multicomplex M in Figure 35 is (1, 3, 4, 2) .

A multicomplex and an M ­sequence can very well be infinite, but only finite

ones will concern us here. If some zeros are added or removed at the end of

a finite M ­sequence it remains an M ­sequence.

The “M ” in M ­sequence is mnemonic both for “multicomplex” and

for “Macaulay,” in honor of Francis Sowerby Macaulay, who studied the

concept in a paper from 1927. Macaulay’s purpose was entirely algebraic

(to characterize so called Hilbert functions of certain graded algebras), but

the underlying combinatorics of his investigations has turned out to have

far­reaching ramifications.

THE g ­THEOREM

We are now ready to formulate the theorem characterizing the f ­vectors

of simplicial d ­polytopes. Let δ be the greatest integer less than or equal to

d/2, and let Md = (mi,j) be the matrix with (δ + 1) rows and d columns and

with entries

mi,j =

(
d + 1 − i

d − j

)
−
(

i

d − j

)
, for 0 ≤ i ≤ δ, 0 ≤ j ≤ d − 1.

Here we are once more using the binomial coefficients introduced in Chapter

1. Recall that they are given by
(

n

k

)
=

n!

k! · (n − k)!
,

where n! = n · (n − 1) · (n − 2) · · · 2 · 1, and 0! = 1.

For example, with d = 10 we get

m2,8 =

(
10 + 1 − 2

10 − 8

)
−
(

2

10 − 8

)
=

9!

2! · 7!
− 2!

2! · 0!
= 36 − 1 = 35,

and the whole matrix is

M10 =





11 55 165 330 462 462 330 165 55 11

1 10 45 120 210 252 210 120 45 9

0 1 9 36 84 126 126 84 35 7

0 0 1 8 28 56 70 55 25 5

0 0 0 1 7 21 34 31 15 3

0 0 0 0 1 5 10 10 5 1




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These matrices Md determine a very surprising link between M ­sequences

and f ­vectors.

The g ­theorem. The matrix equation

f = g · Md

gives a one­to­one correspondence between f ­vectors f of simplicial d ­

polytopes and M ­sequences g = (g0, g1, . . . , gδ) .

The equation f = g · Md is to be understood as follows. Multiply each

entry in the first row of Md by g0 , then multiply each entry in the second

row by g1 , and so on. Finally, after all these multiplications add the numbers

in each column. Then the first column sum will equal f0 , the second column

sum will equal f1 , and so on.

To exemplify the power of this theorem let us return to a question posed

earlier ; namely, is the vector f displayed in equation (12.1) the f ­vector

of a 10­polytope ? This question can now be answered if sharpened from

“10­polytope” to “simplicial 10­polytope”. Easy computation shows that

(12.2) f = (1, 3, 4, 2, 0, 0) · M10,

and we know from Figure 35 that (1, 3, 4, 2, 0, 0) is an M ­sequence. Hence,

f is indeed the f ­vector of some simplicial 10­polytope.

Having seen this, one can wonder if we were just lucky with this relatively

small example. Perhaps for large d it is as hard to determine if a sequence is

an M ­sequence as to determine if a sequence is an f ­vector coming from a

simplicial polytope. This is not the case. There exists a very easy criterion in

terms of binomial coefficients that quickly tests an integer sequence for being

an M ­sequence; see the appendix.

The proof of the g ­theorem is very involved and calls on a lot of

mathematical machinery. The part proved by Billera and Lee — that for every

M ­sequence g there exists a simplicial polytope with the corresponding f ­

vector — requires some very delicate geometrical arguments. The part proved

by Stanley — that conversely to every simplicial polytope there corresponds

an M ­sequence in the stated way — uses tools from algebraic geometry in an

essential way. Here is a brief statement for readers with sufficient background.

There are certain complex projective varieties, called toric varieties, associated

to d ­polytopes with rational coordinates, and the fact that the sequence g

corresponding to the f ­vector of a polytope is an M ­sequence ultimately

derives from a multicomplex that can be constructed in the cohomology

algebra of such a variety.
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The g ­vector associated to a simplicial polytope via the g ­theorem is

rich in geometric, algebraic and combinatorial meaning, yet it is still poorly

understood and the subject of much current study.

In this book we have several times commented on the many surprising,

remarkable and mysterious connections that exist between different mathe­

matical objects, different mathematical problems and different mathematical

areas. The g ­theorem is one more example of this kind, establishing a totally

unsuspected link between the combinatorial structure of multicomplexes of

monomials and the facial structure of simplicial polytopes — two seemingly

totally unrelated classes of objects.

In closing, let us once more mention that no characterization is known

for f ­vectors of general polytopes of dimension greater than 3. The success

in the case of simplicial polytopes depends on some very special structure,

available in that case but lacking or much more complex in general. The study

of f ­vectors, initiated by Euler’s discovery some 250 years ago, is likely to

remain an important challenge for many years to come.

APPENDIX

The characterization of M ­sequences, referred to above, stems from an

extremal question concerning the combinatorics of the divisibility relation for

monomials.

Let M be a finite set of monomials of degree k in indeterminates

x1, x2, . . . . Define the shadow of M , denoted ∂(M) , to be the set of

monomials of degree k − 1 that divide some element of M . For instance, if

M = {x3y, x2y2, x2yz, xy2z, z3u, yzu2},

then

∂(M) = {x3, x2y, xy2, x2z, xyz, y2z, z3, yzu, z2u, yu2, zu2}.
The question now is : How small can the shadow be, given the size of M ?

For example, the monomial family just shown has #M = 6 and #∂(M) = 11,

where #S denotes the number of elements of the set S . But choosing

M′
= {x4, x3y, x2y2, xy3, y4, x3z},

we find that

∂(M′) = {x3, x2y, xy2, y3, x2z},
with #M′ = 6 and #∂(M′) = 5. This is, in fact, best possible : it can be

shown that #∂(M) ≥ 5 for all families M of 6 monomials of degree 4.
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The general fact is that given the number of monomials n = #M of a set

M of monomials of degree k , there is an easily computable number ∂k(n)

giving the minimal possible size of the shadow #∂(M) . Here is its definition.

For any integers k, n ≥ 1 there is a unique way of writing

n =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
ai

i

)
,

so that ak > ak−1 > · · · > ai ≥ i ≥ 1. To see this, first choose ak as large

as possible so that n ≥
(

ak

k

)
. Next, choose ak−1 as large as possible so that

n−
(

ak

k

)
≥
(

ak−1

k−1

)
, and continue like this to obtain the rest of the numbers aj .

This given, define

∂k(n) =

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · · +

(
ai − 1

i − 1

)
.

Also let ∂k(0) = 0.

The characterization we have referred to is this : A nonnegative integer

sequence (n0, n1, n2, . . .) is an M ­sequence if and only if n0 = 1 and

∂k(nk) ≤ nk−1 for all k > 1.

For example, we know from Figure 35 that (1, 3, 4, 2, 0, 0) is an M ­

sequence. This fact can now be verified also by the the following small

calculation :

∂2(4) = 3 ≤ 3

∂3(2) = 2 ≤ 4

∂4(0) = 0 ≤ 2

∂5(0) = 0 ≤ 0.
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13

Connections with topology

On first acquaintance combinatorics may seem to have a somewhat different

“flavor” than the mainstream areas of mathematics, due mainly to what

mathematicians call “discreteness.” Nevertheless, combinatorics is fortunate

to have many beautiful and fruitful links with older and more established

areas, such as algebra, geometry, probability and topology. We will now

move on to discuss one such connection, perhaps the most surprising one,

namely that with topology. First, however, let us say a few words about what

mathematicians mean by discreteness.

In mathematics the words “continuous” and “discrete” have technical mean­

ings that are quite opposite. Typical examples of continuous objects are curves

and surfaces in ordinary 3­dimensional space (or suitable generalizations in

higher dimensions). A characteristic property is that each point on such an ob­

ject is surrounded by some “neighborhood” of other points, containing points

that are in a suitable sense “near” to it. The area within mathematics that deals

with the study of continuity is called topology. The characteristic property of

discrete objects, on the other hand, is that each point is “isolated” — there is

no concept of points being “near.” Combinatorics is the area that deals with

discreteness in its purest form, particularly in the study of finite structures of

various kinds.

Several fascinating connections between the continuous and the discrete are
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known in mathematics — in algebra, geometry and analysis. A quite recent

development of this kind, the one we want to talk about here, is that ideas

and results from topology can be put to use to solve certain combinatorial

problems. In the following chapters we exemplify this with some problems

coming from extremal combinatorics and computer science.

A nodding acquaintance with the most basic notions of metric topology,

such as the meaning of “open set” , “continuous function” and “distance”

between points in Euclidean space Rd will be assumed. The d ­dimensional

sphere Sd is the subspace of Rd+1 consisting of points at distance one from the

origin. In symbols : Sd = {(x1, x2, . . . , xd+1) ∈ Rd+1 : x2
1+x2

2+· · ·+x2
d+1 = 1} .

The Polish mathematician Karol Borsuk made some fundamental contri­

butions to the early development of topology. In 1933 he published a paper

entitled (in translation) “Three theorems about the n ­dimensional Euclidean

sphere”. That paper contains, among other wonderful things, a famous theorem

and a famous open problem. We need two definitions. Two points x, y on the

sphere Sd are said to be antipodal if x = −y . For instance, the north pole

and the south pole are antipodal on the surface of the earth, illustrating the

d = 2 case. The diameter of a bounded set is the maximal distance between

any pair of its points.

Borsuk’s Theorem. 2 ) If the d ­dimensional sphere Sd is covered by d + 1

open sets, then one of these sets must contain a pair of antipodal points.

Borsuk’s Problem. Is it true that every set of bounded diameter in d ­

dimensional real space Rd can be partitioned into d + 1 sets of smaller

diameter ?

This work of Borsuk has interacted with combinatorics in a remarkable

way. In 1978 László Lovász solved a difficult combinatorial problem — the

“Kneser Conjecture” from 1955 — using Borsuk’s theorem. Then, in 1992

the debt to topology was repaid when Jeffry Ned Kahn and Gil Kalai solved

Borsuk’s problem using some results from pure combinatorics. Both of these

achievements are discussed in chapter 14.

SIMPLICIAL COMPLEXES

We now outline in some detail another fruitful connection between topology

and combinatorics, a connection that will be used in Chapters 15 and 16. Let

2 ) Also called the Borsuk­Lyusternik­Schnirelman theorem
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us take as our example of a topological space the torus, a 2­dimensional

surface that is well known in ordinary life in the form of an inner tube, or

as the surface of a doughnut (see Figure 36).

b

a

FIGURE 36

The torus

There is a way to “encode” a space such as the torus into a finite set

system, called a triangulation. It works as follows. Draw (curvilinear) triangles

on the torus so that each edge of a triangle is also the edge of some other

triangle, and the 2 endpoints of each edge are not the pair of endpoints of

any other edge. The triangles should cover the torus so that each point on

the torus is in exactly one of the triangles, or possibly in an edge where two

triangles meet or at a corner where several triangles meet. We can think of

this as cutting the rubber surface of an inner tube into small triangular pieces.

Figure 37 shows one way of doing this using 14 triangles. In this figure

the torus is cut up and flattened out — to get back the original torus one

has to roll this flattened version up and glue together the two sides marked

1­2­3­1, and then wrap around the cylinder obtained and glue together the

two end­circles marked 1­4­5­1. Note that the two circles 1­2­3­1 and 1­4­5­1

in Figure 37 correspond to the circles marked a and b that are drawn with

dashed lines on the torus in Figure 36.

Having thus cut the torus apart we now have a collection of 14 triangles.

The corners in Figure 37 where triangles come together are called vertices,

and we can represent each triangle by its 3 vertices. Thus each one of our 14

triangles is replaced by a 3­element subset of {1,2,3,4,5,6,7}. For instance,

{1,2,4} and {3,4,6} denote two of the triangles. The full list of all 14 triangles

is
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76

5

44

1321

5

1321

FIGURE 37

A triangulated torus

(13.1)
124 126 135 137 147 156 234

235 257 267 346 367 456 457.

A family of subsets of a finite set which is closed under taking subsets

(i.e., if A is a set in the family and B is obtained by removing some elements

from A then also B is in the family) is called a simplicial complex. Thus our

fourteen 3­element sets and all their subsets form a simplicial complex. We

encountered other examples in Chapter 12 : if a polytope is simplicial then its

faces form a simplicial complex.

An important fact is that just knowing the simplicial complex — a finite

set system — we can fully reconstruct the torus ! Namely, knowing the 14

triples we can manufacture 14 triangles with vertices marked in corresponding

fashion and then glue these triangles together according to the blueprint of

Figure 37 (using the vertex labels) to obtain the torus. To imagine this you

should think of the triangles as being flexible (e.g., made of rubber sheet) so

that there are no physical obstructions to their being bent and glued together.

Also, the torus obtained may be different in size or shape from the original

one (smaller, larger, deformed), but these differences are irrelevant from the

point of view of topology.
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To sum up the discussion : The simplicial complex coming from a

triangulation is a complete encoding of the torus as a topological object.

Every property of the torus that topology can have anything to say about is

also a property of this finite set system !

BETTI NUMBERS

Why would topologists want to use such an encoding ? The main reason is

that they are interested in computing certain so­called invariants of topological

spaces, such as the “Betti numbers” which we will soon comment on. The

spaces they consider (such as the torus) are geometric objects with infinitely

many points, on which it is usually hard to perform concrete computations.

An associated simplicial complex, on the other hand, is a finite object which is

easily adapted to computation (except possibly for size reasons). Topological

invariants depend only on the space in question, but their computation may

depend on choosing a triangulation or other “combinatorial decomposition”.

The part of topology that develops this connection is known as combinatorial

topology. It was initiated by the great French mathematician Jules Henri

Poincaré in the last years of the 1800’s and greatly developed in the first half

of the 20th century. Eventually the subject took on a more and more algebraic

flavor, and in the 1940’s the area changed name to algebraic topology.

The Betti numbers of a space are topological invariants that can be said

to count the number of “independent holes” of various dimensions; the Betti

number βj(T) is the number of (j+1)­dimensional such holes of the space T .

It is impossible to give the full technical definition within the framework of

this book. Let it suffice to say that the definition depends on certain algebraic

constructions and to give some examples.

If T is a d ­dimensional topological space then there are d + 1 Betti

numbers

β0(T), β1(T), ..., βd(T),

which are nonnegative integers. Once we have a triangulation of a topological

space the computation of Betti numbers is a matter of some (in principle)

very simple linear algebra. (Note to specialists : Our βj(T) ’s are the reduced

Betti numbers of T , differing from the “ordinary” Betti numbers only in that

β0(T) + 1, rather than β0(T) , is the number of connected components of T .)

For instance, the d ­dimensional sphere has Betti numbers (0, ..., 0, 1) ,

reflecting the fact that it has exactly one (d + 1)­dimensional “hole” (its

interior) and no holes of other dimensions. The torus has Betti numbers (0, 2, 1)

because there are two essentially different 2­dimensional holes (spanned by
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the circles a and b in Figure 36) and one 3­dimensional hole (the interior).

Note that the two circles a and b delimit genuine “holes” in the sense that

they cannot be continuously deformed to single points within the torus, and

that they are “different” holes since one cannot be continuously deformed into

the other.

We have seen that finite set systems are of use in topology as encodings

of topological spaces. But the connection between topological spaces and

simplicial complexes opens up a two­way street. What if the mathematics

we are doing deals primarily with finite set systems, as is often the case in

combinatorics ? For instance, say that a combinatorial problem we are dealing

with involves the fourteen 3­element sets listed in (13.1). Could the properties

of the associated topological space — the torus — be of any relevance ? For

instance, could its Betti numbers (measuring the number of “holes” in the

space) have something useful to say about the set system as such ? We will

exemplify that this may indeed be the case, and this is in fact one of the

cornerstones for the “topological method” in combinatorics.

An example of a combinatorial concept which has topological meaning is

the Möbius function of a partially ordered set, defined in Chapter 10. The

connection is as follows. Let P be a poset with bottom element a and top

element t , and let P = P \ {a, t} , meaning P with a and t removed. Define

the set family ∆(P) to consist of all chains (meaning : totally ordered subsets)

x1 < x2 < · · · < xk in P . Then ∆(P) is a simplicial complex (since a subset

of a chain is also a chain), so as discussed above there is an associated

topological space.

For instance, let P be the divisor poset of the number 60 shown in Figure

20. Then P = P \ {1, 60} has the following twelve maximal chains

2 — 4 — 12

2 — 4 — 20

2 — 6 — 12

2 — 6 — 30

2 — 10 — 20

2 — 10 — 30

3 — 6 — 12

3 — 6 — 30

3 — 15 — 30

5 — 10 — 20

5 — 10 — 30

5 — 15 — 30.
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These twelve triples of the simplicial complex should be thought of as

describing twelve triangles that are to be glued together along common edges.

This gives the topological space shown in Figure 38 — a 2­dimensional disc.

4

20 5

15

12 3

2

10

30

6

FIGURE 38

The simplicial complex of proper divisors of 60.

So, what does all this have to do with the Möbius function ? The relation

is this. Let βi(P) be the i th Betti number of the simplicial complex ∆(P) ,

and let µ(P) denote the value that the Möbius function attains at the top

element of P . Then,

(13.2) µ(P) = β0(P) − β1(P) + β2(P) − β3(P) + · · · .

For instance, the space depicted in Figure 38 is a disc. The important

thing here is that this space has no holes of any kind. Hence, all Betti

numbers βi(P) are zero, implying via formula (13.2) that µ(P) = 0. This

“explains” topologically why µ(60) = 0, a fact we already know from simpler

considerations; see page 86. On the other hand, if P is the divisor diagram

of the number 30 (which can be seen as a substructure in Figure 20), then

∆(P) is the circle 2 — 6 — 3 — 15 — 5 — 10 — 2 (a substructure in

Figure 38). This circle has a one­dimensional hole, so β1(P) = 1. All other

Betti numbers are zero, hence formula (13.2) gives that µ(30) = −1, another

fact we already encountered on page 86.
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14

Extremal combinatorics

Extremal problems arise in all areas of mathematics. The nature of an extremal

problem, in its simplest and purest form, is that some quantity is kept fixed

while another one is left free to vary, subject to certain given constraints.

How large, or how small, can this second quantity be ? For instance, take

the following well­known extremal problem from continuous mathematics, the

so­called isoperimetric problem for curves in the plane. This asks : what is

the largest area enclosed by a simple closed curve of given fixed length ℓ ?

The answer is that the largest area is ℓ2/4π , and that this area is obtained if

and only if the curve is a circle.

Extremal problems of various kinds permeate combinatorics and its applica­

tions. We already encountered an example in Chapter 12. The characterization

of M ­sequences, stated in the appendix to that chapter, stems from an ex­

tremal question concerning the combinatorics of the divisibility relation for

monomials. Namely :

Given the size n = #M of a set M of monomials of degree k , how small

can its shadow ∂(M) be ?

The exact answer to this question is known, as explained on page 118.

Here is another example, this time concerning the combinatorics of the

containment relation of finite sets. Recall from Chapter 13 that a family F of

subsets of the set [n]
def
= {1, 2, . . . , n} is called a simplicial complex if it is
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closed under taking subsets, that is, if A ∈ F and B ⊆ A implies that B ∈ F .

Such set families were discussed there for their topological significance. The

intersection of two simplicial complexes F and G is again a simplicial

complex. This prompts the purely combinatorial extremal question :

Given the sizes f = #F and g = #G of two simplicial complexes F and G
consisting of subsets of [n] , how small can their intersection F ∩ G be ?

The following answer 3) was given in 1966 by Daniel J. Kleitman :

(14.1) #(F ∩ G) ≥ gf

2n
.

The area of extremal combinatorics abounds with open problems, often

easy to state but difficult to answer. For an example of an extremal­type

question whose answer is not known, consider this deceptively simple­sounding

conjecture proposed by Péter Frankl in 1979 :

If a finite family F of nonempty sets is closed under taking unions, then

some element belongs to at least half of the sets in F .

Frankl’s conjecture has been verified for small set families, more precisely if

the size of the largest set in the family is at most 11 or if there are at most

36 sets in the family. It remains open in general.

INTERSECTING SET FAMILIES

Among many interesting topics in extremal combinatorics, we choose to

focus on a few results concerning a very general class of set systems. We

consider subsets of a given finite set, which for definiteness can be taken to

be the set [n] = {1, 2, . . . , n} . The family of all subsets of [n] is denoted by

2[n] . A family F of subsets of [n] is said to be intersecting if A ∩ B 6= Ø

for all sets A ∈ F and B ∈ F . The basic extremal question is :

How large can an intersecting family be ?

The path to answering this question begins with the observation that the

family F (i) of all subsets containing a fixed element i ∈ [n] is intersecting,

since i ∈ A ∩ B for all A, B ∈ F(i) . The number of sets in F (i) is 2n−1 .

Can a larger intersecting family be found ? An application of the pigeonhole

3 ) Readers familiar with probability theory may observe that if written

#(F ∩ G)

2n
≥

#F

2n

#G

2n

this inequality has a probabilistic interpretation, namely it shows that the two events that a random
subset of [n] belongs to F or to G are positively correlated.
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principle (stated on page 46) shows that the answer is no. Here is how : the

set of all subsets of [n] is naturally partitioned into disjoint pairs {A, Ac} ,

consisting of a subset A and its complement Ac = [n] \ A . Since there are

2n subsets of [n] there are 2n−1 such pairs. Thus, a set family F with more

than 2n−1 members must contain both elements A and Ac of some pair. But,

since A ∩ Ac = Ø this means that F is not intersecting.

We have proved the following simple result : Let F be an intersecting

family of subsets of [n] . Then #F ≤ 2n−1, and this upper bound is best

possible.

Let us now be a bit more ambitious and ask :

How large can the union of j intersecting set families be ?

A moments thought suggests that the set family F (1)∪· · ·∪F(j) is a possible

candidate for being an extremal configuration. What is its size ? For a set not to

belong to F (1)∪· · ·∪F(j) is the same as to be a subset of {j+1, j+2, . . . , n} ,

and there are 2n−j such subsets. Hence,

#(F (1) ∪ · · · ∪ F(j)) = 2n − 2n−j.

The following result shows that these set families are indeed extremal.

Kleitman’s Theorem. Let F be the union of j intersecting families of subsets

of [n] . Then

#F ≤ 2n − 2n−j,

and this upper bound is best possible.

The j = 1 case, that is, the upper bound #F ≤ 2n−1 for intersecting

families, was easy to prove using nothing but the pigeonhole principle. We

now sketch a proof for the j = 2 case. This proof contains all the new ideas

needed to deal with the general case.

Assume that F is the union of two intersecting set families F1 and F2 .

Enlarge F1 to a set family G1 by adding all subsets of [n] that contain some

set from F1 :

G1
def
= {A ∈ 2[n] | A ⊇ B for some B ∈ F1}.

The enlarged set family G1 is also intersecting, so we know that #G1 ≤ 2n−1 .

Hence, the complementary set family G1
def
= 2[n] \ G1 satisfies

#G1 ≥ 2n − 2n−1
= 2n−1.

Construct G2 from F2 in the same way. We have from elementary set theory

that
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#(F1 ∪ F2) ≤ #(G1 ∪ G2) = 2n − #(G1 ∩ G2).

The crucial observation now is that G1 and G2 are closed under taking

subsets, since clearly their complements G1 and G2 are closed under taking

supersets. Hence, using equation (14.1) we get

#(G1 ∩ G2) ≥ #G1 · #G2

2n
≥ 2n−1 · 2n−1

2n
= 2n−2,

and so,

#F = #(F1 ∪ F2) ≤ 2n − #(G1 ∩ G2) ≤ 2n − 2n−2,

completing the proof of the j = 2 case.

In the study of intersecting set families it is natural and fruitful to restrict

the “universe” of subsets considered for our extremal questions to families of

sets of some fixed size k (rather than of all sizes). The most basic question

then is the following.

How large can an intersecting family of k ­element subsets be ?

Let
(

[n]
k

)
denote the family of all k ­element subsets of the set [n] =

{1, 2, . . . , n} . If k > n/2 then
(

[n]
k

)
is itself an intersecting family, so to get

nontrivial questions we must demand that k ≤ n/2. Guided by our previous

reasoning it is natural to guess that Fk(i)
def
= F (i) ∩

(
[n]
k

)
—that is, the family

of k ­element subsets containing some fixed element i — is extremal. This

turns out indeed to be the case, as was shown by Pál Erdős, Chao Ko, and

Richard Rado in 1961. Note that

#Fk(i) =

(
n − 1

k − 1

)
,

since a k ­element subset of [n] containing i is obtained by choosing k − 1

elements among the n − 1 elements other than i .

Erdős­Ko­Rado Theorem. Let F be an intersecting family of k ­element

subsets of [n] , with k ≤ n/2 . Then

#F ≤
(

n − 1

k − 1

)
,

and this upper bound is best possible.

We leave aside a discussion of how to prove this basic result. Instead,

with the case of a single family settled, we can in the same spirit that led to

Kleitman’s theorem move on to the more ambitious question :
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How large can the union of j intersecting families of k ­element subsets

be ?

Reasoning along familiar lines we are led to guess that Fk(1)∪ · · · ∪Fk(j)

might be an extremal set family. Since

# (Fk(1) ∪ · · · ∪ Fk(j)) =

(
n

k

)
−
(

n − j

k

)
,

a plausible conjecture would therefore be that the union F of j intersecting

families of k ­element subsets must satisfy

#F ≤
(

n

k

)
−
(

n − j

k

)
.

This was shown to be true by Pál Erdős in 1965, but only for large enough

n . It is unfortunately false in general, and with questions of this type we

enter largely unknown territory. As an example of something that is known,

we have that the union of n − 2k + 1 or fewer intersecting families of k ­

element subsets has size strictly smaller than
(

n

k

)
. This special case is the

Lovász­Kneser theorem, to be discussed in the next section.

There are many variations possible on the theme of asking extremal

questions for set families with constrained intersection properties. For instance,

instead of forbidding intersections of size zero (as is done for intersecting

families), one can forbid intersections of some other size. As a final glimpse

of this branch of extremal combinatorics, we quote a 1981 theorem of Péter

Frankl and Richard Michael Wilson, which has this flavor.

Frankl­Wilson Theorem. Let q be a power of a prime number, and let

F be a family of 2q­element subsets of a 4q­element set such that no two

members of F have intersection of size q. Then,

#F ≤ 2 ·
(

4q − 1

q − 1

)
.

KNESER’S PROBLEM

In 1955 Martin Kneser published a tantalizing extremal problem concerning

intersecting families. It is based on the observation that the family of all k ­

element subsets of an n ­element set can be obtained as the union of n−2k+2

intersecting subfamilies. Namely, consider the following union :

(14.2)

(
[n]

k

)
=

(
[2k − 1]

k

)
∪ Fk(2k) ∪ · · · ∪ Fk(n).
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The greatest element m of a k ­element subset of the set [n] satisfies either

m < 2k , in which case the set belongs to the first subfamily of the union,

or m ≥ 2k , in which case the set belongs to one of the other subfamilies.

Kneser’s conjecture (as it came to be known) is that fewer subfamilies are

not possible for such a union. This was proved by László Lovász in 1978.

Lovász­Kneser Theorem. If the family of all k ­element subsets of an n­

element set, with k ≤ n/2 , is obtained as the union of intersecting subfamilies,

then at least n − 2k + 2 such subfamilies are needed.

Why can we not do better ? An interesting feature of Lovász’ proof, and of

other subsequent proofs of Kneser’s conjecture, is that they rely on methods

from topology. By sketching the relevant arguments and ideas we want to give

a small glimpse of these interactions, which are quite unexpected.

An elegant and instructive way to view the problem is in terms of graph

coloring. Define the Kneser graph KG(n, k) to be the graph whose vertices

are the k ­element subsets of [n] and whose edges are the pairs of disjoint

such subsets. The graph KG(5, 2) is shown in Figure 39.

FIGURE 39

The Kneser graph KG(5, 2).
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The union (14.2) shows that the graph KG(n, k) can be properly colored

with n−2k +2 colors, meaning that one of n−2k +2 colors can be assigned

to each vertex in such a manner that vertices joined by an edge receive

distinct colors. For instance, the graph KG(5, 2) can be properly colored with

3 colors, as induced by the union (14.2) :

(14.3)

(
[5]

2

)
=

(
[3]

2

)
∪ F2(4) ∪ F2(5).

A moment’s reflection shows that the requirement for being a proper

coloring is precisely that each color class forms an intersecting family. Thus

we get the following reformulation of the theorem.

Lovász­Kneser Theorem (second version). The Kneser graph KG(n, k)

cannot be properly colored with n − 2k + 1 colors.

Here is how this conclusion is derived from Borsuk’s theorem (stated on

page 120). This version of the proof is due to Imre Bárány.

Assume first that n = 2k + 1, and as the points in our ground set, take n

points evenly spaced on a circle (see Fig. 40). Call this set X .

FIGURE 40

The set X for n = 7, k = 3.

Assume that to each k ­element subset of X we have assigned either the

color red or the color blue. Let R be the set of points r on the circle such

that the open half­circle centered at r contains a red k ­subset of X , and let

B be similarly defined for the color blue.

Because of the even distribution of the points in X , it is clear that every

point on the circle belongs either to R or to B (or to both). In other words,
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FIGURE 41

Open half­circle centered at the arrow point.

the sets R and B cover the circle. Also, one easily sees that the sets R and

B are open.

Thus, since the circle is the same thing as the one­dimensional sphere S1 ,

Borsuk’s theorem tells us that there must exist a pair of antipodal points of

the same color. If, say both x and −x belong to R , this means that the two

half­circles centered at these points each contains a “red” k ­set. But these

half­circles are disjoint. Therefore the two red k ­sets are also disjoint. The

existence of a pair of disjoint k ­subsets of the same color is precisely what

we wanted to prove, so this settles the n = 2k + 1 case.

The general proof for n > 2k + 1 is entirely similar, the only difference

being that the argument takes place in higher dimensions. Namely, one chooses

a subset X of the (n− 2k) ­dimensional sphere and assigns one of n− 2k + 1

colors to each k ­element subset of X . Some care has to be taken in order to

secure that the points of X are, in a suitable sense, evenly spaced. Then the

argument goes through along the same lines, now using Borsuk’s theorem for

Sn−2k .

BORSUK’S PROBLEM

The Frankl­Wilson theorem (page 131) has an unsuspected application.

Recall Borsuk’s problem (page 120) :

Is it true that every set of bounded diameter in k ­dimensional Euclidean

space Rk can be partitioned into k + 1 sets of smaller diameter ?

The answer is definitely “yes” when k = 1 ; the statement then comes down

to dividing a line segment of length 1 into two shorter segments. It was

also long known that the statement is true for k = 2 and k = 3, and it
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was generally believed that the statement is true for all dimensions k — this

became known as Borsuk’s conjecture.

It therefore came as a great surprise when in 1992 Jeffry Ned Kahn and Gil

Kalai showed that the answer to Borsuk’s problem is actually “no,” contrary

to what “everyone” had believed for nearly 60 years. The key to solving

Borsuk’s geometric problem comes from combinatorics, more precisely, it is

provided by the Frankl­Wilson theorem. Here is the argument of Kahn and

Kalai.

The ground set for the construction is the set E of all edges in the complete

graph on vertex set [4q] , where q is a power of a prime number. Thus,

#E =

(
4q

2

)
= 2q(4q − 1).

Let P be the set of all partitions of [4q] into two disjoint subsets A and

B of equal size 2q . We denote by 〈A, B〉 such an element of P . Note that

〈A, B〉 = 〈B, A〉 and that

#P =
1

2

(
4q

2q

)
.

For each such partition 〈A, B〉 , let E 〈A, B〉 be the subset of E consisting of

the edges with one endpoint in A and the other in B . Then #(E 〈A, B〉) = 4q2 ,

since each endpoint of such an edge can be independently chosen in 2q

different ways.

For 〈A, B〉 ∈ P let x〈A,B〉 ∈ RE be the point defined coordinate­wise by

x〈A,B〉
i =

{
1, if i ∈ E 〈A, B〉
0, if i /∈ E 〈A, B〉

and let X = {x〈A,B〉 : 〈A, B〉 ∈ P} . A small computation, which we defer

to the appendix, shows that the diameter of the set X is 2q , and that the

distance between two points x〈A,B〉 and x〈C,D〉 in X equals 2q if and only if

#(A ∩ C) = q .

The idea of the proof is now the following. Suppose that the set X is

divided into r pieces, where

r <
#X

2
(

4q−1
q−1

)

Then one piece will contain more than 2
(

4q−1
q−1

)
points x〈A,B〉 , so by the Frankl­

Wilson theorem there must among them be two points x〈A,B〉 and x〈C,D〉 such

that #(A ∩ C) = q . In other words, one piece of the partition of the set X

into r pieces must have the same diameter 2q as X itself.
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Thus, the construction yields a set X ∈ RE violating Borsuk’s conjecture

if

dim RE
+ 1 <

#X

2
(

4q−1
q−1

) ,

that is,

2q(4q − 1) + 1 <

1
2

(
4q

2q

)

2
(

4q−1
q−1

) .

This inequality can be shown to be satisfied for q large enough, yielding

counterexamples to Borsuk’s conjecture in 2, 014­dimensional space.

Later research has reduced the dimension of counterexamples from 2, 014

to 298. Borsuk’s conjecture is, however, still undecided in dimension 4.

APPENDIX

The distance between points in the set X is combinatorially determined in

the following way. Since the distance dist(x, y) between two points x and y

in Rn is

dist(x, y) =
√

(x1 − y1)2 + · · · + (xn − yn)2,

we have that

dist(x〈A,B〉, x〈C,D〉)2
= #(E 〈A, B〉 ∪ E 〈C, D〉) − #(E 〈A, B〉 ∩ E 〈C, D〉)
= #E 〈A, B〉 + #E 〈C, D〉 − 2 · #(E 〈A, B〉 ∩ E 〈C, D〉)
= 2 · 4q2 − 2(#(A ∩ C) · #(B ∩ D) + #(A ∩ D) · #(B ∩ C)).

Writing z = #(A ∩ C) (for ease of notation) and observing that

#(A ∩ C) = #(B ∩ D) = z

#(A ∩ D) = #(B ∩ C) = 2q − z,

we get

dist(x〈A,B〉, x〈C,D〉)2
= 8q2 − 2(z2

+ (2q − z)2) = 4z(2q − z) ≤ 4q2.

Thus dist(x〈A,B〉, x〈C,D〉) ≤ 2q with equality if and only if #(A ∩ C) = q .
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Complexity of sorting and distinctness

A major theme in theoretical computer science is to estimate the complexity

of computational tasks. By “complexity” is here meant the amount of time

and of computational resources needed. To show that a task can be done in

a certain number of steps one must construct an algorithm achieving the task

and prove that it performs as claimed. It is often the more difficult part of

the problem to show that there is no “faster” way, i.e., requiring fewer steps.

Examples of this are given in this chapter and the next.

HOW MANY COMPARISONS NEEDED ?

The following is a very basic situation studied in complexity theory. A

sequence of real numbers x1, x2, . . . , xn is given. A computer is asked to

decide some property of the sequence or to restructure it using only pairwise

comparisons. This means that the computer is allowed to learn about the input

sequence only by inspecting pairs xi and xj and deciding whether xi > xj ,

xi < xj or xi = xj . The question then is : How many such comparisons must

the computer perform in the worst case when using the best algorithm ? This

number, as a function of n , is called the complexity of the problem.

The following notation is used to state such results. To say that the

complexity is Θ(f (n)) , where f (n) is some function, means that there exist

constants c1 and c2 such that
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c1 · f (n) < complexity < c2 · f (n).

While this notation doesn’t give the exact numerical value of the complexity

(which is often hard, if not impossible, to determine) it reveals its order of

growth, which is what is usually taken as the main indication if a problem is

computationally easy or hard. In the following formulas the function “log n”

will frequently appear. Readers not familiar with the logarithm function can

take this to mean roughly the number of digits needed to write the number n

in base 10, so that for instance log 1997 ≈ 4.

Here are some basic and well­known examples.

1. Sorting. To rearrange the n numbers increasingly xi1 ≤ xi2 ≤ · · · ≤ xin

requires Θ(n log n) comparisons.

2. Median. To find j such that xj is “in the middle,” meaning that half of

the xi ’s are less than or equal to xj and half of the xi ’s are greater than

or equal to xj , requires Θ(n) comparisons. In fact, it has been shown

that at least 2n comparisons are needed and that at most 3n comparisons

suffice.

3. Distinctness. To decide whether all entries xi are distinct, that is whether

xi 6= xj when i 6= j , requires Θ(n log n) comparisons.

The problem we wish to discuss is a generalization of the distinctness

problem. Namely,

k ­equal problem : for k ≥ 2 , decide whether some k entries are equal,

that is, can we find i1 < i2 < · · · < ik such that xi1 = xi2 = · · · = xik ?

For example, are there nine equal entries in the following list of one­digit
numbers ?

2479137468584871395519674234615946331486772955924362854117836972581932

Answer : Yes, there are nine copies of the number “4”. Are there ten equal

entries ? Answer : No. If pairwise comparisons are the only type of operation

allowed, how should one go about settling these questions in an efficient

manner, and how many comparisons would be needed ?

Here are a few immediate observations. If k = 2 the problem reduces to

the distinctness problem, so the complexity is Θ(n log n) . At the other end of

the scale, if k > n
2

the complexity is Θ(n) , because we can argue as follows.

The median xj can be found using 3n comparisons. If there are k > n
2

equal

entries then the median must be one of them. Thus after comparing xj with

the other n − 1 entries xi we gain enough information to conclude whether

there are some k entries that are equal. This procedure requires in all 4n− 1

comparisons. On the other hand it is easy to see that at least n−1 comparisons
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are needed in the worst case, so there are both upper and lower bounds of

the form “constant times n” to the complexity.

We have seen that the complexity of the k ­equal problem decreases from

Θ(n log n) to Θ(n) when the parameter k grows from 2 to above n
2

, so the

k ­equal problem seems to get easier the larger k gets. The exact form of

this relationship is given in the following result from 1992 of Anders Björner,

László Lovász, and Andrew Chi­Chih Yao.

Theorem. The complexity of the k­equal problem is Θ(n log 2n
k

) .

The upper bound is obtained via a partial sorting algorithm based on repeated

median­finding. It generalizes what was described for the case k > n
2

above.

We shall leave it aside.

PROOF OF THE LOWER BOUND

The lower bound — proving that at least n log 2n
k

comparisons are needed

(up to some constant) by every algorithm in the worst case — is the difficult

and mathematically more interesting part. The proof uses a combination of

topology and combinatorics. A detailed description would take us too far

afield, but we will attempt to get some of the main ideas across.

Let us look at the situation from a geometric point of view. Each equation

xi1 = xi2 = · · · = xik determines an (n − k + 1)­dimensional linear subspace

of Rn , the n ­dimensional space consisting of all n ­tuples (x1, x2, . . . , xn)

of real numbers xi . The k ­equal problem is from this point of view to

determine whether a given point x = (x1, x2, . . . , xn) lies in at least one such

subspace, or — which is the same — lies in the union of all the subspaces

xi1 = xi2 = · · · = xik .

Removal of linear subspaces disconnects Rn . For instance, removal of a

plane (a 2­dimensional subspace) cuts R3 into two pieces, whereas removal

of a line (a 1­dimensional subspace) leaves another kind of “hole”. These

are precisely the kinds of holes that are measured by the topological Betti

numbers (as was discussed in Chapter 13). Going back to the general situation,

it seems clear that if all the subspaces xi1 = xi2 = · · · = xik are removed from

Rn then lots of holes of different dimensions will be created. This must mean

that the sum of Betti numbers of Mn,k , the part of space Rn that remains

after all these subspaces have been removed, is a large number :

β(Mn,k) = β0(Mn,k) + β1(Mn,k) + · · · + βn(Mn,k).

The idea now is that if the space Mn,k is complicated topologically, as

measured by this sum of Betti numbers, then this ought to imply that it is
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computationally difficult to determine whether a point x belongs to it. This

turns out to be true in the following quantitative form.

Fact 1. The complexity of the k­equal problem is at least log3 β(Mn,k) .

Here log3 denotes logarithm to the base 3, which differs by a constant factor

from the logarithm to the base 10 that was mentioned earlier.

So, now the problem has been converted into a topological one — to

compute or estimate the sum of Betti numbers β(Mn,k) . This can be done via

a formula of Robert Mark Goresky and Robert Duncan MacPherson, which

expresses these Betti numbers in terms of some finite simplicial complexes

associated to partitions. To get further we need to introduce a few more

concepts from combinatorics.

In Chapter 10 we discussed partitions of sets, and we shall return once

more to the ubiquitous concept of partitions.

In the following we use [n] = {1, 2, . . . , n} as the ground set and for fixed

k (an integer between 2 and n ) consider the collection of all partitions of

[n] that have no parts of sizes 2, 3, . . . , k−1. Denote this collection by Πn,k .

For instance, Π4,2 is the collection of all partitions of {1, 2, 3, 4} (there are

no forbidden parts), while Π4,3 is the following subcollection (now parts of

size 2 are forbidden) :

1234, 1­234, 2­134, 3­124, 4­123, 1­2­3­4

Recall from Chapter 10 that there is a natural way to compare set partitions

(a partition π is less than partition σ if π is obtained from σ by further

partitioning its parts). This way we get an order structure on the set Πn,k ,

which can be illustrated in a diagram. Figure 21 shows the order diagram of

Π4,2 and Figure 42 shows that of Π4,3 .

Now, consider the Möbius function (defined in Chapter 10) computed over

the poset Πn,k . Let µn,k denote the value attained by the Möbius function at

the partition with only one part, which is at the top of the order diagram. For

example, direct computation (as demonstrated in Chapter 10) over the posets

in Figures 21 and 42 shows that µ4,3 = 3 and µ4,2 = −6.

We can now return to the discussion of the k ­equal problem. We left

off with the question of how to estimate the sum of Betti numbers β(Mn,k) .

The formula of Goresky and MacPherson mentioned earlier implies, by an

argument involving among other things the topological significance of the

Möbius function (discussed in Chapter 13), the following relation :

Fact 2. β(Mn,k) ≥ |µn,k| .
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1234

1 2 3 4

123 4 124 3 134 2

FIGURE 42

Order diagram of Π4,3

Putting Facts 1 and 2 together, the complexity question for the k ­equal

problem has been reduced to the problem of showing that the combinatorially

defined Möbius numbers |µn,k| grow sufficiently fast. For this we turn to

the method of generating functions, already introduced in the early chapters

on counting number partitions. Certain recurrences for the numbers µn,k lead,

when interpreted at the level of generating functions, to the following formula :

(15.1) exp




∑

n≥1

µn,k
xn

n!



 = 1 + x +
x2

2!
+ · · · + xk−1

(k − 1)!
.

To make sense of this you have to imagine inserting the series y =
∑

n≥1 µn,k
xn

n!

into the exponential series exp (y) =
∑

n≥0
yn

n!
, and then expanding in powers

of x . Also, since µn,k has so far been defined only for k ≤ n we should

mention that we put µn,k = 0 for 1 < n < k and µ1,k = 1.

From this relation between the numbers µn,k and the polynomial on the

right­hand­side (which is a truncation of the exponential series) we can extract

the following explicit information.

Fact 3. Let α1, α2, . . . , αk−1 be the complex roots of the polynomial 1 + x +
x2

2!
+ · · · + xk−1

(k−1)!
. Then

µn,k = −(n − 1)!
(
α−n

1 + α−n
2 + · · · + α−n

k−1

)
.

For instance, if k = 2 there is only one root α1 = −1, and we get
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µn,2 = (−1)n−1(n − 1)!

— a fact we already encountered in equation (10.1). Also, in this case formula

(15.1) specializes to

exp




∑

n≥1

(−1)n−1 xn

n



 = 1 + x,

which is well­known to all students of the calculus in the equivalent form

log(1 + x) =
∑

n≥1

(−1)n−1 xn

n
.

If k = 3 there are 2 roots α1 = −1 + i and α2 = −1 − i , where i =
√
−1,

and using some formulas from elementary complex algebra we get

µn,3 = −(n − 1)!
(
(−1 + i)−n

+ (−1 − i)−n
)

(15.2)

= −(n − 1)! 21− n
2 cos

3πn

4
.

We have come to a point where we know on the one hand from Facts 1

and 2 that

the complexity of the k­equal problem ≥ log3 |µn,k| ,
and on the other that the Möbius numbers µn,k are given in terms of the roots

α1, α2, . . . , αk−1 as stated in Fact 3. It still remains to show that the numbers

|µn,k| are large enough so that log3 |µn,k| produces the desired complexity

lower bound. For this reason it comes as a chilling surprise to discover that

these numbers are not always very large. In fact, formula (15.2) shows that

µn,3 = 0, for n = 6, 10, 14, 18, 22, . . . .

It can also be shown that µ2k,k = 0 for all odd numbers k .

So, we are not quite done — but almost ! With a little more work it can

be shown from the facts presented so far that |µn,k| is, so to say, “sufficiently

large for sufficiently many n” (for fixed k ). With this, and a “monotonicity

argument” to handle the cases where |µn,k| itself is not large but nearby values

are, it is possible to wrap up the whole story and obtain the initially stated

lower bound of the form “constant times n log 2n
k

”.

Let us mention in closing that it is possible to work with Betti numbers

the whole way, never passing to the Möbius function as described here. This

route is a bit more complicated but results in a better constant for the lower

bound.
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Complexity of graph properties

In this final chapter we consider algorithms that test whether graphs have

a certain given property P. For example, P could be the property of being

connected, meaning that you can get from any node to any other node by

walking along a path of edges. The left graph in Figure 43 is connected

whereas the right one is disconnected, since there is no way to get from

nodes 1, 2 or 3 to nodes 4 or 5.
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FIGURE 43

A connected and a disconnected graph

Connectedness is a very basic property of graphs which can be decided at a

glance on small examples represented as a drawing. But say you have a graph

with 1 million nodes, coming perhaps from a communications network or a
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chip design, which is presented only as a list of edges (adjacent pairs of nodes)

— then it is not quite so clear what to do if one wants to decide whether the

graph is connected, making efficient use of computational resources. Among

the interesting questions one can ask is whether it is possible to decide

connectedness of the graph without checking for all possible pairs of nodes

(there are nearly 500 billion of them) whether they are edges of the graph or

not ? If this were so it could conceivably lead to valuable saving of time and

resources.

A basic general question to ask then is the following. Fix a positive integer

n . For a given property P of graphs on n vertices, is there some algorithm that

decides for every graph G on n vertices whether it has property P without

knowing for every pair of nodes whether they span an edge of G or not ?

Think of it this way : a computer proceeds by checking whether a certain

edge is in G , then it checks another edge, etc. The choice of which edge to

check may depend on the outcome of the previous queries according to some

definite rule (the algorithm). Is there some n ­vertex graph G for which all

edges must be checked before the computer can deduce whether the graph

has property P or not ?

If every P­testing algorithm must for at least some graph have complete

knowledge about all its edges, then P is said to be an evasive property for

n ­vertex graphs. We say that a property P is evasive (without specifying n )

if it is evasive for all n ≥ 1.

For instance, connectedness is an evasive property. An argument showing

this is given in the Appendix. A simpler property that is clearly evasive is

that of having at least one edge. If a graph has no edges, then a computer

cannot be sure of this until it has checked all edges, whatever algorithm it

uses to generate the sequence of checked edges.

For completeness we mention without further details that nontrivial graph

properties that are not evasive are known, a reference is given among the

Notes.

THE EVASIVENESS CONJECTURE

It has been decided for many graph properties whether they are evasive.

It turns out that among the evasive ones many are monotone, meaning that if

the property holds for some graph then it will also hold if more edges are

added. For instance, connectedness is an example of a monotone property.

Mounting evidence from work in the late 1960’s by several researchers led to

the following conjecture.
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Evasiveness Conjecture. Every monotone nontrivial graph property is evasive.

By “nontrivial” is here meant that there is at least one graph that has the

property and one that doesn’t. Since monotonicity is usually easy to verify

whereas evasiveness is not, this conjecture — if true — would simplify deciding

evasiveness for many graph properties. Tedious case­by­case arguments, such

as the one carried out for the property of connectedness in the Appendix,

would not be needed.

The best general result known to date on this topic is the following theorem

of Jeffry Ned Kahn, Michael Ezra Saks, and Dean Grant Sturtevant from 1984 :

Kahn­Saks­Sturtevant Theorem. The evasiveness conjecture is true for

graphs on pk nodes, for any prime number p and integer k ≥ 1 .

This verifies the conjecture for infinitely many values of n , the number of

nodes, but leaves it open when n is the product of at least two distinct primes.

Thus, the smallest values of n left open are 6, 10, 12, 14, 15, ... ; however the

case of n = 6 was also verified by Kahn et al. The general conjecture remains

open, beginning with the case n = 10.

The proof of Kahn et al. makes surprising use of topology. The key

idea is to view a monotone graph property for graphs on n vertices as a

simplicial complex with a high degree of symmetry, to whose associated

space a topological fixed point theorem can be applied. Here is how.
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FIGURE 44

The 6 edges spanned by 4 nodes

We will keep in mind some particular monotone graph property P and

consider graphs on the nodes 1, 2, ..., n . Such a graph is specified by the pairs
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(i, j) of nodes that are connected by an edge. Let us take the set of these

pairs as the ground set for a set family ∆P
n , whose members are the edge­sets

of graphs not having property P. The set family ∆P
n is closed under taking

subsets, since monotonicity implies that removal of edges from a graph that

doesn’t have property P cannot produce a graph having that property.

Let us illustrate the idea for the case n = 4, taking as our monotone

property connectedness. There are 6 possible edges in a graph on the nodes

1, 2, 3, 4 ; see Figure 44. The simplicial complex ∆conn
4 of disconnected graphs

on four vertices is shown in Figure 45.

14

34

24

13 23

12

FIGURE 45

The complex of disconnected graphs on 4 nodes

In the rubber­sheet model depicted it consists of 4 triangles and 3 edges

(curved line segments) glued together. To understand this picture the reader

should think how to translate the vertices, edges and triangles of ∆conn
4 into

disconnected graphs. For instance, the edge between 14 and 23 in Figure 45

corresponds to the disconnected graph

w w

w w

1

2 3

4
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and the triangle with vertices 13, 14 and 34 corresponds to the disconnected

graph

w w

w w
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�

�
��
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2 3

4

Observe in Figure 45 that the space represented by the complex ∆conn
4 has

many “holes” — in the terminology used before this means that ∆conn
4 has

some nonzero Betti numbers. It turns out to be a general fact, not hard to

prove, that if the property P is not evasive then ∆P
n is acyclic, meaning that

all Betti numbers of ∆P
n are equal to zero.

There are several theorems in topology to the effect that certain mappings

f of an acyclic space to itself must have fixed points, i.e. points x such that

f (x) = x . The best known one — one of the classics of topology — is Luitzen

Egbertus Jan Brouwer’s theorem from 1904, which says that every continuous

mapping of an n ­dimensional ball to itself has a fixed point. The one needed

for the present application is a fixed point theorem of Robert Oliver from

1975, which (stripped of some technical details) says that for certain groups

G of symmetry mappings of an acyclic simplicial complex ∆ to itself there

is a point x in the associated space such that f (x) = x for all mappings f in

G .

The complex ∆P
n of a monotone graph property has a natural group of

symmetries, namely the symmetric group Sn of all permutations of the set

of nodes 1, 2, ..., n . Permuting the nodes amounts to a relabeling (node i

gets relabeled f (i) , etc.), and it is clear that such a relabeling will not affect

whether the graph in question has property P. Therefore every permutation of

1, 2, ..., n induces a self­symmetry of the complex ∆P
n of graphs not having

property P.

The pieces needed for the proof of Kahn et al. are now at hand. Here is

how they argued.

Suppose P is a monotone property for graphs on n nodes that is not evasive.

Then, as was already mentioned, the associated complex ∆P
n is acyclic. If

furthermore n = pk then due to some special properties of prime­power

numbers (the existence of finite fields) one can construct a subgroup G of Sn

having the special properties needed for Oliver’s fixed point theorem. Hence

there is a point x in the space associated to ∆P
n such that f (x) = x for all
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permutations f in G . However, this means that there is a nonempty set A

in the complex ∆P
n (that is, a graph with edge­set A not having property P)

such that f (A) = A for all f in G . Since G is transitive (meaning that if u

and v are two vertices of ∆P
n then u = f (v) for some mapping f in G), A

must consist of all vertices of ∆P
n ; that is, A is the complete graph. We have

obtained that the complete graph on nodes 1, 2, . . . , n does not have property

P , and since P is monotone that means that no graph on 1, 2, . . . , n can have

property P , so P is trivial.

The argument shows that for monotone graph properties P on a prime­

power number of nodes nonevasive implies trivial, or which is logically the

same : nontrivial implies evasive.

Viewing a graph property (such as connectedness) as a simplicial complex

and submitting it to topological study may seem strange. One can wonder if

this point of view is of any value other than — by remarkable coincidence —

for the evasiveness conjecture. It has recently become clear that this is indeed

the case. Namely, the complexes ∆conn
n of disconnected graphs on n vertices

have arisen and play a role in the work of Victor Anatol’evich Vassiliev on

knot invariants. Also some other monotone graph properties have naturally

presented themselves as simplicial complexes in other mathematical contexts.

APPENDIX

To see that connectedness is an evasive property we can argue as follows.

Imagine that we have a computer running a program that tests graphs for

connectedness. The graphs to be tested, whose nodes we may assume are

labeled 1, 2, ..., n , are presented to the computer in the form of an n × n

upper­triangular matrix of zeros and ones, with a 1 entry in row i and

column j , for i < j , if (i, j) is an edge of the graph and a 0 entry otherwise.

For instance, here are the matrices representing the graphs in Figure 43 :

∗ 1 0 0 0 ∗ 1 1 0 0

∗ 1 0 1 ∗ 1 0 0

∗ 0 1 ∗ 0 0

∗ 1 ∗ 1

∗ ∗

The computer is allowed to inspect only one entry of this matrix at a time,

and what we want to show is that for some graph it must in fact inspect

all of them. To find such a worst­case graph we can imagine playing the
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following game with the computer. Say that instead of deciding on the graph

in advance, we write the zeros and ones (specifying its nonedges and edges)

into the matrix only at the last moment, as the computer demands to inspect

them. Say furthermore that we do this according to the following strategy

(designed to keep the computer making as many queries as possible) : When

the computer goes to inspect the (i, j) entry of the matrix (according to

whatever algorithm it is using), then

• write 0 into position (i, j) if it is not possible to conclude from the partial

information known to the computer at that time — including this last 0

— that the graph is disconnected,

• otherwise, write 1 into position (i, j) .

It is an elementary but somewhat tricky argument to show that this strategy

will force the computer to inspect all entries of the matrix before it can decide

whether the corresponding graph is connected or not. We will outline a proof

by finite induction.

The crucial step is to prove the following claim :

Suppose that at some stage 1 is written into position (i, j) . Let A be the set

of nodes that are at that stage connected to i by 1 ­marked edges (including

i itself), and let B be the set of nodes connected to j by 1 ­marked edges

(including j). Then after 1 has been written into position (i, j) , all possible

edges between nodes in A ∪ B have been inspected.

(Clarification : “at that stage” refers to the configuration existing at the

time just before 1 is assigned to the position/edge (i, j) . At that time some

other edges have already been inspected and are marked with 0 or 1, while

the remaining have not yet been inspected.)

Note that A ∩ B = Ø, and that |A ∪ B| ≥ 2 since i ∈ A and j ∈ B . The

statement is clearly true if |A ∪ B| = 2, and we proceed by induction on the

number of elements of A ∪ B .

Suppose that |A∪B| > 2. Since what is written into position (i, j) is not 0,

that means that there is some partition C ∪ D = {1, 2, . . . , n} into nonempty

disjoint subsets C and D such that i ∈ C , j ∈ D and all possible edges

{c, d} 6= {i, j} with c ∈ C and d ∈ D are already marked with 0. Clearly,

we must have A ⊆ C and B ⊆ D , so in particular all edges between a node

in A and a node in B have already been inspected. Also, all edges between

two nodes both in A have by the induction assumption been inspected, and

similarly for B . This covers all possible edges between nodes in A ∪ B and

the claim follows.
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Suppose now that connectedness/disconnectedness can be decided after

inspection of k matrix entries, and that k is the minimum such number.

According to our strategy for writing 0 or 1, the outcome can never be

that the graph is disconnected. Also, if the k th entry is 0 and the graph

is connected we have a contradiction, since then the information needed to

conclude connectedness would have been available already before the k th

entry was inspected. So, the k th entry is 1, and since the conclusion is that

the graph is connected the claim above implies that all other entries have

already been inspected before the k th one. This proves that connectedness is

an evasive graph property.
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17

Notes

Here we give some hints for further reading. We refer mainly to general

accounts that should be at least partially accessible to the non­expert and that

give lots of further references. Original sources are only rarely mentioned.

For a broad view of current combinatorics, with a wealth of information

and references (but partly written at a high level), see the Handbook of

Combinatorics [1].

CHAPTERS 1–4

The basic theory of enumeration is developed in the books [38, 39]. The

combinatorics of number and set partitions, standard Young tableaux, and

generating functions, together with algebraic ramifications, is discussed there.

A briefer account of this material is given in [25]. More elementary references

on enumeration are [15, 16]. A nice introduction to generating functions is

given in [44]. The web site [37] is a valuable companion to the study of

enumeration.

CHAPTER 2

Two good references for number partitions are the books [3, 4], of which

the second is more elementary.
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CHAPTERS 3–5

An introduction to the combinatorics of permutations and Young tableaux

can be found in [39, Ch. 7], as well as in [31, Ch. 5.1] and in [36]. The

latter book also gives an accessible introduction to the connections with

representation theory. For the connections with representation theory and

algebraic geometry, see [23].

CHAPTER 6

A survey of the theory of increasing and decreasing subsequences is given

in [41]. More about the application to airplane boarding can be found in [8],

[9], [10].

CHAPTER 7

Reduced decompositions of permutations are part of a more general scenario

provided by the theory of Coxeter groups. See Chapters 3 and 7 of [13]. The

results we have discussed first appeared in [40]. Another approach to this

subject is given in [24].

CHAPTERS 8–9

There is a huge literature on tilings, but most of this is not concerned

with enumerative problems. For a wealth of information concerning the non­

enumerative aspects see the book [27]. At present there is no good introduction

to the enumerative aspects of tilings. The results that we have mentioned can

be found in the references [18, 19, 20, 28, 29]. A general survey of planar

tilings for a nonmathematical audience is given by [5].

CHAPTER 10

For more about the Möbius function see [38, Ch. 3].

CHAPTER 11

The combinatorial theory of hyperplane arrangements is exposited in [42],

and is placed in a broader mathematical context in [33]. See also [11].

Several bijections have been given between the regions of the Shi

arrangement and trees (or combinatorial objects with well­known bijections

with trees). A nice such bijection with additional references is given in [7].
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CHAPTER 12

For a general introduction to convex polytopes and an accessible discussion

of the g ­theorem we refer to [45]. A classic in the field is [26]. Figure 31 is

due to K. Fukuda.

CHAPTER 13

Connections between combinatorics and topology are discussed in the

book [34] and in the survey [12]. There are several books giving a gentle

introduction to topology, see e.g. [6].

CHAPTER 14

Information about extremal set­theoretic combinatorics can be gotten from

[14], [21] and parts of [2] and [43]. For more about Frankl’s conjecture see

[17], for extensions of the Erdős­Ko­Rado Theorem see [22] and for Kneser’s

conjecture see [34]. Borsuk’s problem is discussed in [2] and [35].

CHAPTERS 15–16

Connections between combinatorics and computer science is a huge subject

that we have barely touched. For some glimpses see [32], and for sorting

algorithms also [31]. More about the k ­equal problem and its solution can

be found in [11], while more details about the evasiveness conjecture can be

found in [12, 14]. For an example of a nonevasive nontrivial graph property,

see [14, p. 1284]. Various monotone graph properties seen from a topological

point of view are discussed in [30].
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