AN ELECTRONIC PURSE Specification, Refinement, and Proof by Susan Stepney David Cooper Jim Woodcock Oxford University Computing Laboratory **Programming Research Group** # AN ELECTRONIC PURSE Specification, Refinement, and Proof by Susan Stepney David Cooper Jim Woodcock Technical Monograph PRG-126 ISBN 0-902928-41-4 July 2000 Oxford University Computing Laboratory Programming Research Group Wolfson Building Parks Road Oxford OX1 3QD England , #### Copyright © 2000 Logica UK Ltd Oxford University Computing Laboratory Software Engineering Centre Wolfson Building Parks Road Oxford OX1 3QD England email: stepneys@logica.com cooperd@praxis-cs.co.uk Jim.Woodcock@comlab.ox.ac.uk ## **Contents** | 1 | Intro | oduction | | |---|-----------------|---------------------------------------|----| | | 1.1 | The application | | | | 1.2 | Overview of model and proof structure | : | | | 1.3 | Rationale for model structure | ! | | | 1.4 | Rationale for proof structure | | | | 1.5 | Status | ; | | I | Mod | els | 9 | | 2 | SPs | | 1: | | | 2.1 | Introduction | 1 | | | 2.2 | Abstract model SPs | 1 | | | 2.3 | Concrete model SPs | 13 | | | 2.4 | SPs and the models | 13 | | 3 | \mathcal{A} m | nodel | 13 | | | 3.1 | Introduction | 17 | | | 3.2 | The abstract state | 1 | | | 3.3 | Secure operations | 18 | | | 3.4 | Abstract initial state | 2 | | | 3.5 | Abstract finalisation | 23 | | 4 | \mathcal{B} m | odel, purse | 23 | | | 4.1 | Overview | 23 | | | 4.2 | Status | 2 | | | 4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10 | Message Details Clear Exception Log Validation Messages A concrete purse Single Purse operations Invisible operations Value transfer operations Exception logging operations | 23
25
26
26
28
28
30
35 | |--------|---|---|---| | 5 | \mathcal{B} mo | del, world | 39 | | | 5.1 | The world | 39 | | | 5.2 | Auxiliary definitions | 40 | | | 5.3 | Constraints on the ether | 44 | | | 5.4 | Framing schema | 47 | | | 5.5 | Ignore, Increase and Abort | 49 | | | 5.6 | Promoted operations | 49 | | | 5.7 | Operations at the world level only | 50 | | | 5.8 | Forging messages | 52 | | | 5.9 | The complete protocol | 53 | | | | | | | 6 | \mathcal{B} ini | tial, final | 55 | | 6 | Β ini : 6.1 | tial, final
Initialisation | 55
55 | | 6 | | · · | | | 6
7 | 6.1 | Initialisation
Finalisation | 55 | | | 6.1
6.2 | Initialisation
Finalisation | 55
56 | | | 6.1
6.2
<i>C</i> mo | Initialisation Finalisation del | 55
56
59 | | | 6.1
6.2
<i>C</i> mo
7.1 | Initialisation Finalisation del Concrete World State | 55
56
59
59 | | | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4 | Initialisation Finalisation del Concrete World State Framing Schema | 55
56
59
59
59 | | | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only | 55
56
59
59
59
60
60
61 | | | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5
7.6 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only Initial state | 55
56
59
59
59
60
60
61
62 | | | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only | 55
56
59
59
59
60
60
61 | | | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only Initial state | 55
56
59
59
59
60
60
61
62 | | 7 | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only Initial state Finalisation | 55
56
59
59
59
60
60
61
62
63 | | 7 | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5
7.6
7.7
Cons
8.1
8.2 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only Initial state Finalisation istency | 55
56
59
59
60
60
61
62
63
65
65
65 | | 7 | 6.1
6.2
<i>C</i> mo
7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Initialisation Finalisation del Concrete World State Framing Schema Ignore, Increase and Abort Promoted operations Operations at the world level only Initial state Finalisation istency Introduction | 55
56
59
59
60
60
61
62
63
65 | | | | iii | |----|---|------------| | II | First Refinement: \mathcal{A} to \mathcal{B} | 69 | | 9 | \mathcal{A} to \mathcal{B} rules | 71 | | | 9.1 Security of the implementation | 71 | | | 9.2 Backwards rules proof obligations | 72 | | 10 | Rab | 75 | | | 10.1 Retrieve state | 75 | | | 10.2 Retrieve inputs | 84 | | | 10.3 Retrieve outputs | 84 | | 11 | ${\mathcal A}$ to ${\mathcal B}$ initialisation | 85 | | | 11.1 Proof obligations | 85 | | | 11.2 Proof of initial state | 85 | | | 11.3 Proof of initial inputs | 85 | | 12 | \mathcal{A} to \mathcal{B} finalisation | 87 | | | 12.1 Proof obligations | 87 | | | 12.2 Output proof | 88 | | | 12.3 State proof | 88 | | 13 | ${\mathcal A}$ to ${\mathcal B}$ applicability | 91 | | | 13.1 Proof obligation | 91 | | | 13.2 Proof | 91 | | 14 | $\mathcal A$ to $\mathcal B$ lemmas | 93 | | | 14.1 Introduction | 93 | | | 14.2 Lemma 'multiple refinement' | 94 | | | 14.3 Lemma 'ignore': separating the branches | 95 | | | 14.4 Lemma 'deterministic': simplifying the <i>Okay</i> branch | 95 | | | 14.5 Lemma 'lost unchanged' | 102 | | | 14.6 Lemma ' <i>AbIgnore</i> ': Operations that refine <i>AbIgnore</i> 14.7 <i>Ignore</i> refines <i>AbIgnore</i> | 103
106 | | | 14.8 Abort refines AbIgnore | 100 | | | 14.9 Lemma 'abort backward': operations that first abort | 115 | | | 14.10 Summary of lemmas | 116 | | | 1110 bulling of tellings | 110 | | 15 | Increase | 119 | | | 15.1 Proof obligation | 119 | | | 15.2 Invoking lemma 'lost unchanged' | 119 | | | 15.3 check-operation-ignore | 120 | iv | 16 StartFrom | 121 | 20.4 exists-chosenlost | 158 | |--|-----|--|--------------------| | 16.1 Proof obligation | 121 | 20.5 check-operation | 159 | | 16.2 Instantiating lemma 'deterministic' | 122 | 20.6 Behaviour of <i>maybeLost</i> and <i>definitelyLost</i> | 159 | | 16.3 Behaviour of maybeLost and definitelyLost | 122 | 20.7 Finishing proof of check-operation | 162 | | 16.4 exists-pd | 123 | | | | 16.5 exists-chosenLost | 123 | 21 ReadExceptionLog | 163 | | 16.6 check-operation | 124 | 21.1 Proof obligation | 163 | | • | | 21.2 Invoking lemma 'lost unchanged' | 164 | | 17 StartTo | 125 | 21.3 check-operation-ignore | 164 | | 17.1 Proof obligation | 125 | | | | 17.2 Instantiating lemma 'deterministic' | 126 | 22 ClearExceptionLog | 165 | | 17.3 Behaviour of maybeLost and definitelyLost | 126 | 22.1 Proof obligation | 165 | | 17.4 exists-pd | 127 | 22.2 Invoking lemma 'Lost unchanged' | 166 | | 17.5 exists-chosenLost | 127 | 22.3 check-operation-ignore | 166 | | 17.6 check-operation | 128 | | | | • | | 23 AuthoriseExLogClear | 167 | | 18 Req | 129 | 23.1 Proof obligation | 167 | | 18.1 Proof obligation | 129 | 23.2 Proof | 167 | | 18.2 Instantiating lemma 'deterministic' | 129 | | | | 18.3 Discussion | 130 | 24 Archive | 169 | | 18.4 exists-pd | 131 | 24.1 Proof obligation | 169 | | 18.5 exists-chosenlost | 131 | 24.2 Proof | 169 | | 18.6 check-operation | 131 | | | | 18.7 case 1: RegOkay and RabOkayClPd' | 133 | III. Cocond Definements (D to C | 171 | | 18.8 case 2: RegOkay and RabWillBeLostPd' | 138 | III Second Refinement: \mathcal{B} to \mathcal{C} | 171 | | 18.9 case 3: RegOkay and RabHasBeenLostPd' | 142 | OF the Caroles | 172 | | 18.10 case 4: ReqOkay and RabEndPd' | 146 | 25 B to C rules | 1 73
173 | | | | 25.1 Security of the implementation
25.2 Forwards rules proof obligations | 173 | | 19 Val | 149 | 25.2 Forwards rules proof obligations | 174 | | 19.1 Proof obligation | 149 | 26 <i>Rbc</i> | 177 | | 19.2 Instantiating lemma 'deterministic' | 149 | 26.1 Retrieve state | 177 | | 19.3 exists-pd | 150 | 20.1 Retrieve state | 177 | | 19.4 exists-chosenlost | 150 | 27 Initialisation, Finalisation, and Applicability | 179 | | 19.5 check-operation | 150 | 27. Initialisation proof | 179 | | 19.6 Behaviour of maybeLost and definitelyLost | 151 | 27.2 Finalisation proof | 179 | | 19.7 Clarifying the hypothesis | 153 | 27.3 Applicability proofs | 180 | | , , , | | 27.3 Applicability proofs | 100 | | 20 Ack | 157 | 28 B to C lemmas | 181 | | 20.1 Proof obligation | 157 | 28.1 Specialising the proof rules | 181 | | 20.2 Instantiating lemma 'deterministic' | 157 | 28.2 Correctness of <i>CIgnore</i> | 182 | | 20.3 exists-pd | 158 | Eo.E Correction of Cignore | 102 | v | | 28.3 | Correctness of a branch of the operation | 182 |
-----|------------|--|------------| | | 28.4 | Correctness of CIncrease | 185 | | | 28.5 | Correctness of CAbort | 185 | | | 28.6 | Lemma 'logs unchanged' | 187 | | | | Lemma 'abort forward': operations that first abort | 188 | | | | | | | 29 | | ectness proofs | 191 | | | | Introduction | 191 | | | 29.2 | Correctness of CStartFrom | 191 | | | 29.3 | Correctness of CStartTo | 193 | | | 29.4 | Correctness of CReq | 196 | | | 29.5 | Correctness of CVal | 197 | | | 29.6 | Correctness of CAck | 198 | | | 29.7 | Correctness of CReadExceptionLog | 200 | | | 29.8 | Correctness of CClearExceptionLog | 201 | | | 29.9 | Correctness of CAuthoriseExLogClear | 201 | | | 29.10 | Correctness of <i>CArchive</i> | 202 | | 30 | Sum | mary | 203 | | 30 | Juiii | iliai y | 203 | | IV | An | pendices | 209 | | 1 V | Ap | pendices | 209 | | Α | Proo | f Layout | 211 | | | A.1 | Notation | 211 | | | A.2 | Labelling proof steps | 211 | | В | Infor | rence rules | 213 | | ь | B.1 | Universal quantifier becomes hypothesis | 213 | | | В.2 | | 214 | | | в.2
В.3 | Disjunction in the hypothesis | 214 | | | | Disjunction in the consequent | | | | B.4 | Conjunction in the consequent
Cut for lemmas | 214 | | | B.5 | | 215 | | | B.6 | Thin | 215 | | | B.7 | Universal Quantification | 215 | | | B.8 | Negation | 215 | | | B.9 | Contradiction | 216 | | | | One Point Rule | 216 | | | | | | | | | Derived Rules
Proof of the Derived Rules | 216
217 | | | | | vii | |---|------|--------------------------------|-----| | c | Lemr | mas | 219 | | | C.1 | Lemma 'deterministic' | 219 | | | C.2 | Lemma 'lost unchanged' | 220 | | | C.3 | Lemma 'AbIgnore' | 220 | | | C.4 | Lemma 'Abort refines AbIgnore' | 221 | | | C.5 | Lemma 'abort backward' | 221 | | | C.6 | Lemma 'constraint' | 222 | | | C.7 | Lemma 'logs unchanged' | 222 | | | C.8 | Lemma 'abort forward' | 223 | | | C.9 | Lemma 'compose backward' | 224 | | | C.10 | Lemma 'compose forward' | 225 | | | C.11 | Lemma 'promoted composition' | 226 | | | C.12 | Lemma 'notLoggedAndIn' | 229 | | | C.13 | Lemma 'lost' | 230 | | | C.14 | Lemma 'not lost before' | 231 | | | C.15 | Lemma 'AbWorld' unique' | 232 | | D | Tool | kit | 235 | | | D.1 | Total abstract balance | 235 | | | D.2 | Total lost value | 235 | | | D 3 | Summing values | 236 | # Acknowledgments The work described in this monograph took place as part of a development funded by the NatWest Development Team (now *platform seven*). Part of the refinement work was carried out by Eoin MacDonnell. Chapter 1 ### Introduction #### 1.1 The application This case study is a reduced version of a real development by the NatWest Development Team (now *platform seven*) of a Smartcard product for electronic commerce. This development was deeply security critical: it was vital to ensure that these cards would not contain any bugs in implementation or design that would allow them to be subverted once in the field. The system consists of a number of *electronic purses* that carry financial value, each hosted on a Smartcard. The purses interact with each other via a communications device to exchange value. Once released into the field, each purse is on its own: it has to ensure the security of all its transactions without recourse to a central controller. All security measures have to be implemented on the card, with no real-time external audit logging or monitoring. #### 1.1.1 Models We develop two key models in this case study. The first is an *abstract* model, describing the world of purses and the exchange of value through atomic transactions, expressing the security properties that the cards must preserve. The second is a *concrete* model, reflecting the design of the purses which exchange value using a message protocol. Both models are described in the Z notation [Spivey 1992b] [Woodcock & Davies 1996] [Barden *et al.* 1994], and we prove that the concrete model is a *refinement* of the abstract. #### Abstract model The abstract model is small, simple, and easy to understand. The key operation Figure 1.1: An atomic transaction in the abstract model Figure 1.2: Part of the *n*-step protocol used to implement the atomic transaction in the concrete model. transfers a chosen amount of value from one purse to another; the operation is modelled as an atomic action that simultaneously decrements the value in the paying purse and increments the value in the receiving purse (figure 1.1). Two key system security properties are maintained by this and other operations: - no value may be created in the system; and - all value is accounted in the system (no value is lost). The simplicity of the abstract model allows these properties to be expressed in a way that is easily understood by the client. #### Concrete model The concrete model is rather more complicated, reflecting the details of the real system design. The key changes from the abstract are: - transactions are no longer atomic, but instead follow an n-step protocol (figure 1.2); - the communications medium is insecure and unreliable; - transaction logging is added to handle lost messages; and #### 1.2. OVERVIEW OF MODEL AND PROOF STRUCTURE there are no global properties—each purse has to be implemented in isolation. The basic protocol is: - 1. the communications device ascertains the transaction to perform; - the receiving purse requests the transfer of an amount from the paying purse; - 3. the paying purse sends that amount to the receiving purse; and - 4. the receiving purse sends an acknowledgement of receipt to the paying purse. The protocol, although simple in principle, is complicated by several facts: the protocol can be stopped at any point by removing the power from a card; the communications medium could lose a message; and a wire tapper could record a message and play it back to the same or different card later. In the face of all these possible actions, the protocol must implement the atomic transfer of value correctly, as specified in the abstract model. #### 1.1.2 Proofs All the security properties of the abstract model are $\it functional$, and so are preserved by refinement. The purpose of performing the proof is to give a very high assurance that the chosen design (the protocol) does, indeed, behave just like the abstract, atomic transfers. We choose to do rigorous proofs by hand: our experience is that current proof tools are not yet appropriate for a task of this size. We did, however, type-check the statements of the proof obligations and many of the proof steps using a combination of fuzz [Spivey 1992a] and Formaliser [Flynn et al. 1990] [Stepney]. As part of the development process, all proofs were also independently checked by external evaluators. #### 1.2 Overview of model and proof structure The specification and security proof have the following structure (summarised in figure 1.3): - Security Properties, SPs: - The Security Properties are defined in terms of constraints on secure operations; they are formalised in terms of the appropriate model concepts (see later). 3 Figure 1.3: Overview of document organisation, with model and proof structure - In some cases, where it may not be evident that a model captures a particular constraint, the desired property is recast as a *theorem* and proved. - Abstract model, A: We define an abstract model (Chapter 3), which forms the Formal Security Policy Model; it consists of a global model in terms of a simple state and operations: - the state is a world of (abstract) purses; and - the operations are defined on this state. - Between model, B: Next we build a 'between' levels model. This is the first refinement towards the implementation of purses consisting of local state information only. This model, B, is structured as a promoted state-andoperations model: - The state of a single (concrete) purse, and the corresponding single-purse operations, are defined (Chapter 4). - The purses and operations are *promoted* to a global state and operations (Chapter 5). Constraints are put on this promotion to enable the correctness proofs to be performed. - Concrete model, *C*: Our final model is the *concrete level model*, which forms the *Formal Architectural Design*. This model, *C*, is structured as a promoted state-and-operations model, very similar to *B*, except it has no constraints on the promotion: - The state of a single (concrete) purse, and the corresponding single-purse operations, are defined (Chapter 7). - The purses and operations are *promoted* to a global state and operations, with *no* constraints (Chapter 7). - Security proof A-B: The security policy is proved to hold for B by proving that B is a refinement of A. This forms the first part of Explanation of Consistency. - The retrieve relation Rab, relating the \mathcal{B} and \mathcal{A} worlds, is defined (Chapter 10). - The *security policy* is shown to hold for $\mathcal B$ by proof that $\mathcal B$ refines $\mathcal A$, using the 'backward' proof rules (Part II). This proof comprises the bulk of the proof work. - Security proof *B-C*: The *security policy* is proved to hold for *C* by proving that *C* is a *refinement* of *B* (and hence of *A*, by transitivity of refinement). This forms the remaining part of *Explanation of Consistency*. - The retrieve relation Rbc, relating the C and $\mathcal B$ worlds, is defined (Chapter 26). - The *security policy* is shown to hold for *C* by proof that *C* refines *B*, using the 'forward' proof rules (Part III). These two levels are relatively close, so this proof is relatively straightforward. The mathematical operators and schemas defined in this document are included in the index at the end of the document. #### 1.3 Rationale for model structure 1.3. RATIONALE FOR MODEL STRUCTURE As noted above, this case study has been adapted from a larger, real development. In order to produce a case study of a size appropriate for public presentation, much of the real functionality has had to
be removed. Some of the structure of the larger specification has remained present in the smaller one, although it might not have been used had the smaller specification been written from scratch. This omitted functionality, whilst important from a business perspective, is peripheral to the central security requirements. CHAPTER 1. INTRODUCTION #### 1.4 Rationale for proof structure 6 Imagine two specifications \mathcal{A} and \mathcal{C} , which describe executable machines. Imagine that, on every step, each machine consumes an input and produces an output. Finally, imagine that every execution of \mathcal{C} , viewed solely in terms of inputs and outputs, could equally well have been an execution of \mathcal{A} . In this sense, \mathcal{A} can *simulate* any behaviour of \mathcal{C} . If this is the case, then we say that \mathcal{C} is a *refinement* of \mathcal{A} . This is exactly what we want to prove in our case study: that the concrete model is a refinement of the abstract one. Refinement is an ordering between specifications that captures an intuitive notion of when a concrete specification implements an abstract one. This allows us to postpone implementation detail in writing our top-level specification, focusing only on essential properties. The cost of this abstraction is the need to refine the specification, reifying data structures and algorithms; refinement is a formal technique for ensuring that essential properties are present in a more concrete specification. Nondeterminism is used in an abstract specification to describe alternative acceptable behaviours; in choosing a concrete refinement of an abstract specification, some of these nondeterministic choices may be resolved. Since we view $\mathcal A$ and $\mathcal C$ only terms of inputs and outputs, nondeterminism present in $\mathcal A$ may be resolved at a different point in $\mathcal C$. Our abstract model, chosen to represent the difference between secure and insecure transactions very clearly, has nondeterminism in a different place from the implementation. In fact, it has it in a place that precludes proof using the forward rules of [Spivey 1992b, section 5.6]. For this reason we use the backward rules to prove against the abstract model. At the concrete level, we must describe the purse behaviour in a way that closely mirrors the actual design. An important (and obvious) property of the design is that the purses are *independent*, that is, each purse acts on the basis of its own, local knowledge, and we have no control over the communications medium between purses. This can be expressed cleanly in Z by building a model of an individual purse in isolation, and then *promoting* [Barden *et al.* 1994, chapter 19] this model to a world with many purses. To express the fact that we have no global control over the purses nor over the communications medium, we must use an unconstrained promotion. This we do in the *C* model. Why do we not, then, do a single backward proof step from the $\mathcal A$ model to the $\mathcal C$ model? For technical reasons, the backward proof rules need the more concrete specification to be tightly constrained in its state space. The form of the proofs forces the description of the state space to include explicit predicates excluding 1.5. STATUS 7 all but valid states. However, these predicates are not expressible locally to purses, and hence cannot be included in specification derived by unconstrained promotion. That is, we cannot express the predicates needed for the proof in the $\it C$ model. We therefore introduce an intermediate model, the $\mathcal B$ model, which is a constrained promotion, and hence can contain the predicates needed for the backward proofs. We then prove a refinement from $\mathcal A$ to $\mathcal B$ using the backward rules. But now the constrained promotion $\mathcal B$ is very close to the unconstrained promotion $\mathcal C$, and in particular the nondeterminism is resolved in the same place in both models, allowing the forward rules to be used. This we do in our proof of refinement from $\mathcal B$ to $\mathcal C$. #### 1.5 Status The specification and theorems have been parsed and type-checked using fUZZ [Spivey 1992a]. There is no use of the %unchecked parser directive in the specification, in the statement of theorems, or in the statement of most of the intermediate goals; however, some reasoning steps have hidden declarations to make them type-check and some do not conform to fUZZ's syntax at all. # Part I # Models #### Chapter 2 ## **Security Properties** #### 2.1 Introduction This chapter gathers together the Security Properties (SPs) definitions, for reference. The SPs are formalised in terms of the abstract and concrete models, making use of definitions in Chapters 3 and 4. (The index can be used to find the definitions of these terms.) The full meaning and effect of a SP can be seen only in the context of the model that includes it. #### 2.2 Abstract model SPs The following SPs are expressed in terms of the abstract model $\mathcal{A},$ defined in chapter 3. #### 2.2.1 No value creation **Security Property 1.** No value may be created in the system: the sum of all the purses' balances does not increase.¹ | NoValueCreation | |--| | $\Delta AbWorld$ | | $totalAbBalance\ abAuthPurse' \le totalAbBalance\ abAuthPurse$ | ¹Proved to hold for the model, section 2.4. *NoValueCreation* requires that the sum of the before balances is greater or equal to the sum of the after balances. The abstract model enforces a stronger condition: that transfers change only the purses involved in the transfer and only by the amount stated in the transfer. 12 CHAPTER 2. SPS #### 2.2.2 All value accounted **Security Property 2.1.** All value must be accounted for in the system: the sum of all purses' balances and lost components does not change.² ``` AllValueAccounted ΔAbWorld totalAbBalance abAuthPurse' + totalLost abAuthPurse' = totalAbBalance abAuthPurse + totalLost abAuthPurse ``` #### 2.2.3 Authentic purses **Security Property 3.** A transfer can occur only between authentic purses.³ ``` Authentic AbWorld name?: NAME name? ∈ dom abAuthPurse ``` #### 2.2.4 Sufficient funds **Security Property 4.** A transfer can occur only if there are sufficient funds in the from-purse. ⁴ #### 2.3 Concrete model SPs The following SPs are expressed in terms of the between (and concrete) model \mathcal{B} , defined in chapter 4. 2.4. SPS AND THE MODELS 13 #### 2.3.1 Exception logging **Security Property 2.2.** *If a purse aborts a transfer at a point where value could be lost, then the purse logs the details.*⁵ The only times the log need be updated are if the purse is in epv (having sent the req message) or in epa (having sent the val but not yet received the ack). In all other cases the transfer has not yet got far enough for the purse to be worried that the transfer has failed, or has got far enough that the purse is happy that the transfer has succeeded. #### 2.4 SPs and the models All the SPs hold in the appropriate models. In most cases, this is obviously true, by construction: the SPs appear as explicit predicates in the relevant definitions. However, *NoValueCreation* and *AllValueAccounted* are not explicitly included in the operation that changes the relevant components: *AbTransfer*. In this section, we demonstrate that the abstract model indeed satisfies these SPs. That is: ``` AbTransferOkay \vdash NoValueCreation \land AllValueAccounted AbTransferLost \vdash NoValueCreation \land AllValueAccounted AbIgnore \vdash NoValueCreation \land AllValueAccounted ``` In the proofs below, we use the *TD* form of the definitions, by [*cut*]ting in the appropriate *TransferDetails*. #### 2.4.1 Transfer okay, no value creation ``` AbTransferOkayTD \vdash NoValueCreation ``` ²Proved to hold for the model, section 2.4. The concrete level SP 2.2 uses logging to support this SP. ³Used in the definition of: AbTransferOkay and AbTransferLost, section 3.3.3. ⁴Used in the definition of: *AbTransferOkay* and *AbTransferLost*, section 3.3.3. Used in the proof of: SPI, section 2.4.1, section 2.4.3, SP2, section 2.4.2, section 2.4.4. Note that the model also ensures that the *balance* and *value*? are non-negative. ⁵Used in the definition of: *AbortPurse*, section 4.8.2. ``` 14 Proof: ``` totalAbBalance abAuthPurse' ``` + (abAuthPurse' from?).balance + (abAuthPurse' to?).balance [totalAbBalance] + ((abAuthPurse from?).balance - value?) + ((abAuthPurse to?).balance + value?) [AbTransferOkay] = totalAbBalance abAuthPurse ≤ totalAbBalance abAuthPurse 2.4.1 2.4.2 Transfer okay, all value accounted AbTransferOkayTD \vdash AllValueAccounted Proof: totalAbBalance abAuthPurse' + totalLost abAuthPurse' + (abAuthPurse' from?).balance + (abAuthPurse' to?).balance [totalAbBalance] + (abAuthPurse' from?).lost + (abAuthPurse' to?).lost [totalLost] + ((abAuthPurse from?).balance – value?) + ((abAuthPurse to?).balance + value?) + totalLost(\{from?, to?\} \triangleleft abAuthPurse) + (abAuthPurse from?).lost + (abAuthPurse to?).lost [AbTransferOkay] = totalAbBalance abAuthPurse + totalLost abAuthPurse 2.4.2 ``` 2.4. SPS AND THE MODELS 15 #### 2.4.3 Transfer lost, no value creation $AbTransferLostTD \vdash NoValueCreation$ #### Proof: ``` totalAbBalance abAuthPurse' = totalAbBalance({from?, to?} ≤ abAuthPurse') + (abAuthPurse' from?).balance + (abAuthPurse' to?).balance = totalAbBalance({from?, to?} ≤ abAuthPurse) + ((abAuthPurse from?).balance - value?) + (abAuthPurse to?).balance = totalAbBalance abAuthPurse - value? = totalAbBalance abAuthPurse - value? ≤ totalAbBalance abAuthPurse ``` ### **2.4.3** #### 2.4.4 Transfer lost, all value accounted $AbTransferLostTD \vdash AllValueAccounted$ #### Proof: ``` totalAbBalance abAuthPurse' + totalLost abAuthPurse' + (abAuthPurse' from?).balance + (abAuthPurse' to?).balance [totalAbBalance] + totalLost(\{from?,
to?\} \triangleleft abAuthPurse') + (abAuthPurse' from?).lost + (abAuthPurse' to?).lost [totalLost] = totalAbBalance(\{from?, to?\} \triangleleft abAuthPurse) + ((abAuthPurse from?).balance - value?) + (abAuthPurse to?).balance + totalLost(\{from?, to?\} \triangleleft abAuthPurse) + ((abAuthPurse from?).lost + value?) + (abAuthPurse to?).lost [AbTransferLost] = totalAbBalance abAuthPurse + totalLost abAuthPurse ``` 16 CHAPTER 2. SPS **2.4.4** #### 2.4.5 Transfer ignore $AbIgnore \vdash NoValueCreation \land AllValueAccounted$ #### Proof Follows directly from the definition of AbIgnore, which changes none of the relevant values. - **2.4.5** - **2.4** - **2** #### Chapter 3 ## Abstract model: security policy #### 3.1 Introduction The abstract model specification has the following parts: - State: the abstract world of purses - Operations: secure changes from one abstract state to another - Initialisation: the abstract world starts off secure - Finalisation: a way of observing part of the abstract world to determine that it is secure #### 3.2 The abstract state #### 3.2.1 A purse An abstract *AbPurse* consists of a *balance*, the value stored in the purse; and a *lost* component, the total value lost during unsuccessful transfers. (The unsuccessful, but still secure, transfer is defined in section 3.3.3.) ``` AbPurse = [balance, lost : \mathbb{N}] ``` #### 3.2.2 Transfer details Each purse has a distinct, unique name. [NAME] 18 CHAPTER 3. A MODEL The details of a particular transfer include the names of the *from* and *to* purses and the value to be transferred. Although it is not permitted to perform a transfer between a purse and itself, the constraint $from \neq to$ is checked during AbTransfer, rather than put in TransferDetails, since it is permitted to request a transfer with from = to. Transactions involving zero value are allowed. #### 3.2.3 Abstract world The abstract world model contains a mapping from purse names to abstract purses. The domain of this function corresponds to authentic purses, those that may engage in transfers¹. We allow only a finite number of authentic purses, to ensure a well-defined total value in the system. #### 3.3 Secure operations Having defined our abstract world, *AbWorld*, we now define operations on the world that respect the relevant SPs. We call these *secure operations*. They comprise: - AbIgnore: securely do nothing - AbTransfer: securely transfer balance between purses, or securely 'lose' the balance #### 3.3.1 Abstract inputs and outputs We are to prove that the implementation is a refinement of the abstract security policy specification. This is made simpler if every operation has an input and an output, and if all operations' inputs and outputs are of the same type. So we define the inputs and outputs (some being 'dummy' values) using a free type construct: ``` AIN ::= aNullIn | transfer(\(\text{Transfer}\)Details\) ``` 3.3. SECURE OPERATIONS 19 ``` AOUT ::= aNullOut ``` Every abstract operation has the following properties: ``` AbOp ΔAbWorld a?: AIN; a!: AOUT a! = aNullOut ``` The output is always *aNullOut* (that is, we are not interested in the abstract output). #### 3.3.2 Abstract ignore Any operation has the option of securely doing nothing. ``` AbIgnore AbOp abAuthPurse' = abAuthPurse ``` #### 3.3.3 Transfer The transfer operation changes only the balance and lost component of the relevant purses. ``` AbPurseTransfer = AbPurse \setminus (balance, lost) ``` The secure transfer operations change at most the *from* and *to* purse states: all other purse states are unchanged. ¹SP 3, 'Authentic purses', section 2.2.3. A transfer can securely succeed between two purses if they are distinct, both purses are authentic², and the *from* purse has sufficient funds³. CHAPTER 3. A MODEL ``` AbTransferOkayTD_ AbWorldSecureOp Authentic[from?/name?] Authentic[to?/name?] SufficientFundsProperty to? \neq from? abAuthPurse' from? = (\mu \Delta AbPurse \mid \theta AbPurse = abAuthPurse from? \wedge balance' = balance - value? \land lost' = lost ∧ EAbPurseTransfer • \theta AbPurse') abAuthPurse' to? = (\mu \Delta AbPurse \mid \theta AbPurse = abAuthPurse to? \wedge balance' = balance + value? \land lost' = lost ∧ EAbPurseTransfer • \theta AbPurse') ``` The operation transfers *value*? from the *from* purse to the *to* purse⁴. All the other components of the *from*? and *to*? purses are unchanged, and all other purses are unchanged. The model is more constrained than required by the SPs, and hence it represents a sufficient, but not necessary, behaviour to conform to the SPs. Hiding the auxiliary inputs gives the *Okay* operation as: ``` AbTransferOkay = AbTransferOkayTD \setminus (to?, from?, value?) ``` A transfer can securely lose value between two purses if they are distinct, both purses are authentic⁵, and the *from* purse has sufficient funds⁶. ``` ²SP 3, 'Authentic purses', section 2.2.3. ³SP 4, 'Sufficient funds', section 2.2.4. ⁴SP 1, 'No value created', section 2.2.1. ⁵SP 3, 'Authentic purses', section 2.2.3. ⁶SP 4, 'Sufficient funds', section 2.2.4. ``` The operation removes *value*? from the *from* purse's balance,⁷ and adds it to the *from* purse's *lost* component.⁸ All the other components of the *from*? purse are unchanged, The *to* purse and all other purses are unchanged. Hiding the auxiliary inputs gives the *Okay* operation as: ``` AbTransferLost \stackrel{.}{=} AbTransferLostTD \setminus (to?, from?, value?) ``` The full transfer operation can also securely do nothing, *AbIgnore*. The full transfer operation is ``` AbTransfer \stackrel{\hat{}}{=} AbTransferOkay \lor AbTransferLost \lor AbIgnore ``` #### 3.4 Abstract initial state One conventional definition of the initial state of a system is as being empty; operations are used to add elements to the state until the desired configuration is reached. However, we do not wish to add new abstract purses to the domain of *abAuthPurse*, so we cannot start with a system containing no authentic purses. So we set up an arbitrary initial state, which satisfies the predicate of *AbWorld'*. ``` AbInitState = AbWorld' ``` ⁷SP 1, 'No value created', section 2.2.1. ⁸SP 2, 'All value accounted', section 2.2.2. CHAPTER 3. A MODEL 22 So we say that *AbInitState* has some particular value, we just do not say what that particular value *is*. The particular value chosen is irrelevant to the security of the system; any starting state would be secure. Initialisation also defines the mapping from global (that is, observable) inputs to abstract (that is, modelled) inputs. This is just the identity relation in the $\mathcal A$ model: ``` AbInitIn = [a?, g? : AIN \mid a? = g?] ``` #### 3.5 Abstract finalisation We must 'observe' each security relevant component of the world, in order to determine that the security properties do indeed hold. Observation is usually performed by enquiry operations, and any part of the state not visible through some enquiry operation is deemed unimportant. However, in our case there are no abstract enquiry operations to observe state components, but there are security properties related to them, and so they *are* important. We use *finalisation* to observe them. Finalisation takes an abstract state, and 'projects out' the portion of it we wish to observe, into a global state. Here we choose to observe the entire abstract state. The global state is the same as the abstract state: Finalisation gives the global state corresponding to an abstract state. These are mostly the identity relations in the ${\mathcal A}$ model: ``` AbFinState AbWorld GlobalWorld gAuthPurse = abAuthPurse ``` Finalisation also defines the mapping from abstract outputs to global (that is, observable) outputs. ``` AbFinOut \stackrel{\triangle}{=} [a!, g! : AOUT \mid a! = g!] ``` Chapter 4 # Between model, single purse operations #### 4.1 Overview This chapter covers the purse-level operations, which are: abort, the start operations, the transfer operations *req*, *val* and *ack*, read log, and clear log. For the sake of simplicity, we assume that concrete and abstract *NAMEs* are drawn from the same sets. In this section we refer to 'concrete' rather than 'between' purse, because, as we see later, there is no difference between the two structurally. The only difference between the $\mathcal B$ and $\mathcal C$ worlds is fewer global constraints in the latter. #### 4.2 Status A concrete purse has a *status*, which records its progress through a transaction. ``` STATUS ::= eaFrom | eaTo | epr | epv | epa ``` The statuses are: *eaFrom* 'expecting any payer', *eaTo* 'expecting any payee', *epr* 'expecting payment req', *epv* 'expecting payment val', and *epa* 'expecting payment ack'. #### 4.3 Message Details The abstract level describes the operations that transfer value. Purses are sent instructions via messages, and we present the structure of compound messages in this section. - A single transfer involves many messages. So we need a way to distinguish messages: we use a tag for rea, val or ack. - We have no control over the concrete messages, and cannot forbid the duplication of messages. So we need a way to distinguish separate transactions: we use sequence numbers that are increased between transactions. (The transaction sequence number is implemented as a sufficiently large number. Provided that the initial sequence number is quite small, and each increment is small, we need not worry about overflow, since the purse will physically wear out first. #### 4.3.1 Start message counterparty details The counterparty details of a payment, which are transmitted with a *start* message, identify the other purse, the *value* to be transferred, and the other purse's transaction sequence number. _ CounterPartyDetails name : NAME value : ℕ nextSeqNo : ℕ #### 4.3.2 Payment log message details Purses store current payment details, and exception log records that hold sufficient information about failed or problematic transactions to reconstruct the
value lost in the transfer¹. The payment log details identify the different *from* and *to* purses and the *value* to be transferred (as in the abstract *TransferDetails*) and also the purses' transaction sequence numbers. The combination of purse name and sequence number *uniquely* identifies the transaction. PayDetails TransferDetails fromSeqNo, toSeqNo: ℕ from ≠ to We can put the constraint about distinct purses in the *PayDetails*, because this check is made in *ValidStartTo/From*, before the details are set up. #### 4.4 Clear Exception Log Validation 4.4. CLEAR EXCEPTION LOG VALIDATION CLEAR is the set of clear codes for purse exception logs. [CLEAR] A clear code is provided by an external source (section 5.7.1) in order to clear a purse's exception log (section 4.10.2). image is a function to calculate the clear code for a given non-empty set of exception records. ``` image : \mathbb{P}_1 PayDetails \rightarrow CLEAR ``` *image* takes a set of exception logs, and produces another value used to validate a log clear command. For each set of *PayDetails*, there is a unique clear code. The *BetweenWorld* model is designed so that no logs are ever lost. Indeed, we must prove that no logs are lost in the refinement of each operation — this is an implicit part of the refinement correctness proofs. The *BetweenWorld* mechanism to ensure that no logs are lost relies on two assumptions: - clear codes are only ever generated from sets of *PayDetails* that are stored in the *archive* (a secure store of log records introduced later) - clear codes unambiguously identify sets of PayDetails The second of these assumptions is captured formally by the injective function $image^2$. ¹Concrete SP 2.2, 'Exception logging', section 2.3.1. $^{^2}$ In practice, *image* is not injective on general sets of *PayDetails*, but it *is* injective when restricted to the sets actually encountered. There are various kinds of messages: The first group of messages may be unprotected. Their forgeability is modelled by having them all present in the initial message ether (see section 6.1). The second group of messages are all that need to be cryptographically protected. Their unforgeability is modelled by having them added to the message ether only by specified operations. \perp , 'forged', is a message emitted by operations that ignore the (irrelevant) input message, or emitted by non-authentic purses. It is also the input message to the *Ignore, Increase* and *Abort* operations. \perp is implemented as an unprotected status message, as an error message, as a 'forged' message, or as 'silence'. As far as the model is concerned, we choose not to distinguish these messages from each other, only from the other distinguished ones. (See also section 5.8.) A complete payment transaction is made up of a *startFrom*, *startTo*, *req*, *val*, and *ack* message. #### 4.6 A concrete purse A concrete purse has a current balance, an exception log for recording failed or problematic transfers, a name, a transaction sequence number to be used for the next transaction, the payment details of the current transaction, and a status indicating the purse's position in the current transaction. The name is included in the purse's state so that the purse itself can check it is the correct purse for this transaction. The predicate on the purse state records the following constraints: ``` P-1 \forall pd: exLog \bullet name \in \{pd.from, pd.to\} ``` 4.6. A CONCRETE PURSE All log details in the exception log refer to this purse, as the from or the to party³. - (a) it is the *from* purse of the current transaction⁴. - (b) it has sufficient funds for the request ⁵ (this condition is required because there is no check for sufficient funds on receipt of the request) - (c) its next sequence number is greater than the current transaction's sequence number 6 #### P-3 $status = epv \Rightarrow pdAuth.toSeqNo < nextSeqNo$ ³Used in: AuxWorld does not add constraints, section 5.2.1. ⁴Used in: CReq, B-9, section 29.4. ⁵Used in: Req, case 1, SufficientFundsProperty, section 18.7.2; Req, case 2, SufficientFundsProperty, section 18.8.2; Req, case 3, SufficientFundsProperty, section 18.9.2. ⁶Used in: *CReq*, B-3, section 29.4. P-4 status = epa \Rightarrow pdAuth.fromSeqNo < nextSeqNo If the purse is expecting a payment acknowledgement, then its next sequence number is greater than the current transaction's sequence number 8 #### 4.7 Single Purse operations #### 4.7.1 Overview The concrete purse specification is structured around the various purse-level operations: - invisible operations - IncreasePurse - AbortPurse - value transfer operations - StartFromPurse - StartToPurse - RegPurse - ValPurse - AckPurse - · exception logging operations - ReadExceptionLogPurse - ClearExceptionLogPurse #### 4.8 Invisible operations Several concrete operations have a common effect on the state visible in the model (they affect only implementation state not visible in the model). #### 4.8.1 Increase Purse 4.8. INVISIBLE OPERATIONS The *IncreasePurseOkay* operation is used to model actual purse operations that do not have any effect on the state visible in this model, except for increasing the sequence number. In a simple increase transaction, only the purse's sequence number may change. All other components remain unchanged. $ConPurseIncrease = ConPurse \setminus (nextSeqNo)$ ``` IncreasePurseOkay \triangle ConPurse m?, m! : MESSAGE \equiv ConPurseIncrease nextSeqNo' \geq nextSeqNo m! = \perp ``` #### 4.8.2 Abort Purse The *AbortPurseOkay* operation is used to model actual purse operations that do not have any effect on the state visible in this model, but that abort and log incomplete transactions. In a simple abort transaction, only the purse's sequence number, exception log, *pdAuth* and status may change. All other components remain unchanged. ``` ConPurseAbort = ConPurse \setminus (nextSeqNo, exLoq, pdAuth, status) ``` *AbortPurseOkay* places the purse in status *eaFrom* (where the *pdAuth* component is undefined), logging any incomplete transactions if necessary⁹. No other component of the purse is altered, except for *nextSeqNo*, which may increase arbitrarily. ⁷Used in: *CAbort*, B-6, section 28.5. ⁸Used in: *CAbort*, B-5, section 28.5. ⁹Concrete SP 2.2, 'Exception logging', section 2.3.1. ``` AbortPurseOkay ΔConPurse m?, m!: MESSAGE ΞConPurseAbort LogIfNecessary status' = eaFrom nextSeqNo' ≥ nextSeqNo ``` We do not, at this stage, put any restrictions on the output message m!. Later, we either compose *AbortPurseOkay* with another operation, using the latter's m!, or we promote *AbortPurseOkay* to the world level, where we define $m! = \bot$. #### 4.9 Value transfer operations The *StartTo* and *StartFrom* operations, when starting from *eaFrom*, change only the sequence number, the stored *pdAuth*, and the status of a purse. ``` ConPurseStart = ConPurse \setminus (nextSeqNo, pdAuth, status) ``` The *Req* operation change only the balance and the status of a purse. ``` ConPurseReq = ConPurse \setminus (balance, status) ``` The Val operation change only the balance and the status of a purse. ``` ConPurseVal = ConPurse \setminus (balance, status) ``` The Ack operation changes only the status of a purse, and allows the pdAuth to change arbitrarily. ``` ConPurseAck = ConPurse \setminus (status, pdAuth) ``` #### 4.9.1 StartFromPurse A *startFrom* message is valid only if it refers to a different purse from the receiver, and mentions a value for which the *from* purse has sufficient funds. 4.9. VALUE TRANSFER OPERATIONS To perform the *StartFromPurseEafromOkay* operation, a purse must receive a valid *startFrom* message, and be in *eaFrom*. ``` _StartFromPurseEafromOkay ___ \Delta ConPurse m?, m!: MESSAGE cpd: CounterPartyDetails ValidStartFrom status = eaFrom EConPurseStart nextSeqNo' > nextSeqNo pdAuth' = (\mu PayDetails | from = name \wedge to = cpd.name \wedge value = cpd.value \land fromSeqNo = nextSeqNo \land toSeqNo = cpd.nextSeqNo) status' = epr m! = \bot ``` The *StartFromPurseEafromOkay* operation stores the payment details consisting of the counterparty details and its own name and sequence number (for later validation), moves to the *epr* state, increases its sequence number, and sends an unprotected status message. The *StartFromPurseOkay* operation first aborts (logging the pending payment if necessary, and moving to *eaFrom*), then performs the *StartFromPurse*- ``` StartFromPurseOkay \(\hat{2} \) AbortPurseOkay \(\hat{3} \) StartFromPurseEafromOkay \(\hat{4} \) (cpd) ``` #### 4.9.2 StartToPurse A *startTo* message is valid only if it refers to a different purse from the receiver. To perform the *StartToPurseEafromOkay* operation, a purse must receive a valid *startTo* message, and be in *eaFrom*. ``` _StartToPurseEafromOkay___ \Delta ConPurse m?, m!: MESSAGE cpd: CounterPartyDetails ValidStartTo status = eaFrom EConPurseStart nextSeqNo' > nextSeqNo pdAuth' = (\mu PayDetails | to = name \wedge from = cpd.name \wedge value = cpd.value \wedge toSeqNo = nextSeqNo \land fromSeqNo = cpd.nextSeqNo) status' = epv m! = req pdAuth' ``` # The *StartToPurseOkay* operation logs the pending payment, if necessary; it stores the payment details, consisting of the counterparty details and its own name and sequence number, for later validation; it moves to the *epr* state; it increases its sequence number; and it sends a *reg* message containing the The *StartToPurseOkay* operation first aborts (logging the pending payment if necessary, and moving to *eaFrom*), then performs the *StartToPurse-EafromOkay* operation. ``` StartToPurseOkay \(\hat{=}\) AbortPurseOkay \(\hat{\}\) StartToPurseEafromOkay \(\lambda\) (cpd) ``` #### 4.9.3 ReqPurse stored payment details. 4.9. VALUE TRANSFER OPERATIONS An authentic request message is a *req* message containing the correct stored payment details (which were stored on receipt of the *startFrom* message). ``` __AuthenticReqMessage ______ ConPurse m?:
MESSAGE m? = req pdAuth ``` To perform the *ReqPurseOkay* operation, a purse must receive a *req* message with the payment details, and be in the *epr* state, ``` ReqPurseOkay \(\Delta ConPurse \) m?, m! : MESSAGE AuthenticReqMessage status = epr \(\tilde ConPurseReq \) balance' = balance - pdAuth.value status' = epa m! = val pdAuth ``` The purse decrements its balance, moves to the *epa* state, and sends a *val* message containing the stored payment details. An authentic value message is a *val* message containing the correct stored payment details (which were stored on receipt of the *startTo* message). To perform the *ValPurseOkay* operation, a purse must receive a *val* message with the payment details, and be in the *epv* state, ``` ValPurseOkay \(\Delta ConPurse \) m?, m!: MESSAGE AuthenticValMessage status = epv \(\text{E} ConPurseVal \) balance' = balance + pdAuth.value status' = eaTo m! = ack pdAuth ``` The purse increments its balance, moves to the *eaTo* state, and sends an *ack* message containing the stored payment details. #### 4.9.5 AckPurse An authentic acknowledge message is an *ack* message containing the correct stored payment details (which were stored on receipt of the *startFrom* message). ``` AuthenticAckMessage ConPurse m?: MESSAGE m? = ack pdAuth ``` To perform the *AckPurseOkay* operation, a purse must receive an *ack* message with the payment details, and be in the *epa* state. ``` AckPurseOkay \(\Delta ConPurse \) m?, m!: MESSAGE AuthenticAckMessage status = epa \(\text{\tin\text{\text{\text{\text{\text{\text{\text{\texi\tin\text{\tex{\text{\tin\text{\text{\text{\text{\text{\text{\text{\texi\texi{\ ``` The purse moves to the eaFrom state, and sends an unprotected status message. #### 4.10 Exception logging operations 4.10. EXCEPTION LOGGING OPERATIONS #### 4.10.1 ReadExceptionLogPurse To perform the *ReadExceptionLogPurseEafromOkay* operation, a purse must receive a *readExceptionLog* message and be in the *eaFrom* state. The operation sends an unprotected status message (modelling 'record not available') or a protected *exceptionLogResult* message containing one of the exception logs tagged with its name 10 . The ReadExceptionLogPurseOkay operation first aborts (logging any pending payment, and moving to eaFrom), and then performs the ReadExceptionLogPurse-EafromOkay operation. ``` ReadExceptionLogPurseOkay = AbortPurseOkay \(\circ \) ReadExceptionLogPurseEafromOkay ``` $^{^{10}\}mathrm{This}$ gives a non-deterministic response, because we do not model exception log record numbers. #### 4.10.2 ClearExceptionLogPurse During a clear log transaction the purse's exception log may change, but no other component can change. ``` ConPurseClear = ConPurse \setminus (exLog) ``` To perform the *ClearExceptionLogPurseOkay* operation, a purse must have a non-empty exception log and receive a valid *exceptionLogClear* message. If the purse receives a valid *exceptionLogClear* message, has no transaction in progress and has an empty exception log, then the purse ignores the message. First we define how the purse clears its log in *eaFrom*: ``` ClearExceptionLogPurseEafromOkay \triangleConPurse m?, m!: MESSAGE exLog \neq \emptyset m? = exceptionLogClear(name, image exLog) status = eaFrom \exists ConPurseClear exLog' = \emptyset m! = \bot ``` The purse clears its exception log, and sends an unprotected status message. The *image* ensures that log messages have at least been read and moved to the archive (see *AuthoriseExLogClear*, section 5.7.1). Procedural mechanisms must ensure that archive information is not lost ¹¹. There is a four stage protocol for reading and clearing exception logs: reading a log to the ether, copying a log from the ether to the archive, authorising a purse exception log clear based on what's in the archive, and clearing a purse's exception log having received authorisation. We note that as a result of this protocol, if <code>ClearExceptionLogPurseOkay</code> aborts and logs an uncompleted transaction, then the purse's exception log will not be cleared. The reason for this is as follows. The purse gets to <code>eaFrom</code> by aborting any uncompleted transaction. If this would create a new exception record, the clear transaction could not occur, because the (imaged) exception log in the message would not match the actual exception log in the purse. The full clear exception log operation for a purse is thus defined to abort an uncompleted transaction first, and then clear the log if appropriate. #### ClearExceptionLogPurseOkay 4.10. EXCEPTION LOGGING OPERATIONS *â* AbortPurseOkay ^a ClearExceptionLogPurseEafromOkay ¹¹Concrete SP 2.2, 'Exception logging', section 2.3.1. #### Chapter 5 ## Between model, promoted world #### 5.1 The world The individual purse operations are *promoted* to the 'world of purses'. This world contains the purses, a public *ether* containing all previous messages sent, and a private *archive*, which is a secure store of exception logs, each exception log tagged with the purse that recorded it. Information cannot be deleted from the archive, so that the store of exception logs is persistent. This is to be implemented by mechanisms outside the target of evaluation. ``` Logbook : \mathbb{P}(NAME \leftrightarrow PayDetails) Logbook = \mathbb{P}(\{PayDetails \bullet from \mapsto \theta PayDetails\} ∪ \{PayDetails \bullet to \mapsto \theta PayDetails\}) ``` A *Logbook* is a set of log details, each tagged with a name, where that name is either that of the *to* purse or that of the *from* purse in the log details. In addition, the *archive*'s tagged log details The *archive* is a *Logbook*. In addition, the *archive*'s tagged log details are tagged only with authentic purse names. CHAPTER 5. B MODEL, WORLD | | from | epr | ера | (diff trans incl eaFrom) | | |----------------|-------|-----|-----|--------------------------|-----| | to | | | | no log | log | | ерч | | 0 | ? | 0 | ? | | еаТо | | × | 0 | 0 | 0 | | (diff trans) | nolog | 0 | 0 | 0 | 0 | | (incl eaFrom | log | 0 | 1 | 0 | 1 | Figure 5.1: The amount lost on the current transaction for each possible state of the purses. '0' means the value has definitely not been lost; '1' means the value has definitely been lost; '2' means the value may be lost; ' \times ' means that this state is impossible. #### 5.2 Auxiliary definitions We define some auxiliary components, for ease of proof later. These components are described in detail after the schema. The set *definitelyLost* captures those transactions that have proceeded far enough that we know they cannot succeed. The set *maybeLost* captures those transactions that have proceeded far enough that they will lose money if something goes wrong, but that could equally well continue to successful completion. In the other transactions, either the transaction has not proceeded far enough to lose anything, or has proceeded so far that the value has definitely been received. The way in which the concrete state of the purses relates to the amount of value 'lost' in the transaction can be represented by the table shown in figure 5.1, where the amount lost on the current transaction is shown for each possible state of the purses, including purses that have moved on to a different transaction, with or without logging this one. ``` _AuxWorld_ ConWorld allLoas: NAME ↔ PavDetails authenticFrom, authenticTo: P PayDetails fromLogged, toLogged : ℙ PayDetails toInEpv, toInEapayee, fromInEpr, fromInEpa: F PayDetails definitelvLost : ℙ PavDetails maybeLost: F PayDetails allLogs = archive \cup { n : dom conAuthPurse; pd : PayDetails | pd \in (conAuthPurse n).exLog \} authenticFrom = \{ pd : PayDetails \mid pd.from \in dom conAuthPurse \} = \{ pd : PavDetails \mid pd.to \in dom conAuthPurse \} fromLogged = \{ pd : authenticFrom \mid pd.from \mapsto pd \in allLogs \} toLogged = \{ pd : authenticTo \mid pd.to \mapsto pd \in allLogs \} toInEpv = \{ pd : authenticTo \mid (conAuthPurse\ pd.to).status = epv \land (conAuthPurse pd.to).pdAuth = pd } toInEapayee = { pd : authenticTo | (conAuthPurse\ pd.to).status = eaTo \land (conAuthPurse pd.to).pdAuth = pd } fromInEpr = { pd :
authenticFrom | (conAuthPurse\ pd.from).status = epr \land (conAuthPurse pd.from).pdAuth = pd } fromInEpa = { pd : authenticFrom | (conAuthPurse\ pd.from).status = epa \land (conAuthPurse pd.from).pdAuth = pd } definitelyLost = toLogged \cap (fromLogged \cup fromInEpa) maybeLost = (fromInEpa \cup fromLogged) \cap toInEpv ``` 5.2. AUXILIARY DEFINITIONS These auxiliary definitions put no further constraints on the state, but simply define the derived components. Hence they do not need to be implemented. They are defined merely for ease of use later. We prove that this is so in section 5.2.1 below. The auxiliary components represent the following: - allLogs: All the exception logs; all those logs in the archive, and those still uncleared in purses. - authenticFrom, authenticTo: All possible payment details referring to authentic from purses, and authentic to purses. - fromLogged: All those payment details logged by a from purse. - · toLogged: All those details logged by a to purse. - toInEpv: All those details for which the to purse is authentic, and is currently in epv with those details stored. This is a finite set, because conAuthPurse is a finite function. - toInEapayee: All those details for which the to purse is authentic, and is currently in eaTo with those details stored. - fromInEpr: All those details for which the from purse is authentic, and is currently in epr with those details stored. - fromInEpa: All those details for which the from purse is authentic, and is currently in epa with those details stored. - definitelyLost: All those details for which we know now that the value has been lost. The val message was definitely sent and definitely not received, so ultimately both purses will log the transaction. The authentic to purse has logged, which it would not have done had it sent the ack, and the authentic from purse has sent the val and not received the ack, and so never will. See figure 5.2 - maybeLost: All those details that refer to value that may yet be lost or may yet be transferred successfully from this purse, but which have already definitely left the purse. This occurs when the authentic from purse has sent the val and not received the ack and the authentic to purse is in epv, waiting for the val that it may or may not get. See figure 5.2 It is a finite set, because toInEpv is a finite set. We have the identity ``` AuxWorld \vdash definitelyLost \cup maybeLost = (fromInEpa \cup fromLogged) \cap (toInEpv \cup toLogged) ``` #### 5.2. AUXILIARY DEFINITIONS Figure 5.2: The sets *definitelyLost* (vertical hatching) and *maybeLost* (horizontal hatching) as subsets of the other auxiliary definitions. The later proofs of operations that change purse status (the two start, three protocol and log enquiry operations) are based on how the relevant *pd* moves in and out of the sets *maybeLost* and *definitelyLost*. (These sets are disjoint in the *BetweenWorld*, because of the *BetweenWorld* constraints on log sequence numbers; see lemma 'lost', section C.13.) #### 5.2.1 AuxWorld does not add constraints *AuxWorld* introduces some new variables, but does not add any further constraints on *ConWorld*. We define the schema that represents just the new variables introduced by *AuxWorld*. We prove that no further constraints are added by proving the following statement. $ConWorld \vdash \exists_1 NewVariables \bullet AuxWorld$ #### Proof: First we prove existence. We normalise the schemas, drawing out any predicates hidden in the declarations for the new variables. Only one predicate appears, limiting *allLogs* to be a valid *Logbook*. $ConWorld \vdash \exists_1 NewVariables \bullet AuxWorld \land allLogs \in Logbook$ ``` ConWorld ⊢ ConWorld ∧ archive \cup { n : dom conAuthPurse; pd : PayDetails | pd ∈ (conAuthPurse n).exLog } ∈ Logbook ``` From the definition of *archive*, *archive* is in *Logbook*. From constraint P-1 in *ConPurse*, the set of named exception logs is also in *Logbook*. This discharges the existence proof. To prove uniqueness, we need only note that the equations defining the new variables are all equality to an expression, and by the transitivity of equality, all possible values are equal. **■** 5.2.1 #### 5.3 Constraints on the ether We put some further constraints on the state to forbid 'future messages' and 'future logs', and to record the progress of the protocol. ``` BetweenWorld AuxWorld ∀ pd : PayDetails | req pd ∈ ether • pd ∈ authenticTo ∀ pd : PayDetails | req pd ∈ ether • pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo ∀ pd : PayDetails | val pd ∈ ether • pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo ∧ pd.fromSeqNo < (conAuthPurse pd.from).nextSeqNo ∀ pd : PayDetails | ack pd ∈ ether • pd.toSeqNo < (conAuthPurse pd.from).nextSeqNo ∧ pd.fromSeqNo < (conAuthPurse pd.from).nextSeqNo ∧ pd.fromSeqNo < (conAuthPurse pd.from).nextSeqNo ``` ``` ∀ pd: fromLogged • pd.fromSeaNo < (conAuthPurse pd.from).nextSeaNo \forall pd: toLogged • pd.toSeqNo < (conAuthPurse pd.to).nextSeqNo \forall pd: fromLogged | (conAuthPurse\ pd.from).status \in \{epr, epa\} \bullet pd.fromSeqNo < (conAuthPurse pd.from).pdAuth.fromSeqNo \forall pd: toLogged \mid (conAuthPurse pd.to).status \in \{epv, eaTo\} \bullet pd.toSeqNo < (conAuthPurse pd.to).pdAuth.toSeqNo \forall pd: fromInEpr • disjoint \langle \{val pd, ack pd\}, ether \rangle ∀ pd: PavDetails • (req pd \in ether \land ack pd \notin ether) \Leftrightarrow (pd \in toInEpv \cup toLogged) \forall pd: PayDetails | val pd \in ether \land pd \in toInEpv \bullet pd \in fromInEpa \cup fromLogged \forall pd: fromInEpa \cup fromLogged \bullet reg <math>pd \in ether toLogged \in \mathbb{F} PayDetails \forall pd : exceptionLogResult^{\sim} (|ether|) \bullet pd \in allLogs \forall pds: \mathbb{P}_1 PayDetails; name: NAME | exceptionLogClear(name, image pds) \in ether \bullet \{name\} \times pds \subseteq archive ``` These constraints express the following conditions (numbered for future reference in the refinement proofs): B-1 All *req* messages in the *ether* refer to authentic *to* purses ¹. \forall pd: $fromLogged \cup toLogged \bullet reg <math>pd \in ether$ B-2 There are no 'future' *req* messages ²: all *req* messages in the *ether* hold a *to* purse sequence number less than that purse's next sequence num- 5.3. CONSTRAINTS ON THE ETHER ¹Used in *Reg*, case 4, section 18.10. ²Used in: *StartTo*, location of *pdThis*, section 17.3; *CStartTo*, B-16, section 29.3; *CReq*, B-3, section 29.4. - ber. (It puts no constraint on the *from* purse's sequence number, because the *from* purse mentioned in a *req* message need not have started the transaction yet, and need not even be authentic.) - B-3 There are no 'future' *val* messages ³: all *val* messages in the *ether* hold a *to* purse sequence number less than that purse's next sequence number and a *from* purse sequence number less than that purse's next sequence number. - B-4 There are no 'future' *ack* messages ⁴: all *ack* messages in the *ether* hold a *to* purse sequence number less than that purse's next sequence number and a *from* purse sequence number less than that purse's next sequence number. - B-5 There are no 'future' from logs based on the nextSeqNo of the from purse 5 . - B-6 There are no 'future' to logs based on the *nextSeqNo* of the to purse ⁶. - B-7 There are no 'future' *from* logs based on the *pdAuth.fromSeqNo* of a purse in *epr* or *epa* ⁷: all *from* logs refer only to past *from* transactions. So all *from* logs referring to a purse that is currently in a transaction as a *from* purse (that is, in *epr* or *epa*), hold a *from* sequence number strictly less than that purse's stored current transaction sequence number. - B-8 There are no 'future' *to* logs based on the *pdAuth.toSeqNo* of a purse in *epv* or *eaTo* ⁸: all *to* logs refer only to past *to* transactions. So all *to* logs referring to a purse that is currently in a transaction as a *to* purse (in *epv*), hold a *to* sequence number strictly less than that purse's stored current transaction sequence number. - B-9 If the *from* purse is in *epr* then there is no *val* message ⁹ or *ack* message¹⁰ in the *ether*. - B-10 There is a req message but no ack message in the ether precisely when the to purse is in epv or has logged the transaction 11 . - B-11 If the *to* purse is in *epv* and there is a *val* message in the *ether*, then either the *from* purse is in *epa* or has logged the transaction ¹². - B-12 If the *from* purse is in *epa* or has logged the transaction, then there is a *reg* in the *ether* 13 . - B-13 The set *toLogged* is finite. This is sufficient to ensure that *definitelyLost* is finite ¹⁴. - B-14 Log result messages are logged. The log details of any *exceptionLogResult* message in the ether is either archived or in a purse transaction exception \log^{15} . - B-15 Exception log clear messages refer only to archived logs ¹⁶. - B-16 For each *PayDetails* in the logs there is a corresponding *PayDetails* in a req message in the ether 17 . That the actual implementation does indeed satisfy this predicate needs to be proved, by a further, small, refinement, that *ConWorld* and the operations refine *BetweenWorld* and the operations (see Part III). #### 5.4 Framing schema 5.4. FRAMING SCHEMA A framing schema is used to promote the purse operations. ³Used in: CStartFrom, B-9, section 29.2; CStartTo, B-11, section 29.3. CVal, B-4, section 29.5. ⁴Used in: CStartFrom, B-9, section 29.2; CStartTo, B-10, section 29.3. ⁵Used in: *CStartFrom*, B-7, section 29.2. ⁶Used in: CStartTo, B-8, 29.3. 29.3 ⁷Used in: *StartFrom*, location of *pdThis*, section 16.3; *CReq*, B-7, section 29.4; lemma 'not-LoggedAndIn', section C.12. ⁸Used in: CVal, B-8, section 29.5; lemma 'notLoggedAndIn', section C.12. ⁹Used in: CVal, B-9, section 29.5. $^{^{10}}$ Used in *Req*, case 4, section 18.10. ¹¹Used in: *StartTo*, location of *pdThis*, section 17.3; *Req*, case 4, section 18.10; *Ack*, behaviour of *definitelyLost*, section 20.6.5; *Ack*,
behaviour of *maybeLost*, section 20.6.6; *CAbort*, B-10, section 28.5; *CAbort*, B-16, section 28.5; *CAck*, B-11, section 29.6. ¹²Used in: Val, behaviour of maybeLost, section 19.6.7. ¹³Used in *StartTo*, location of *pdThis*, section 17.3; *CAbort*, B-12, section 28.5; *CAbort*, B-16, section 28.5. ¹⁴Used in: various *Rab* schemas, section 10.1 ¹⁵Used in: Archive, section 24.2; CArchive, section 29.10. ¹⁶Used in: ExceptionLogClear, invoking lemma 'lost unchanged' section 22.2; CExceptionLogClear, section 29.8. ¹⁷Used in: *CStartTo*, alternative to lemma 'logs unchanged', section 29.3. The predicate ensures the following properties common to all promoted operations: • *m*? ∈ *ether* $ether' = ether \cup \{m!\}$ the input message is in the *ether*, which ensures it was either previously sent by another purse (*req*, *val*, *ack*, etc.), in the ether since initialisation (*startFrom*, *startTo*, etc.), or input by a special global operation (that is, *AuthoriseExLogClear*). - name? ∈ dom conAuthPurse the purse is in the world of authentic purses. - OconPurse = conAuthPurse name? The before state of ConPurse we are operating on is the state of the purse identified by name? - conAuthPurse' = conAuthPurse ⊕ {name? → θConPurse'} The after state of the purse system has name? updated to the after state of ConPurse (which particular state depends on the particular operation details) and all other purses are unchanged ¹⁸. - *archive'* = *archive*The archive remains unchanged. - ether' = ether ∪ {m!} the output message is recorded by the ether. # 5.5. IGNORE, INCREASE AND ABORT5.5 Ignore. Increase and Abort There are various general behaviours that operations may engage in: ignore the input and do nothing; ignore the input but increase the sequence number; ignore the input but abort the current payment transaction. Ignoring is modelled as an unchanging world: ``` Ignore \hat{=} [\pm BetweenWorld; name? : NAME; m?, m! : MESSAGE | m! = \pm] ``` Increase has been modelled at the purse level, and is now promoted and totalised: ``` Increase \hat{=} Ignore \lor (\exists \Delta ConPurse \bullet \Phi BOp \land IncreasePurseOkay) ``` Abort has been modelled at the purse level, and is now promoted and totalised: ``` Abort \hat{=} Ignore \vee (\exists \Delta ConPurse \bullet AbortPurseOkay \land [\Phi BOp \mid m! = \bot]) ``` #### 5.6 Promoted operations We promote the individual purse operations, and make them total by disjoining them with the operation defined above that does nothing. #### 5.6.1 Value transfer operations The promoted start operations are: ``` StartFrom \triangleq Ignore \\ \lor Abort \\ \lor (\exists \triangle ConPurse \bullet \Phi BOp \land StartFromPurseOkay) StartTo \triangleq Ignore \\ \lor Abort \\ \lor (\exists \triangle ConPurse \bullet \Phi BOp \land StartToPurseOkay) ``` ¹⁸Used in *Req* proof, section 18.7.2. 50 ``` StartFromEafromOkay \ \widehat{=}\ \exists\ \Delta ConPurse \bullet \Phi BOp \land StartFromPurseEafromOkay StartToEafromOkay \ \widehat{=}\ \exists\ \Delta ConPurse \bullet \Phi BOp \land StartToPurseEafromOkay ``` The promoted protocol operations are: ``` Req = Ignore \lor (\exists \Delta ConPurse \bullet \Phi BOp \land ReqPurseOkay) Val = Ignore \lor (\exists \Delta ConPurse \bullet \Phi BOp \land ValPurseOkay) Ack = Ignore \lor (\exists \Delta ConPurse \bullet \Phi BOp \land AckPurseOkay) ``` #### 5.6.2 Exception log operations The promoted log enquiry operation is: ``` ReadExceptionLog \triangleq Ignore \\ \lor (\exists \Delta ConPurse \bullet \Phi BOp \land ReadExceptionLogPurseOkay) ``` The promoted exception log clear operation is: ``` \begin{aligned} \textit{ClearExceptionLog} & \mathrel{\widehat{=}} \textit{Ignore} \\ & \lor \textit{Abort} \\ & \lor (\; \exists \, \Delta \textit{ConPurse} \bullet \Phi \textit{BOp} \, \land \, \textit{ClearExceptionLogPurseOkay} \,) \end{aligned} ``` For use in the proofs, we also promote the *Eafrom* part of the operations on their own: ``` ReadExceptionLogEafromOkay \hat{=} \exists \Delta ConPurse \bullet \Phi BOp \wedge ReadExceptionLogPurseEafromOkay ClearExceptionLogEafromOkay \hat{=} \exists \Delta ConPurse \bullet \Phi BOp \wedge ClearExceptionLogPurseEafromOkay ``` #### 5.7 Operations at the world level only There are some operations on the world that do not have equivalents on individual purses. These are not implemented by the target of evaluation, but need to be implemented by some manual means or external system. To retain the simplicity of our proof rules, these operations take the same input and outputs as all the purse operations. #### 5.7.1 Exception Log clear authorisation 5.7. OPERATIONS AT THE WORLD LEVEL ONLY The message to clear an exception log can be created only for log details which are already recorded in the archive. The clear code of the message is based on the selected logs in the archive. The exception log clear message couples this clear code with the name of a purse. This supports constraint B-15 which requires that this operation not put a clear message into the ether if the relevant logs have not been archived. ``` AuthoriseExLogClearOkay ΔBetweenWorld m?, m!: MESSAGE name?: NAME conAuthPurse' = conAuthPurse ∃ pds: ℙ₁ PayDetails • {name?} × pds ⊆ archive ∧ m! = exceptionLogClear(name?, image pds) ether' = ether ∪ {m!} archive = archive' ``` $AuthoriseExLogClear = Ignore \lor AuthoriseExLogClearOkay$ Exception logs must be kept for all time to ensure that all value remains accounted for. The operation to clear purses of their exception logs must be supported by a mechanism to store the cleared logs. This is what the archive supplies. The purse supports the <code>ReadExceptionLog</code> operation, which puts an exception log record into the <code>ether</code> as a message. As the system implementers have no control over the <code>ether</code>, we have modelled it as lossy at the concrete level, allowing for messages to be lost from the <code>ether</code> at any time. The <code>archive</code> is a <code>secure</code> store for information, and to support the security of the purse there must be a manual mechanism to move log messages from the <code>ether</code> into the <code>archive</code> for safe keeping. This is modelled by the <code>Archive</code> operation, and is implemented by some mechanism external to the target of evaluation. ``` Archive_ \Delta BetweenWorld m?, m!: MESSAGE name?: NAME conAuthPurse' = conAuthPurse ether' = ether archive ⊆ archive' ⊆ archive \cup \{ log : NAME \times PayDetails | exceptionLogResult log \in ether } m! = \bot ``` This operation non-deterministically copies some exception log information from messages in the ether into the archive. It ignores its inputs. As one possible behaviour is to move no messages into the archive, it can behave exactly like Ignore. The operation is therefore total, and we do not need to disjoin it with Ignore. #### 5.8 Forging messages If arbitrary messages can be sent, then obviously the security can be compromised. We can build into the definition of the ether that it is possible to forge only some kinds of messages. The only messages it is possible to forge are - replays of earlier valid messages (added to the ether during an earlier operation) - unprotected messages (modelled by being in the initial *ether*, and hence being replayable at any time) - \bullet messages it is possible to detect are forged (modelled by the \bot message, present in the initial *ether*) This allows us to capture the encryption properties of messages: a message encapsulating arbitrary details cannot be forged by a third party. ### 5.9. THE COMPLETE PROTOCOL 5.9 The complete protocol The complete transfer at the between and concrete levels can be described. informally, by the following sequence of operations: ``` StartFrom : StartTo : Rea : Val : Ack ``` Other operations may be interleaved in an actual transfer. The refinement proof in the following sections demonstrates that none of the individual concrete operations violates the security policy. #### Chapter 6 # Between model, initialisation and finalisation #### 6.1 Initialisation As with the abstract case, we set up a particular initial between state. We do not want to model adding new authentic purses to the system, since some of the operations involved are outside the security boundary. So we allow the world to be 'switched off' and a new world 'switched on', where the new world consists of the old world as it was, plus the new purses. So our initial state must allow purses to be part-way through transactions. We set constraints on the initial state of the between system to say that there are all the request messages in the *ether*, any current transactions must be valid, and there are no future messages. The initial *ether* contains (or may be considered to contain) the following messages: - the log enquiry and ${\scriptscriptstyle \perp}$ messages (hence a purse can always have a forged message sent to it) - all possible start messages, even those referring to a non-authentic purse CHAPTER 6. B INITIAL, FINAL • no future messages (ensured by the constraints in *BetweenWorld'*) So any purse, at any time, can be sent a read log message, or an instruction to start a transfer; this saves us having to model the IFD sending these messages. Since the IFD does not authenticate start messages, we cannot insist on authentic purses at this point. The inability to forge messages means that a *req* message always mentions an authentic *to* purse, and a *val* message an authentic *from* purse. So a *val* message sent on receipt of a *req* will mention authentic *to* and *from* purses. We must also initialise our concrete inputs, since they are different from the global inputs. This defines how concrete inputs are interpreted. ``` BetwInitIn g?: AIN m?: MESSAGE name?: NAME m? \in ran req \Rightarrow g? = transfer(\mu TransferDetails | from = (req^m r).from \land to = (req^m r).to \land value = (req^m r).value) m? \notin ran
req \Rightarrow g? = aNullIn ``` #### 6.2 Finalisation Finalisation maps a *BetweenWorld* to a *GlobalWorld*, to specify how the various concrete state components are observed abstractly. We finalise by choosing to assume that all the transactions in *maybeLost* actually are lost. (In some sense, finalisation treats incomplete transactions as if they would 'abort'.) 6.2. FINALISATION 57 There is a simple relationship between concrete and global *balance* components. The global *lost* component is related to the concrete *maybeLost* and *definitelyLost* logs (the function *sumValue* is defined in section D.3). We must also finalise our concrete outputs, since they are different from the global outputs. This defines how concrete outputs are interpreted. ``` __BetwFinOut ______ g!: AOUT m!: MESSAGE g! = aNullOut ``` All concrete outputs are interpreted as the single abstract output, aNullOut. # Chapter 7 # **Concrete model: implementation** # 7.1 Concrete World State The C world state has the same components as the $\mathcal B$ state; we decorate with a subscript zero to distinguish like-named $\mathcal B$ and C components. Since $\Delta ConWorld_0$ has components dashed-then-subscripted, whereas we require subscripted-then-dashed, we defined our own Δ and Ξ schemas. ``` \Delta ConWorld0 \triangleq ConWorld_0 \wedge ConWorld'_0 \Xi ConWorld0 \triangleq [\Delta ConWorld0 \mid \theta ConWorld_0 = \theta ConWorld'_0] ``` # 7.2 Framing Schema The concrete world C has the same operations as the \mathcal{B} model. The world we promote to is *ConWorld*, not *BetweenWorld*. (Remember *ConWorld* has the same structure as *BetweenWorld*, but none of the constraints about future messages.) We are also allowed to 'lose' messages from the public *ether*, which models the fact that the *ether* may be implemented as a lossy medium. So the *C* framing schema is used to promote the purse operations. # 7.3 Ignore, Increase and Abort $ether'_0 \subseteq ether_0 \cup \{m!\}$ The $\mathcal B$ operations *Ignore, Increase* and *Abort* have $\mathcal C$ equivalents, working on the $\mathcal C$ world instead of the $\mathcal B$ world. These operations are not named operations of the purse, i.e. they are not visible at the purse interface. We define them so that they can be used as *components* in $\mathcal C$ purse operations. ``` CIgnore \hat{=} [\exists ConWorld0; name? : NAME; m?, m! : MESSAGE | m! = \pm] CIncrease \hat{=} CIgnore \lor (\exists \Delta ConPurse \bullet \Phi COp \land IncreasePurseOkay) CAbort \hat{=} CIgnore \lor (\exists \Delta ConPurse \bullet AbortPurseOkay \land [\Phi COp | m! = \pm]) ``` All subsequent operations defined in this chapter correspond to the actual operations of the purse. # 7.4 Promoted operations As with the \mathcal{B} promoted operations, the C promoted operations are made total by disjoining with *Clanore*. #### 7.4.1 Value transfer operations The promoted start operations are: 7.5. OPERATIONS AT THE WORLD LEVEL ONLY The promoted protocol operations are: ``` CReq = CIgnore \lor (\exists \Delta ConPurse \bullet \Phi COp \land ReqPurseOkay) CVal = CIgnore \lor (\exists \Delta ConPurse \bullet \Phi COp \land ValPurseOkay) CAck = CIgnore \lor (\exists \Delta ConPurse \bullet \Phi COp \land AckPurseOkay) ``` #### 7.4.2 Exception log operations The promoted log enquiry operation is: ``` CReadExceptionLog = CIgnore \lor (\exists \triangle ConPurse \bullet \Phi COp \land ReadExceptionLogPurseOkay) ``` The promoted clear operation is: ``` \begin{split} & \textit{CClearExceptionLog} \triangleq \textit{CIgnore} \\ & \lor \textit{CAbort} \\ & \lor (\exists \Delta \textit{ConPurse} \bullet \Phi \textit{COp} \land \textit{ClearExceptionLogPurseOkay}) \end{split} ``` #### 7.5 Operations at the world level only As with the \mathcal{B} model, there are some operations that act on the world, rather than on individual purses. These operations are specified exactly as they are in the \mathcal{B} model, but acting on *ConWorld* instead of *BetweenWorld*. 62 CHAPTER 7. C MODEL ## 7.5.1 Exception Log clear authorisation The message to clear an exception log is generated external to the model. The operation to move exception log information from the $\it ether$ to the $\it archive$ is ``` CArchive \\ \Delta ConWorld0 \\ m?, m! : MESSAGE \\ name? : NAME \\ conAuthPurse'_0 = conAuthPurse_0 \\ ether'_0 \subseteq ether_0 \\ archive_0 \subseteq \\ archive'_0 \subseteq \\ archive_0 \cup \{ log : NAME \times PayDetails \mid \\ exceptionLogResult log \in ether_0 \} \\ m! = \bot ``` ## 7.6 Initial state The initial state of the C world has an ether that is a subset of one that satisfies the 'no future messages' constraints placed on the $\mathcal B$ world (the subset is needed because the C ether is lossy). ``` ConInitState ConWorld'_0 \exists BetweenWorld' \mid BetweenInitState \bullet conAuthPurse'_0 = conAuthPurse' \land archive'_0 = archive' \land \{\bot\} \subseteq ether'_0 \subseteq ether' ``` 7.7. FINALISATION 63 ## 7.7 Finalisation The $\mathcal B$ finalisation is defined for any *ConWorld*; we reuse it for the $\mathcal C$ finalisation. ``` ConFinState AuxWorld₀ GlobalWorld dom gAuthPurse = dom conAuthPurse₀ ∀ name: dom conAuthPurse₀ • (gAuthPurse name).balance = (conAuthPurse₀ name).balance ∧ (gAuthPurse name).lost = sumValue((definitelyLost₀ ∪ maybeLost₀) ∩ { ld: PayDetails | ld.from = name }) ``` # Chapter 8 # **Model consistency proofs** # 8.1 Introduction In order to increase confidence that the specifications written are not meaningless, it is wise to prove some properties of them. The least that should be done is to demonstrate that the constraints on the state and those defining each operation do not reduce to *false*. So for each model, the consistency proof obligations are: • Show it is possible for at least one state to exist (which demonstrates that the state invariant is not contradictory). If we choose this state to be the initial state, we also demonstrate that initialisation is not vacuous, too. ``` ⊢ ∃ State' • StateInit ``` • Show that each operation does not have an empty precondition (which demonstrates that no operation definition is contradictory). ``` ⊢ ∃ State; Input • pre Op ``` In fact, here we show that all our operations are total, which is the much stronger condition ``` \vdash \forall State; Input • pre Op ``` We present these proofs for each of our three models below. #### 8.2 Abstract model consistency proofs #### 8.2.1 Existence of initial abstract state ``` ⊢ ∃ AbWorld' • AbInitState ``` #### Proof: It is sufficient to find an explicit abstract world that satisfies the constraints of *AbInitState*. Consider the abstract world with the components: ``` abAuthPurse' = \emptyset ``` This satisfies the constraints of *AbWorld*, so is clearly a suitable initial state. **■** 8.2.1 #### 8.2.2 Totality of abstract operations ``` AbIgnore is total. ``` Proof: ``` pre AbIgnore = pre [\triangle AbWorld; a? : AIN; a! : AOUT | abAuthPurse' = abAuthPurse [defn. AbIgnore] \wedge a! = aNullOut = [AbWorld; a? : AIN | \exists AbWorld'; a! : AOUT \mid abAuthPurse' = abAuthPurse \wedge a! = aNullOut [defn. pre] = [AbWorld; a?:AIN | ∃ abAuthPurse': NAME → AbPurse; a!: AOUT | abAuthPurse' = abAuthPurse \wedge a! = aNullOut [one point rule] = [AbWorld; a?:AIN] ``` All the abstract operations are total. **Proof:** They are total by construction. They are all of the form $AbOpOkay \lor AbIgnore$, so: ``` pre AbOp = pre (AbOpOkay \times AbIgnore) = pre AbOpOkay \times pre AbIgnore = pre AbOpOkay \times [AbWorld; a? : AIN] = [AbWorld; a? : AIN] 8.2.2 8.2 ``` 8.3. BETWEEN MODEL CONSISTENCY PROOFS ## 8.3 Between model consistency proofs ## 8.3.1 Existence of between initial state ``` ⊢ ∃ BetweenWorld' • BetweenInitState ``` #### Proof: It is sufficient to find an explicit between world that satisfies the constraints of *BetweenWorldInit*. A world of no purses, an *ether* that consists of exactly the messages explicitly allowed of *BetweenWorldInit*, and an empty *archive*, is sufficient. ``` \begin{split} \textit{conAuthPurse'} &= \varnothing \\ &\textit{ether'} &= \{\textit{readExceptionLog}, \bot\} \\ &\quad \cup \bigcup \{\textit{cpd}: \textit{CounterPartyDetails} \bullet \{\textit{startFrom cpd}, \textit{startTo cpd}\} \} \\ &\textit{archive'} &= \varnothing \end{split} ``` This satisfies the constraints in *ConWorld*. It also satisfies the extra constraints of *BetweenWorld*: all the quantifiers are over empty sets (of purses or messages) and hence are trivially true. **■** 8.3.1 # 8.3.2 Totality of between operations All between operations are total. Proof: CHAPTER 8. CONSISTENCY They all offer the option of *Ignore* (explicitly by disjunction, except for *Archive*, which offers it implicitly). *Ignore* is the total identity operation. - **8.3.2** - **■** 8.3 # 8.4 Concrete model consistency proofs ## 8.4.1 Existence of concrete initial state $\vdash \exists ConWorld'_0 \bullet ConInitState$ ## Proof: The concrete state is identical to the between state, except for fewer constraints. Therefore as a between state exists, so does a concrete one. **■** 8.4.1 ## 8.4.2 Totality of concrete operations All concrete operations are total. #### Proof The concrete operations are identical to the between ones. Therefore if the between operations are total, so are the concrete ones. - **■** 8.4.2 - **8.4** - **8** Part II First Refinement: \mathcal{A} to \mathcal{B} # Chapter 9 # **Refinement Proof Rules** # 9.1 Security of the implementation We prove the concrete model C is secure with respect to the abstract model $\mathcal A$ in two stages. We first show (in this part) that $\mathcal B$ refines $\mathcal A$ then we show (in part III) that C refines $\mathcal B$. To show that $\mathcal B$ refines $\mathcal A$ we show that every (promoted) $\mathcal B$ operation correctly refines some $\mathcal A$ operation. Much of what the $\mathcal B$ (and $\mathcal C$) operations achieve is invisible at
the $\mathcal A$ level, so many $\mathcal B$ operations are refinements of *AbIgnore* (abstractly 'do nothing'). Some of the $\mathcal B$ operations that are refinements of *AbIgnore* do serve to resolve abstract non-determinism. The refinements are $AbTransfer \sqsubseteq Req$ $AbIgnore \sqsubseteq StartFrom$ - ∨ StartTo - \vee Val - \vee Ack - ∨ ReadExceptionLog - ∨ ClearExceptionLog - ∨ AuthoriseExLogClear - ∨ Archive - ∨ Ignore - ∨ Increase - \vee Abort Figure 9.1: A summary of the backward proof rules. The hypothesis is the existence of the lower (solid) path. The proof obligation is to demonstrate the existence of an upper (dashed) path. Each of these refinements must be proved correct. For the $\mathcal A$ to $\mathcal B$ refinement proofs, the following set of 'upward' or 'backward' proof rules are sufficient to show the refinement [Woodcock & Davies 1996]. For the $\mathcal B$ to $\mathcal C$ refinement proofs, the 'downward' or 'forward' proof rules are sufficient to show the refinement. These rules are expressed in terms of a 'concrete' (lower) and 'abstract' (upper) model. In this first refinement the 'abstract' model is $\mathcal A$ and the 'concrete' model is $\mathcal B$. In the second refinement the 'abstract' model is now $\mathcal B$ and the 'concrete' model is $\mathcal C$. ## 9.2 Backwards rules proof obligations Appendix A describes the syntax for theorems, and how we lay out the proofs. The backward proof rules are summarised in figure 9.1, and described below. #### 9.2.1 Initialisation We start from some global state G, and *initialise* it to an abstract initial state A' and concrete initial state B'. These must be related by the retrieve. ``` \vdash \forall G; GIn; B'; BIn; A'; AIn \mid BInitState \land BInitIn \land R' \land RIn \bullet AInitState \land AInitIn ``` Given any global initial state G, if we initialise it with BInit to B', then retrieve B' to A', we must get the same abstract initial state as if we had initialised directly to A' using AInit. This can be simplified to: 9.2. BACKWARDS RULES PROOF OBLIGATIONS ``` BInitState; R' \vdash AInitState BInitIn; RIn \vdash AInitIn ``` #### 9.2.2 Finalisation We start from some abstract final state A and concrete final state B, related by the retrieve, and *finalise* them to the *same* global final state G'. ``` \vdash \forall G'; GOut; B; BOut \mid BFinState \land BFinOut \bullet \\ \exists A; AOut \bullet R \land ROut \land AFinState \land AFinOut ``` Given any concrete final state B that finalises with BFin to G', then it is possible to find a corresponding abstract final state A, that both retrieves from B and finalises with AFin to the same G'. This can be simplified to: ``` BFinState \vdash \exists A \bullet R \land AFinState BFinOut \vdash \exists AOut \bullet ROut \land AFinOut ``` ## 9.2.3 Applicability ``` \vdash \forall B; BIn \mid (\forall A; AIn \mid R \land RIn \bullet pre AOp) \bullet pre BOp ``` For each operation: if we are in a concrete state, and if all the abstract states to which it retrieves satisfy the precondition of the abstract operation, then we must also satisfy the precondition of the corresponding concrete operation. For our case, AOp is total (this needs to be proved for each of the abstract operations — see section 8.2.2). So pre AOp = true. So ``` (\, \forall \, A; \, AIn \, | \, R \land RIn \bullet \operatorname{pre} AOp \,) \\ \Rightarrow (\, \forall \, A; \, AIn \bullet R \land RIn \Rightarrow \operatorname{pre} AOp \,) \\ \Rightarrow (\, \forall \, A; \, AIn \bullet R \land RIn \Rightarrow true \,) \\ \Rightarrow (\, \forall \, A; \, AIn \bullet true \,) \\ \Rightarrow true ``` So, for total abstract operations, the applicability proof obligation reduces to ``` B; BIn \vdash pre BOp ``` That is, a proof that *BOp* is total, too. This is discharged in section 8.3.2. ``` \vdash \forall B; BIn \mid (\forall A; AIn \mid R \land RIn \bullet pre AOp) \bullet (\forall A'; AOut; B'; BOut \mid BOp \land R' \land ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp)) ``` For each operation: if we start in a concrete state corresponding to the precondition of the abstract operation (the applicability condition ensures we then satisfy the concrete operation's precondition), and do the concrete operation, and then retrieve to the abstract state, then we end up in a state that we could have reached doing the abstract operation. Using pre AOp = true (proved during applicability), this reduces to ``` \vdash \forall B; BIn \bullet (\forall A'; AOut; B'; BOut \mid BOp \land R' \land ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp)) ``` Moving the quantifier into the hypothesis: ``` B; BIn; A'; AOut; B'; BOut | BOp \land R' \land ROut \vdash \exists A; AIn \bullet R \land RIn \land AOp ``` Then rearranging the schema predicates from the predicate part to the declaration part, and removing the redundant declarations, gives the final form we use: ``` BOp; R'; ROut \vdash \exists A; AIn \bullet R \land RIn \land AOp ``` ## Chapter 10 # \mathcal{A} to \mathcal{B} retrieve relation The purpose of the retrieve relation is to capture the details of the various states the concrete world can be in, and which abstract state(s) these correspond to, and the relationships between the concrete and abstract inputs and outputs. For the first refinement, we talk of Rab: the Retrieve from $\mathcal A$ to $\mathcal B$. Later, for the second refinement, we talk of Rbc: the Retrieve from $\mathcal B$ to $\mathcal C$. #### 10.1 Retrieve state The domains of the $\mathcal B$ and $\mathcal A$ 'world' functions define the authentic purses. AbstractBetween AbWorld BetweenWorld dom abAuthPurse = dom conAuthPurse ${\cal A}$ balance and lost are related to ${\cal B}$ balance and exLogs. The relationship is relational, not functional, and highly non-deterministic part-way through a transaction. # 10.1.1 Exposing chosenLost chosenLost is a non-deterministic choice of a subset of all the maybeLost values that we 'choose' to say will be lost. The predicate links the \mathcal{B} and \mathcal{A} values¹: - For a purse *name*, its *lost* value is the sum of the values in all those transactions that are definitely lost or that we have chosen to assume lost with *name* as the *from* purse. (Note the deliberate similarity of this definition and that in *BetwFinState*.) - The A balance of a purse is its B balance plus the value of all those transactions we have chosen to assume will not be lost, with name as the to purse. (For a give name, there is at most one such transaction.) A consequence of this relationship is that the abstract *lost* and *balance* values of a purse can depend on the corresponding values of *more than one* concrete purse. ## 10.1.2 Hiding chosenLost The retrieve relation is then *RabCl* with the non-deterministic choice *chosenLost* hidden²: ``` Rab \stackrel{\triangle}{=} \exists chosenLost : \mathbb{P} PayDetails \bullet RabCl ``` We define the retrieve in this way because in the proof we need to have direct access to *chosenLost*. 10.1. RETRIEVE STATE 77 #### 10.1.3 Exposing pdThis In the proof, we find that we wish to focus on a single pd (any pd). We define a new schema, RabClPd, identical to RabCl except for an extra declaration of a pd. ``` _RabClPd _____ RabCl pdThis : PayDetails ``` We split the predicate part of *RabClPd* into two cases that partition the possibilities: - ∀ name: dom conAuthPurse | name ∉ {pdThis.from, pdThis.to} purses not involved in the pdThis transaction. - ∀ name: dom conAuthPurse | name ∈ {pdThis.from, pdThis.to} purses involved in the pdThis transaction. In all cases the purses other than the *from* and *to* purses retrieve their *balance* and *lost* values in the same way, so we factor this part of the predicate out into a separate schema, *OtherPursesRab*, which we include with the remaining part of the predicate. We split *RabClPd* into four cases that partition the possibilities: RabOkayClPd: pdThis ∈ maybeLost \ chosenLost \ half way through a transaction that will succeed. Since maybeLost refers only to authentic purses, ¹It is valid to apply *sumValue* in this predicate, because both *definitelyLost* and *maybeLost* are finite. *definitelyLost* is finite because of *BetweenWorld* constraint B-13. *maybeLost* is finite because *tolnEpv* is finite: each *pd* in the set comprehension for *tolnEpv* comes from a distinct purse in *conAuthPurse*, which itself is a finite function. ²We use this form to simplify the general correctness proofs, section 14.4.3. we know that $\{pdThis.from, pdThis.to\} \subseteq \text{dom } conAuthPurse$, and so the remaining quantifier is reduced to these two cases. - *RabWillBeLostClPd*: *pdThis* ∈ *chosenLost* half way through a transaction that will lose the value (the *to* purse has not yet aborted, but we choose that it will, rather than receive the *val*). Since *chosenLost* ⊆ *maybeLost* refers only to authentic purses, we know that {*pdThis.from*, *pdThis.to*} ⊆ dom *conAuthPurse*, and so the remaining quantifier is reduced to these two cases. - RabHasBeenLostClPd: pdThis ∈ definitelyLost half way through a transaction that has lost the value (the to purse has already moved on). Since definitelyLost refers only to authentic purses, we know that {pdThis.from, pdThis.to} ⊆ dom conAuthPurse, and so the remaining quantifier is reduced to these two cases. - RabEndClPd: pdThis ∉ definitelyLost ∪ maybeLost At the beginning or end of a transaction, so there is no non-determinism in the lost or balance components. A general pdThis may refer to non-authentic purses, so the quantifier is reduced no further. In the later proofs of operations that change purse status (*Abort*, *Req*, *Val* and *Ack*), we argue how the relevant *pd* moves in and out of the sets *maybeLost* and *definitelyLost*, and thereby choose the appropriate one of the four cases of the retrieve to use before and after the operation. We perform this split by
systematically subtracting out the chosen pd from the lost and balance expressions. If the pd was in fact in the relevant set, we then have to add the subtracted value back in, otherwise we do nothing, since we have made no change to the expression. 10.1. RETRIEVE STATE 79 ``` _RabOkavClPd _ AbstractBetween chosenLost : P PayDetails pdThis: PayDetails chosenLost \subseteq mavbeLost pdThis \in maybeLost \setminus chosenLost (abAuthPurse pdThis.from).balance = (conAuthPurse pdThis.from).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \{pdThis\} (abAuthPurse pdThis.to).balance = pdThis.value + (conAuthPurse pdThis.to).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \}) \setminus \{pdThis\}) \forall name: {pdThis.from, pdThis.to} • (ahAuthPurse name).lost = sumValue(((definitelyLost \cup chosenLost) \cap \{ pd : PayDetails \mid pd.from = name \}) \five {pdThis} OtherPursesRab ``` In the *Okay* case, *pdThis* is not lost, so its value has to be added back into the to purse's *balance* component. ``` _RabWillBeLostClPd__ AbstractBetween chosenLost : ℙ PayDetails pdThis: PayDetails chosenLost \subseteq maybeLost pdThis \in chosenLost (abAuthPurse\ pdThis.from).lost = pdThis.value + sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.from \}) \setminus \{pdThis\}) (abAuthPurse pdThis.to).lost = sumValue(((definitelyLost \cup chosenLost))) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \}) \setminus \{pdThis\}) \forall name: {pdThis.from, pdThis.to} • (abAuthPurse name).balance = (conAuthPurse name).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = name \}) \setminus \{pdThis\}) OtherPursesRab ``` In the *WillBeLost* case, *pdThis* is chosen lost, so its value has to be added back into the from purse's *lost* component. 10.1. RETRIEVE STATE 81 ``` _RabHasBeenLostClPd_ AbstractBetween chosenLost : ℙ PayDetails pdThis: PayDetails chosenLost \subseteq maybeLost pdThis \in definitelyLost (abAuthPurse\ pdThis.from).lost = pdThis.value + sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.from \} \} \setminus \{pdThis\}) (abAuthPurse\ pdThis.to).lost = sumValue(((definitelyLost \cup chosenLost))) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \}) \setminus \{pdThis\}) \forall name : {pdThis.from, pdThis.to} • (abAuthPurse name).balance = (conAuthPurse name).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = name \}) \setminus \{pdThis\}) OtherPursesRab ``` In the *HasBeenLost* case, *pdThis* is definitely lost, so its value has to be added back into the from purse's *lost* component. ``` RabEndClPd_ AbstractBetween chosenLost: P PayDetails pdThis: PayDetails chosenLost \subseteq maybeLost pdThis \notin definitelyLost \cup maybeLost \forall name: dom conAuthPurse \cap \{pdThis.from, pdThis.to\} • (abAuthPurse name).lost = sumValue(((definitelyLost \cup chosenLost))) \cap \{ pd : PayDetails \mid pd.from = name \}) \setminus \{pdThis\}) \land (abAuthPurse name).balance = (conAuthPurse name).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PavDetails \mid pd.to = name \} \} \setminus \{pdThis\}) OtherPursesRab ``` In the *End* case, *pdThis* is in neither component, so its value does not have to be added back in anywhere. ## 10.1.4 Partition ``` We have the identity³: RabClPd \vdash RabClPd \Leftrightarrow (RabOkayClPd) \lor RabWillBeLostClPd \lor RabHasBeenLostClPd \lor RabEndClPd ``` #### Proof: The four cases differ in the predicate on *pdThis*, which together *partition* the possibilities. It is obvious that the four cases cover the possibilities. We use Lemma 'lost', which says that *definitelyLost* and *maybeLost* are disjoint, to show that the four cases are non-overlapping. 10.1. RETRIEVE STATE 83 #### **1**0.1.4 #### 10.1.5 Quantified forms Because the introduction of the *pd* in *RabClPd* is arbitrary, we have the following identities: ``` RabCl \vdash RabCl \Leftrightarrow (\forall pdThis : PayDetails \bullet RabClPd) ``` and ``` RabCl \vdash RabCl \Leftrightarrow (\exists pdThis : PayDetails \bullet RabClPd) ``` #### Proof: That both these identities hold may seem odd, but can be intuitively understood by looking at a similar, smaller example. Consider a non-empty subset of $\mathbb N$ called X. Then it is certainly true that $$\exists x : X \bullet X = X \setminus \{x\} \cup \{x\}$$ and also $$\forall x : X \bullet X = X \setminus \{x\} \cup \{x\}$$ **1**0.1.5 We have just chosen to extract an arbitrary element from the set for special naming. We do the same with RabCl, selecting an arbitrary pdThis for special naming, but without changing the meaning of the schema. This means that we can split up RabCl into a collection of four disjunctions on a pd in different ways as the proof dictates⁴. #### 10.1.6 The full Retrieve state relation We also define versions of these schemas with the *pdThis* and *chosenLost* hidden (so they have the same signature as *Rab*): ``` RabOkay \triangleq RabOkayClPd \setminus (pdThis, chosenLost) \\ RabWillBeLost \triangleq RabWillBeLostClPd \setminus (pdThis, chosenLost) \\ RabHasBeenLost \triangleq RabHasBeenLostClPd \setminus (pdThis, chosenLost) \\ RabEnd \triangleq RabEndClPd \setminus (pdThis, chosenLost) \\ ``` ³Used in: *Req* check-operation, splitting into four cases, section 18.6. ⁴Used in: lemma 'deterministic', exposing *pdThis* (twice), section 14.4.3. # 10.2 Retrieve inputs Each $\mathcal A$ operation has the same type of input, an AIN. Each $\mathcal B$ operation has the same type of input, a NAME and a MESSAGE. The input part of the retrieve captures the relationship between these $\mathcal A$ and $\mathcal B$ inputs. ``` RabIn \stackrel{\widehat{}}{=} BetwInitIn[a?/g?] ``` The $\mathcal B$ inputs are related to $\mathcal A$ inputs in the following manner: RI-1 *Reg*: the \mathcal{A} transfer details are in the *reg* RI-2 All other \mathcal{B} inputs: the \mathcal{A} input is *aNullIn*. # 10.3 Retrieve outputs The output retrieve is particularly simple: all $\mathcal B$ outputs retrieve to the single $\mathcal A$ output. $RabOut \stackrel{\triangle}{=} BetwFinOut[a!/g!]$ ## Chapter 11 # \mathcal{A} to \mathcal{B} initialisation proof # 11.1 Proof obligations The requirement is to prove that the between initial state correctly refines the abstract initial state, and the between inputs correctly refine the abstract inputs. That is, ``` BetweenInitState; Rab' \vdash AbInitState BetwInitIn; RabIn \vdash AbInitIn ``` ## 11.2 Proof of initial state We successively thin the hypothesis to expose the consequent. ``` BetweenWorldInit \land Rab' \qquad \qquad [hyp] \\ \Rightarrow Rab' \qquad \qquad [thin] \\ \Rightarrow AbWorld' \qquad \qquad [thin] \\ \Rightarrow AbInitState \qquad \qquad [defn AbInitState] ``` **11.2** # 11.3 Proof of initial inputs Expand RabIn and AbInitIn. ``` BetwInitIn; BetwInitIn[a?/g?] \vdash a? = g? ``` *BetwInitIn* defines g? as a total function of (m?, name?); call it f. Thin. $$g$$?, a ? : $AIN \mid \exists f$: $MESSAGE \times NAME \rightarrow AIN \bullet \forall m$: $MESSAGE$; n : $NAME \bullet g$? = $f(m, n) \land a$? = $f(m, n) \mapsto a$? = g ? Simplify and thin. $$g?, a? : AIN \mid g? = a? \vdash a? = g?$$ - **11.3** - **1**1 # \mathcal{A} to \mathcal{B} finalisation proof # 12.1 Proof obligations The requirement is to prove that the between final state correctly refines the abstract final state, and the between outputs correctly refine the abstract outputs. That is, ``` BetwFinOut \vdash \exists \ a! : AOUT \bullet RabOut \land AbFinOut BetwFinState \vdash \exists \ AbWorld \bullet \ Rab \land AbFinState ``` This proof obligation is summarised in figure 12.1. Figure 12.1: Backwards rules finalisation proof obligation #### 12.2 Output proof Expand RabOut and AbFinOut. ``` BetwFinOut \vdash \exists a! : AOUT \bullet BetwFinOut[a!/g!] \land a! = g! ``` [one point] away the a! in the consequent ``` BetwFinOut \vdash BetwFinOut[g!/g!] ``` **1**2.2 # 12.3 State proof We [cut] in an AbWorld, and put it equal to the GlobalWorld. ``` BetwFinState; AbWorld \mid abAuthPurse = gAuthPurse \vdash \exists AbWorld \bullet Rab \land AbFinState ``` Cutting in this new hypothesis requires us to discharge a side-lemma about the existence of such an *AbWorld*. This is trivial to do, by the [*one point*] rule. We use [consq exists] to remove the existential quantifier in the consequent, by using the value just cut in: ``` BetwFinState; AbWorld | abAuthPurse = gAuthPurse \vdash Rab \land AbFinState ``` We prove each of the conjuncts in the consequent separately [consq conj], dropping unneeded hypotheses as appropriate [thin]. #### 12.3.1 Case AbFinState ``` BetwFinState; AbWorld \mid abAuthPurse = gAuthPurse \vdash AbFinState ``` The predicates in AbFinState occur in the hypothesis, so are satisfied trivially. **■** 12.3.1 #### 12.3.2 Case Rab We expand out *Rab* into its conjuncts: ``` BetwFinState; AbWorld \mid abAuthPurse = qAuthPurse \vdash Rab ``` # 12.3. STATE PROOF Retrieve of equality We have the equation ``` dom abAuthPurse = dom conAuthPurse ``` which can be shown from the equality of gAuthPurse and conAuthPurse in BFinState, and between gAuthPurse and abAuthPurse in the hypothesis. Similarly, in each case the part of the retrieve to be proven has an equality between the abstract and concrete. We show this holds from an equality in that component between global and concrete in *BetwFinState*, and and equality between global and abstract in the hypothesis. ``` 12.3.2 ``` #### Case Rab ``` BetwFinState; AbWorld \mid abAuthPurse = qAuthPurse \vdash Rab ``` Expanding *BetwFinState*, thinning unwanted predicates, substituting for *global*, and expanding *Rab*, we get: ``` AuxWorld; AbWorld | ∀ name: dom conAuthPurse • (abAuthPurse name).lost = sumValue((definitelyLost ∪ maybeLost)) ∩ { pd:
PayDetails | pd.from = name}) ∧ (abAuthPurse name).balance = (conAuthPurse name).balance ∃ chosenLost: ℙ maybeLost • ∀ name: dom conAuthPurse • (abAuthPurse name).lost = sumValue((definitelyLost ∪ chosenLost)) ∩ { pd: PayDetails | pd.from = name}) ∧ (abAuthPurse name).balance = (conAuthPurse name).balance + sumValue((maybeLost \ chosenLost)) ∩ { pd: PayDetails | pd.to = name}) ``` We [one point] away the chosenLost in the consequent by putting it equal to maybeLost (having [cut] in such a value and proved it exists). We also simplify the equations, now that *maybeLost* \ *chosenLost* is empty: The consequent also appears as an hypothesis, so the proof is complete. - **12.3.2** - **12.3.2** - **■** 12.3 - **1**2 # \mathcal{A} to \mathcal{B} applicability proofs # 13.1 Proof obligation In section 9.2.3 we showed that it is sufficient to prove totality of the concrete operations. ## 13.2 Proof Totality for each between operation was shown in the specification consistency proofs, section 8.3.2. **■** 13 ## Chapter 14 # Lemmas for the \mathcal{A} to \mathcal{B} correctness proofs ## 14.1 Introduction The correctness proof obligation, to be discharged for each abstract operation AOp, where $AOp \subseteq BOpFull = BOp_1 \lor BOp_2 \lor \dots$ is the corresponding refinement, is: ``` BOpFull; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp ``` This proof obligation is summarised in figure 14.1. There are multiple lower paths both because the concrete operation is non-deterministic, and because the retrieve is non-deterministic. For each lower path triple of (B,B',A'), we have to find an A that ensures the existence of an upper path; it does not have to be the same A in each case. There are various classes of $\mathcal B$ operation depending on which $\mathcal A$ operation is being refined. There are commonalities in the proof structures for these classes. This chapter develops general mechanisms and lemmas to facilitate proving most operations. This fits into the following main areas - lemma 'multiple refinement': When the $\mathcal B$ operation that refines an $\mathcal A$ operation in a disjunction of several individual $\mathcal B$ operations, the proof obligation can be split into one for each individual $\mathcal B$ operation. - lemma 'ignore': The ignore branch, and any 'abort' branch, of each $\mathcal B$ operation need be proved once only. - lemma 'deterministic': A simplification of all correctness proofs, by exposing the non-determinism in the retrieve, to the three cases exists-pd, exists-chosenLost, and check-operation (with the introduction of two ar- Figure 14.1: The correctness proof. The hypothesis is the existence all of the lower (solid) paths. The proof obligation is to demonstrate the existence of an upper (dashed) path in each case. bitrary predicates $\mathcal P$ and $\mathcal Q$, instantiated differently depending on the particular operation). - lemma 'lost unchanged': Where maybeLost and definitelyLost are unchanged, the exists-pd and exists-chosenLost obligations can be automatically discharged. - lemma 'AbIgnore': A further simplification of the check-operation proof obligation, for the operations that refine AbIgnore, to check-operationignore. - proof that concrete *Ignore* refines *AbIgnore* - · proof that concrete Abort refines AbIgnore - lemma 'abort backward': For an operation expressed as Abort composed with a simpler version of the operation, we need prove only that the simpler operation is a refinement The lemmas developed in this chapter are collected together in Appendix C for ease of reference. ## 14.2 Lemma 'multiple refinement' In most cases of AOp, the corresponding BOpFull is a disjunction of many individual \mathcal{B} operations, $BOp_1 \vee BOp_2 \vee \ldots$ whose differences are invisible abstractly. For example, AbIgnore is refined by a disjunction of several separate operations. We use the inference rule [$hyp\ disj$] to split these large disjunctions into separate proof obligations for each of the $\mathcal B$ operations. # 14.3 Lemma 'ignore': separating the branches 14.3. LEMMA 'IGNORE': SEPARATING THE BRANCHES Each between operation *BOp* is promoted from *BOpPurseOkay*, disjoined with *Ignore*, and sometimes with *Abort*. Call the first disjunction *BOpOkay*: ``` BOpOkay = \exists \Delta ConPurse \bullet \Phi BOp \land BOpPurseOkay ``` We use the inference rule [hyp disj], to split the correctness proof into two (or three) parts, one for each disjunct, each of which must be proved. ``` Abort; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp Ignore; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp BOpOkay; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp ``` All the abstract operations include an option of failing (equivalent to the concrete *Ignore*), which results in no change to the abstract state. We can therefore strengthen the conclusion of the *Ignore* and *Abort* theorems and prove ``` Ignore; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AbIgnore Abort; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AbIgnore ``` These are independent of the particular operation AOp. Thus we need prove these theorems only once (which we do in sections 14.7 and 14.8). To prove the correctness of BOp we need additionally to prove the remaining BOpOkay theorem. #### 14.4 Lemma 'deterministic': simplifying the Okav branch The *Okay* branch of the correctness proof is, in general, ``` BOpOkay; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp ``` In order to find an *AbWorld* that is appropriate, we expose the non-determinism in the retrieve. The non-determinism occurs in the *Rab* branch of the retrieve in terms of uncertainty about which transactions still in process will terminate successfully, and which will terminate with a lost value. We also expose the transaction that is currently in progress, to make it available to the proof. # 14.4.1 Choosing an input We choose a value of *a*? that is consistent with *RabIn*. Since *RabIn* is functional from *m*? and *name*? to *a*?, we know this choice of *a*? is uniquely determined. We [*cut*] this value for *a*? into the hypothesis, and remove the quantifier on *a*? by the [*consa exists*] rule. We note that *RabIn* in the consequent is independent of the choice of *AbWorld*, so can be pulled out of that quantifier. ``` BOpOkay; RabOut; Rab'; a? : AIN | RabIn \vdash RabIn \land (\exists AbWorld \bullet Rab \land AOp) ``` We split the proof into two on the conjunction in the consequent [*consq conj*], one for $\exists AbWorld \bullet Rab \land AOp$. *RabIn* is trivially satisfied by this choice of *a*? in the hypothesis. The declaration of *a*? in *RabIn* allows us to drop the explicit declaration in the hypothesis, giving ``` BOpOkay; RabOut; Rab'; RabIn \vdash \exists AbWorld \bullet Rab \land AOp ``` #### 14.4.2 Cutting in $\triangle ConPurse$ It helps to work with the unpromoted form of the operation. We do this by expanding BOpOkay, according to its promoted definition, And [cut]ting $\Delta ConPurse$ into the hypothesis such that BOpPurseOkay and ΦBOp hold. (The side-lemma is satisfied from the expanded definition of BOpOkay in the hypothesis; which states that such a $\Delta ConPurse$ exists.) ``` (\exists \Delta ConPurse \bullet \Phi BOp \land BOpPurseOkay); \\ RabOut; Rab'; RabIn; \Delta ConPurse | \\ \Phi BOp \land BOpPurseOkay \\ \vdash \\ \exists AbWorld \bullet Rab \land AOp ``` We rearrange the hypothesis, moving ΦBOp and BOpPurseOkay from the predicate part to the declaration part. Since ΦBOp declares $\Delta ConPurse$, we remove the latter. We [thin] the hypothesis of the expanded definition of BOpOkay. ``` \Phi BOp; BOpPurseOkay; RabOut; Rab'; RabIn \vdash \exists AbWorld \bullet Rab \land AOp ``` # 14.4.3 Exposing chosenLost and pdThis We need to make some of the internal components visible to the proof to enable us to break the proof into sections. We replace Rab' with the quantified form of RabCl' (section 10.1.2), giving ``` \Phi BOp;\ BOpPurseOkay;\ RabOut; (\exists\ chosenLost': \mathbb{P}\ PayDetails\bullet RabCl');\ RabIn\vdash \exists\ AbWorld\bullet Rab\land AOp ``` 14.4. LEMMA 'DETERMINISTIC': SIMPLIFYING THE OKAY BRANCH We now use [hyp exists] to remove the quantification, giving us ``` \Phi BOp;\ BOpPurseOkay;\ RabOut;\ RabCl';\ RabIn \vdash \exists\ AbWorld \bullet\ Rab \land\ AOp ``` Next, we [cut] in a declaration of an arbitrary payment detail pdThis. In practice, this is the pd for the payment being processed by BOpOkay, but in this general manipulation we don't have enough information to specify this. We therefore constrain the pdThis with some arbitrary predicate \mathcal{P} . This generates a non-trivial lemma, **exists-pd**, to be proved in each specific case, as ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabCl'; \ RabIn \\ \vdash \\ \exists \ pdThis: PayDetails \bullet \mathcal{P} and leaves our proof obligation as \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabCl'; \ RabIn; \ pdThis: PayDetails | \\ \mathcal{P} \\ \vdash \\ \exists \ AbWorld \bullet Rab \land AOp ``` In the hypothesis we rewrite *RabCl'* as the universally quantified form of *Rab-ClPd'* (section 10.1.5). ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \\ (\ \forall \ pdThis': PayDetails \bullet RabClPd'); \\ RabIn; \ pdThis: PayDetails | \\ \mathcal{P} \\ \vdash \\ \exists \ AbWorld \bullet \ Rab \land AOp ``` ``` \Phi BOp;\ BOpPurseOkay;\ RabOut;\ RabClPd'[pdThis/pdThis'];\ RabIn; pdThis: PayDetails | \mathcal{P} \vdash \exists\ AbWorld \bullet Rab \land AOp ``` The declaration in RabClPd' allows us to drop the explicit declaration of pdThis. So we rewrite this more simply as ``` \Phi BOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn \mid P \mid AbWorld \bullet Rab \land AOp ``` In
the consequent we do a similar thing: expose *chosenLost*, and rewrite *Rab* as the existentially quantified form of *RabClPd* (section 10.1.5) ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn \mid \mathcal{P} \\ \vdash \\ \exists \ AbWorld \bullet \\ (\exists \ chosenLost : \mathbb{P} \ PayDetails; \ pd : PayDetails \\ \bullet \ RabClPd[pd/pdThis]) \\ \land \ AOp ``` We strengthen the consequent by adding the requirement that the value of pd claimed to exist on the right hand side is actually equal to the value pdThis declared on the left hand side. Similarly, we constrain chosenLost sufficiently. This we do by adding one requirement we always need (namely, that $chosenLost \\\subseteq maybeLost$), and one arbitrary predicate Q, as we did with pdThis. This predicate is instantiated to some specific predicate each time this general manipu- # 14.4. LEMMA 'DETERMINISTIC': SIMPLIFYING THE OKAY BRANCH lation is invoked. $\wedge AOp$ ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn | \mathcal{P} \vdash \\ \exists \ AbWorld \bullet \\ (\exists \ chosenLost : \mathbb{P} \ PayDetails; \ pd : PayDetails \bullet \\ pd = \ pdThis \land \mathcal{Q} \\ \land \ chosenLost \subseteq maybeLost \\ \land \ RabClPd[pd/pdThis]) ``` We can remove the *pd* in the consequent with the [*one point*] rule, because we have an explicit value for it (namely, *pdThis*). ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn \mid \mathcal{P} \\ \vdash \\ \exists \ AbWorld \bullet \\ (\ \exists \ chosenLost : \mathbb{P} \ PayDetails \bullet \\ \qquad \mathcal{Q} \land chosenLost \subseteq maybeLost \\ \qquad \land \ RabClPd \) \\ \land \ AOp ``` We [*cut*] into the hypothesis a *chosenLost* with the same properties as it has in the consequent (that is, the predicate $Q \land chosenLost \subseteq maybeLost$). This generates a side lemma that such a value exists, **exists-chosenLost**, which must be discharged in each specific case, as ``` \Phi BOp;\ BOpPurseOkay;\ RabOut;\ RabClPd'[pdThis/pdThis'];\ RabIn | \mathcal{P} \vdash \exists\ chosenLost: \mathbb{P}\ PayDetails \bullet \mathcal{Q}\ \land\ chosenLost \subseteq maybeLost ``` #### This leaves: ``` \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn; \\ chosenLost: \mathbb{P} \ PayDetails \mid \\ \mathcal{P} \land \mathcal{Q} \land chosenLost \subseteq maybeLost \\ \vdash \\ \exists \ AbWorld \bullet \\ (\exists \ chosenLost: \mathbb{P} \ PayDetails \bullet \\ \\ \mathcal{Q} \land chosenLost \subseteq maybeLost \\ \land \ RabClPd) \\ \land \ AOp ``` We remove the existential quantification using the [consq exists] for chosenLost: We break this into two parts, separating the two retrieves in the consequent from *AOp*. We then prove each part. Cut in *AbWorld* such that *RabClPd* holds. This creates a side lemma to prove that such an *AbWorld* exists, consisting of just the retrieve. (This is discharged in section 14.4.4.) We are left with ``` \Phi BOp;\ BOpPurseOkay;\ RabOut;\ RabClPd'[pdThis/pdThis']; AbWorld;\ RabClPd;\ RabIn;\ chosenLost: \mathbb{P}\ PayDetails \mid \mathcal{P} \land \mathcal{Q} \land chosenLost \subseteq maybeLost \vdash RabClPd \land AOp ``` We discharge the retrieves in the consequent directly from the hypothesis, and remove *chosenLost* and *chosenLost* \subseteq *maybeLost* as these already occur in *Rab-ClPd*, leaving ``` \Phi BOp;\ BOpPurseOkay;\ RabOut;\ RabClPd'[pdThis/pdThis']; AbWorld;\ RabClPd;\ RabIn\mid \\ \mathcal{P}\wedge\mathcal{Q}\vdash \\ AOp \blacksquare 14.4.3 ``` #### 14.4.4 The existence of AbWorld We have to prove the side condition generated when we cut in an *AbWorld* (above). ``` ΦBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn; chosenLost: ℙ PayDetails | P ∧ Q ∧ chosenLost ⊆ maybeLost ⊢ ∃ AbWorld • RabClPd ``` We can prove this by invoking lemma 'AbWorldUnique' (section C.15), provided we can show that the constraints of the hypothesis of that lemma hold. Certainly we have BetweenWorld (from ΦBOp), a pdThis and a chosenLost such that the constraint $chosenLost \subseteq maybeLost$ holds. This is sufficient to invoke the lemma. **1**4.4.4 #### 14.4.5 Statement of lemma 'deterministic' We summarise the results that section 14.4 has developed as a lemma. **Lemma 14.1** (deterministic) The correctness proof for a general *Okay* branch consists of the following three proof obligations: **exists-pd**: ``` \Phi BOp; BOpPurseOkay; RabOut; RabCl'; RabIn \vdash \exists pdThis: PayDetails \bullet \mathcal P ``` #### exists-chosenLost: ``` ΦBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | P ⊢ ∃ chosenLost: ℙ PayDetails • Q ∧ chosenLost ⊆ maybeLost ``` #### check-operation: ``` \PhiBOp; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd; RabIn | \mathcal{P} \wedge \mathcal{Q} \vdash AOp ``` . **14.4** # 14.5 Lemma 'lost unchanged' Many operations do not change *maybeLost* or *definitelyLost*. We call a general such operation *BOpELost*. **Lemma 14.2** (lost unchanged) For $BOp\Xi Lost$ operations, where maybeLost = maybeLost' and definitelyLost' = definitelyLost, the proof obligations **exists-pd** and **exists-chosenLost** are satisfied automatically by the instantiation of the predicates \mathcal{P} and \mathcal{Q} as: ``` P \Leftrightarrow true Q \Leftrightarrow chosenLost = chosenLost' ``` leaving the remaining check-operation proof obligation as ``` ΦΒΟp; BOpΞLostPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd; RabIn | chosenLost = chosenLost' ∧ maybeLost = maybeLost' ∧ definitelyLost' = definitelyLost ⊢ AOp ``` #### 14.5.1 Proof We add the hypotheses maybeLost = maybeLost' and definitelyLost' = definitelyLost to the proof obligations for these $BOp\Xi Lost$ operations. #### exists-pd # ■ 14.5.1 exists-chosenLost This is trivially true. We apply the [one point] rule to remove the existential quantifier in the consequent, substitute for *maybeLost*, and [thin]. ``` RabClPd'[pdThis/pdThis'] \vdash chosenLost' \subseteq maybeLost' ``` The hypothesis RabClPd'[pdThis/pdThis'] has $chosenLost' \subseteq maybeLost'$. - **14.5.1** - **14.5** #### 14.5.2 Sufficient conditions for invoking lemma 'lost unchanged' Since ΦBOp gives us that *archive* is unchanged, sufficient conditions for invoking lemma 'lost unchanged' are that the operation in question changes neither the purse's status (hence no movement into or out of *epv* or *epa*) nor its exception log (hence no change to *from* logs or *to* logs). #### 14.6 Lemma 'AbIgnore': Operations that refine AbIgnore As shown in section 14.2, to prove the refinement of the abstract identity operation *AbIgnore*, we can separately prove correctness for each of the between operations *StartFrom, StartTo, Val, Ack, ReadExceptionLog, ClearExceptionLog, AuthoriseExLogClear, Archive, Ignore, Increase*, and *Abort*. For those which are structured as promoted operations (that is, all except *Archive* and *Ignore*), consider a general such operation, call it *BOpIg*. We note that all *BOpIg* operations have the properties: BOpIg is a promoted operation, and thus alters only one concrete purse. It has the form ``` \exists \Delta ConPurse \bullet \Phi BOp \land BOpIgPurse ``` - the domain of conAuthPurse is unchanged (by construction of the promotion) - for any purse, either nextSeqNo is unchanged, or increased. ``` \forall BOpIgPurse \bullet nextSeqNo \leq nextSeqNo' ``` We use these properties to simplify the proof obligation for the *BOpIg* operations We invoke lemma 'deterministic' (section 14.4) to reduce the *BOpIg* proof obligation to **exists-pd**, **exists-chosenLost** and **check-operation**: ``` \Phi BOp;\ BOpIgPurse;\ RabOut;\ RabClPd'[pdThis/pdThis']; \ AbWorld;\ RabClPd;\ RabIn | \ \mathcal{P} \land \mathcal{Q} \ \vdash \ AbIgnore ``` **Lemma 14.3** (*AbIgnore*) For a *BOpIg* operation, the **check-operation** proof obligation reduces to **check-operation-ignore**¹: ``` \Phi BOp; \ BOpIgPurse; \ RabClPd'[pdThis/pdThis']; \ AbWorld; \ RabClPd \mid \\ \mathcal{P} \wedge \mathcal{Q} \\ \vdash \\ \forall \ n : \text{dom } abAuthPurse \bullet \\ (abAuthPurse' \ n).lost = (abAuthPurse \ n).lost \\ \wedge \ (abAuthPurse' \ n).balance = (abAuthPurse \ n).balance ``` ## **Proof:** We take the **check-operation** proof obligation, and expand *Ablgnore*. The *BOPIgPurse* operations have certain properties in common; we explicitly state these in the hypothesis. ``` \Phi BOp;\ BOpIgPurse;\ RabOut;\ RabClPd'[pdThis/pdThis']; \ AbWorld;\ RabClPd;\ RabIn | \ \mathcal{P} \land \mathcal{Q} \ \land name' = name \ \land nextSeqNo' \ge nextSeqNo \ \vdash \ AbOp \land abAuthPurse' = abAuthPurse ``` 14.6. LEMMA 'ABIGNORE': OPERATIONS THAT REFINE ABIGNORE We use [consq conj] to split this proof into two parts. The *AbOp* part is trivial: there are no constraints. This leaves the other conjunct to be proven, which is rewritten as follows: ``` \Phi BOp;\ BOpIgPurse;\ RabOut;\ RabClPd'[pdThis/pdThis']; AbWorld;\ RabClPd;\ RabIn \mid \mathcal{P} \land \mathcal{Q} \land name' = name \land nextSeqNo' \ge nextSeqNo \vdash \forall n: dom abAuthPurse \bullet abAuthPurse' n = abAuthPurse n ``` We prove this component by component. From ΦBOp in the hypothesis, all concrete purses other than purse *name*? remain unchanged. For the purse *name*?, we also have the equality of the pre and post states of *name*. This leaves the components *balanace* and *lost*. We use this with [consq conj] to reduce our proof requirement to the following: ``` \Phi BOp; \ BOplgPurse; \ RabOut; \ RabClPd'[pdThis/pdThis']; \\ AbWorld; \ RabClPd; \ RabIn \mid \\ \mathcal{P} \land \mathcal{Q} \\ \land name' = name \\ \land nextSeqNo' \geq nextSeqNo \\ \vdash \\ \forall \ n: \ dom \ abAuthPurse \bullet \\ (abAuthPurse' \ n). \ balance = (abAuthPurse \ n). \ balance \\ \land (abAuthPurse' \ n). \ lost = (abAuthPurse \ n). \ lost ``` We then [thin] the hypothesis to get the following, which proves the
AbIgnore ¹Used in: *Ignore*, 14.7.2. ``` \Phi BOp; \ BOpIgPurse; \ RabClPd'[pdThis/pdThis']; \ AbWorld; \ RabClPd \mid \\ \mathcal{P} \wedge \mathcal{Q} \\ \vdash \\ \forall \ n: \ dom \ abAuthPurse \bullet \\ (abAuthPurse' \ n). \ balance = (abAuthPurse \ n). \ balance \\ \wedge (abAuthPurse' \ n). \ lost = (abAuthPurse \ n). \ lost \\ \blacksquare 14.6 ``` # 14.7 Ignore refines AbIgnore As we saw at the end of section 14.3, by splitting up promoted operations, we have generated a requirement to prove the correctness of the *Ignore* branch once only. We do that here. #### 14.7.1 Invoking lemma 'deterministic' Lemma 'deterministic' (section 14.4.5) cannot be applied as-is, because *Ignore* is not written as a promotion (in order to ensure it is total). However, the arguments to split the proof obligation into three parts follow in exactly the same manner even if the unpromoted purse is not exposed. The proof obligations simply have BOPOkay in the hypothesis, instead of ΦBOP ; BOPPurseOkay. We use that form to simplify the Ignore proof obligation to three parts, and then invoke lemma 'lost unchanged' to discharge the first two obligations. We similarly use lemma 'AbIgnore' to simplify the third proof obligation to **check-operationignore**. #### 14.7.2 check-operation-ignore The proof of this is immediate: *Ignore* changes no values, *definitelyLost*, *maybe-Lost* and *chosenLost* do not change, from the hypothesis; so the abstract *balance* and *lost*, which depend only on these unchanging values, are unchanged. - **14.7.2** - **14.7** #### **14.8** Abort refines AbIgnore 14.8. ABORT REFINES ABIGNORE As we saw at the end of section 14.3, by splitting up promoted operations, we have generated a requirement to prove the correctness of the *Abort* branch once only. We do that here. We cast it as a lemma, because we also use it to simplify the proofs of operations that first abort (lemma 'abort backward'). Lemma 14.4 (Abort refines AbIgnore) Concrete Abort refines abstract Ignore.² Abort; Rab'; RabOut $\vdash \exists$ AbWorld; a? : AIN • Rab \land RabIn \land AbIgnore # Proof: *Abort* is written as a disjunction between *Ignore* and a promoted *Abort-PurseOkay*. We use lemma 'ignore' (section 14.3) to simplify the proof obligation to the correctness of *Ignore* (which we discharge in section 14.7), and the *Okay* branch, which we prove here. #### 14.8.1 Invoking lemma 'deterministic' We use lemma 'deterministic' (section 14.4.5) to simplify the proof obligations and then lemma 'AbIgnore' (section 14.6) to simplify the **check-operation** step. We have to instantiate the predicates $\mathcal P$ and $\mathcal Q$. \mathcal{P} is a predicate identifying the *pdThis* involved in the transaction. This is the *pdAuth* stored in the aborting purse, unless the aborting purse is in *eaFrom*, in which case we don't have a defined transaction. We cater for the case of no transaction in the \mathcal{Q} predicate, so \mathcal{P} can safely be defined as ``` P \Leftrightarrow pdThis = pdAuth ``` $\mathcal Q$ is a predicate on *chosenLost*. The after set *chosenLost'* either has *pdThis* removed (if the transaction moves it from *chosenLost* to *definitelyLost*), or is $^{^2\}mathrm{Used}$ in proof of lemma abort, 14.9 ``` \mathcal{Q} \Leftrightarrow \\ (pdThis \in maybeLost \land chosenLost = chosenLost' \cup \{pdThis\}) \\ \lor (pdThis \notin maybeLost \land status \neq eaFrom \land \\ chosenLost = chosenLost') \\ \lor (status = eaFrom \land chosenLost = chosenLost') ``` #### 14.8.2 exists-pd The unpromoted operation *AbortPurseOkay* is incomplete. The output, $m! = \bot$, is not provided until promotion. ``` \Phi BOp; AbortPurseOkay; RabOut; RabCl'; RabIn \mid m! = \bot \vdash \exists pdThis: PayDetails • <math>pdThis = pdAuth ``` This is immediate by the one point rule. **14.8.2** #### 14.8.3 Three cases We split the remaining two proofs, of **exists-chosenLost** and **check-operation**, into three cases each, for each of the three disjuncts of *Q*. We start by arguing the behaviour of *maybeLost* and *definitelyLost* in the three cases. Case 1: aborted transaction in 'limbo': The aborting purse is the *to* purse in *epv*; the corresponding *from* purse is in *epa* or has logged. Hence aborting the transaction will definitely lose the value. ``` pdThis \in maybeLost ``` Case 2: aborted transaction not in 'limbo': The aborting purse is not the to purse in epv, or the corresponding from purse is not in epa and has not logged. The transaction has either not got far enough to lose anything, or has progressed sufficiently far that the value was already either successfully transferred or definitely lost. ``` pdThis ∉ mavbeLost ∧ status ≠ eaFrom ``` • Case 3: no transaction to abort: The aborting purse is in *eaFrom*, so has no defined transaction. Nothing is aborted, so no value is lost. ``` status = eaFrom ``` 14.8. ABORT REFINES ABIGNORE #### Case 1: old transaction in limbo ``` pdThis \in (fromInEpa \cup fromLogged) \cap toInEpv ``` We argue about the behaviour of *maybeLost* and *definitelyLost* using the fact that the purse is the *to* purse initially in *epv* in the aborting transaction, and it logs the old transaction and moves to *eaFrom*. We argue that the transaction *pdThis*, initially in *maybeLost* by construction, is moved into *definitelyLost'* by this case of the *Abort* operation. The transaction was far enough progressed that value may be lost, and it is lost in this case. **Behaviour of** *fromInEpa* **and** *fromLogged pdThis* is in *toInEpv* (by our case assumption), so the only purse undergoing any change (*name*?) is the *to* purse; hence there can be no change to the status or logs of any *from* purse. Hence ``` fromInEpa = fromInEpa' fromLogged = fromLogged' ``` **Behaviour of** *toInEpv pdThis* is in *toInEpv* (by our case assumption); *pdThis* is not in *toInEpv'* (*Abort* puts the purse into *eaFrom*); all other purses and transactions remain unchanged. So ``` toInEpv = toInEpv' \cup \{pdThis\} ``` **Behaviour of** toLogged pdThis is not in toLogged (using lemma 'notLogged-AndIn' with $pdThis \in toInEpv$); pdThis is in toLogged′ (the purse makes a to log when it aborts from epv); all other purses and transactions remain unchanged. So ``` toLogged = toLogged' \setminus \{pdThis\} ``` ``` definitelyLost ``` ``` = toLogged \cap (fromLogged \cup fromInEpa) \qquad [defn definitelyLost] = (toLogged' \setminus \{pdThis\}) \cap (fromLogged' \cup fromInEpa') \qquad [above] = (toLogged' \cap (fromLogged' \cup fromInEpa')) \setminus \{pdThis\} \qquad [defn definitelyLost' \setminus \{pdThis\}] ``` #### Behaviour of maybeLost #### mavbeLost ``` = (fromInEpa \cup fromLogged) \cap toInEpv \qquad [defn maybeLost] \\ = (fromInEpa' \cup fromLogged') \cap (toInEpv' \cup \{pdThis\}) \qquad [above] \\ = ((fromInEpa' \cup fromLogged') \cap toInEpv') \\ \cup ((fromInEpa' \cup fromLogged') \cap \{pdThis\}) \qquad [Spivey] \\ = ((fromInEpa' \cup fromLogged') \cap toInEpv') \\ \cup \{pdThis\} \qquad [case assumption] \\ = maybeLost' \cup \{pdThis\} \qquad [defn maybeLost'] \\ = (fromInEpa' \cup fromLogged') \cap toInEpv') fromLo ``` #### Case 2: old transaction not in limbo ``` pdThis \notin (fromInEpa \cup fromLogged) \cap toInEpv \land status \neq eaFrom ``` We argue that the transaction *pdThis* is not moved into or out of *maybeLost* or *definitelyLost* by this case of the *Abort* operation. **Behaviour of** $fromInEpa \cup fromLogged$ If pdThis is in fromInEpa it is also in fromLogged' (the purse is in epa, so it makes a from log when it aborts); if pdThis is in fromLogged it is also in fromLogged' (logs cannot be removed); if pdThis is not in $fromInEpa \cup fromLogged$ it is not in fromLogged' (the purse is not in epa, so does not make a from log when it aborts), and not in fromInEpa' (because it ends in eaFrom); all other purses and transactions remain unchanged. So $fromInEpa \cup fromLogged = fromInEpa' \cup fromLogged'$ **Behaviour of** *definitelyLost* The cases allowed by our case assumption are: • *pdThis* refers to the *to* purse in *epv*, hence is not in ``` fromInEpa ∪ fromLogged ``` and hence not in *definitelyLost*. Also it is not in $fromInEpa' \cup fromLogged'$, and hence not in *definitelyLost'*. So *definitelyLost* is unchanged. 111 pdThis refers to the to purse, but not in epv, or pdThis refers to the from purse. Hence toLogged is unchanged, since no to log is written, and logs cannot be lost. Also fromInEpa ∪ fromLogged is unchanged. So definitelyLost is unchanged. So ``` definitelyLost' = definitelyLost ``` **Behaviour of** *maybeLost* The cases allowed by our case assumption are: • pdThis refers to the to purse in epv, hence is not in ``` fromInEpa ∪ fromLogged ``` and hence not in maybeLost. Also it is not in $fromInEpa' \cup fromLogged'$, and hence not in maybeLost'. So maybeLost is unchanged. pdThis refers to the to purse, but not in epv, or pdThis refers to the from purse. Hence toInEpv is unchanged, since no purse moves out of or in to epv. Also fromInEpa ∪ fromLogged is unchanged. So maybeLost is unchanged. So ``` maybeLost' = maybeLost ``` #### Case 3: no transaction to abort ``` status = eaFrom ``` From *AbortPurseOkay*, no purses change state and no logs are written. Therefore, *definitelyLost* and *maybeLost* don't change. ``` definitelyLost' = definitelyLost maybeLost' = maybeLost ``` We now use the behaviour of *maybeLost* and *definitelyLost* in the three cases to prove **exists-chosenLost**. ``` \Phi BOp; \ AbortPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn \mid \\ m! = \bot \\ \land pdThis = pdAuth \\ \vdash \\ \exists \ chosenLost : \mathbb{P} \ PayDetails \bullet \\ (pdThis \in maybeLost \land chosenLost = chosenLost' \cup \{pdThis\} \\ \lor \ pdThis \notin maybeLost \land status \neq eaFrom \\ \land \ chosenLost = chosenLost' \\ \lor \ status = eaFrom \land \ chosenLost = chosenLost' \\ \land \ chosenLost \subseteq maybeLost ``` We push the
existential quantifier in the consequent into the predicates: In each case, we [$one\ point$] away the chosenLost because the predicate includes an explicit definition for it. In each case, the predicate is of the form $(a \wedge b)$, and we argue below that $a \Rightarrow b$. This allows us to replace $(a \wedge b)$ with a. If we do this, we obtain ``` \Phi BOp; AbortPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | \\ m! = \bot \\ \land pdThis = pdAuth \\ \vdash \\ pdThis \in maybeLost \\ \lor pdThis \notin maybeLost \land status \neq eaFrom \\ \lor status = eaFrom ``` which is *true*. We now carry out the argument as described above for each of the three disjuncts. #### Case 1: old transaction in limbo **1**4.8.4 14.8. ABORT REFINES ABIGNORE We must show that under the assumptions of this lemma and in this case ``` pdThis \in maybeLost \Rightarrow \\ chosenLost' \cup \{pdThis\} \subseteq maybeLost This follows by: chosenLost' \cup \{pdThis\} \\ \subseteq maybeLost' \cup \{pdThis\} \\ \subseteq maybeLost \qquad [hypothesis] \subseteq maybeLost \qquad [previous argument for case 1] ``` #### Case 2: old transaction not in limbo We must show that under the assumptions of this lemma and in this case ``` pdThis \notin maybeLost \land status \neq eaFrom \Rightarrow chosenLost' \subseteq maybeLost ``` This follows by ``` chosenLost' \subseteq maybeLost' [hypothesis] \Rightarrow chosenLost' \subseteq maybeLost [previous argument for case 2] ``` **1**4.8.4 #### Case 3: no transaction to abort We must show that under the assumptions of this lemma and in this case ``` status = eaFrom \Rightarrow chosenLost' \subseteq maybeLost ``` This follows by ``` chosenLost' \subseteq maybeLost' [hypothesis] \Rightarrow chosenLost' \subseteq maybeLost [previous argument for case 3] ``` - **14.8.4** - **14.8.4** # 14.8.5 check-operation-ignore We now use the behaviour of *maybeLost* and *definitelyLost* in the three cases to prove **check-operation-ignore**. 14.9. LEMMA 'ABORT BACKWARD': OPERATIONS THAT FIRST ABORT We can prove this for each of the three disjuncts in the hypothesis by [hyp disj]. ## Case 1: old transaction in limbo *lost* is a function of *definitelyLost* ∪ *chosenLost*. The *pdThis* moves from *chosenLost* to *definitelyLost'*, so the union is unchanged. *balance* is a function of $maybeLost \setminus chosenLost$. The pdThis moves from chosenLost, and hence from maybeLost, so the difference is unchanged. **14.8.5** #### Case 2+3: old transaction not in limbo or no transaction From *chosenLost* = *chosenLost'* and the arguments above, all the relevant sets are unchanging, so *lost* and *balalnce* are unchanging. - **14.8.5** - **14.8.5** - **1**4.8 ## 14.9 Lemma 'abort backward': operations that first abort Some of the concrete operations are written as a composition of *AbortPurse-Okay* with a simpler operation starting from *eaFrom* (*StartFrom*, *StartTo*, *Read-ExceptionLog*, *ExceptionLogClear*). ``` \exists \, \Delta ConPurse \bullet \Phi BOp \, \wedge \, (AbortPurseOkay \, \S \, BOpPurseEafromOkay); \\ Rab'; \, RabOut; \\ (\, \forall \, BOpEafromOkay; \, Rab'; \, RabOut \, \bullet \\ \qquad \qquad \exists \, AbWorld; \, a? : AIN \, \bullet \, Rab \, \wedge \, RabIn \, \wedge \, AOp \,) \\ \vdash \\ \exists \, AbWorld; \, a? : AIN \, \bullet \, Rab \, \wedge \, RabIn \, \wedge \, AOp \, \\ \end{vmatrix} ``` # Proof Use lemma 'promoted composition' (section C.11) to rewrite the promotion of the composition to a composition of promotions, yielding ``` (AbortOkay § BOpEafromOkay); Rab'; RabOut; (∀ BOpEafromOkay; Rab'; RabOut • ∃AbWorld; a?: AIN • Rab ∧ RabIn ∧ AOp) ⊢ ∃AbWorld; a?: AIN • Rab ∧ RabIn ∧ AOp ``` - If BOp1 refines AOp1 and BOp2 refines AOp2, then BOp1 s BOp2 refines AOp1 AOp2 (invoke lemma 'compose backward', section C.9). - Take BOp1 = AbortOkay, AOp1 = AbIgnore, and invoke lemma 'Abort refines AbIgnore' (section 14.8), to discharge this proof. - Take BOp2 = BOpEa from Okay, AOp2 = AOp, and note that we have that BOp refines AOp in the hypothesis. - Note that AbIgnore ^o₉ AOp = AOp, to reduce this expression in the consequent. - **14.9** # 14.10 Summary of lemmas In section 9.2.4 we reduced the refinement correctness proof for an operation to: ``` BOp; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AOp ``` We then built up a set of lemmas which may be used to simplify this proof requirement. 14.10. SUMMARY OF LEMMAS AOp and BOp are often disjunctions of simpler operations, and lemmas 'multiple refinement' (section 14.2) and 'ignore' (section 14.3) are used to prove that any Ignore or Abort branches of BOp need be proved once only for all BOps. These two branches are proved in lemmas later on, after further simplification for a general disjunct (Ignore, Abort or Okay) of BOp. This simplification starts with lemma 'deterministic' (section 14.4) which removes the $\exists AbWorld$ in the consequent of the correctness obligation. In doing so, it requires us to prove three side-lemmas (exists-pd, exists-chosenLost, checkoperation). Lemma 'lost unchanged' (section 14.5) allows the side-lemmas exists-pd and exists-chosenLost to be discharged immediately given certain conditions. Lemma 'AbIgnore' (section 14.6) then provides a simplification of the side-lemma check-operation when AOp is AbIgnore. We can now prove that the *Ignore* and *Abort* branches of *BOp* are correct with respect to *AOp*. Section 14.7 proves that *Ignore* refines *AbIgnore*, and lemma '*Abort* refines *AbIgnore*' (section 14.8) handles the *Abort* branch. With lemmas 'multiple refinement' and 'ignore', this has now proved the correctness of the *Ignore* and *Abort* branches of all *BOp*. Where the *Okay* branch of an operation is composed of *Abort* followed by the 'active' operation, lemma 'abort backward' gives us that we only need to prove the 'active' part. Returning to the proof obligation written above, any of the *Ignore* or *Abort* branches of a BOp operation are dealt with by the lemmas. This leaves the *Okay* branch (if this contains an initial *Abort*, this can be ignored — from lemma 'abort backward' we need only prove the non-aborting part). Usually, we then apply lemma 'deterministic' yielding a number of side-lemmas. These may sometimes be further simplified using lemmas 'lost unchanged' and '*AbIgnore*'. The remaining proof is then particular to the BOp. ## Chapter 15 # **Correctness of** *Increase* # 15.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), leaving the *Okay* branch to be proven here. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. # 15.2 Invoking lemma 'lost unchanged' Section 14.5.2 gives sufficient conditions to be able to invoke lemma 'lost unchanged'. These are that the unpromoted operation changes neither the *status* nor the exception log of the purse. *Increase* includes $\Xi ConPurseIncrease$, which says exactly that. We can therefore invoke lemma 'Lost unchanged'. 120 CHAPTER 15. INCREASE ## 15.3 check-operation-ignore **Proof:** We have that *maybeLost* and *definitelyLost* are unchanged from the hypothesis. This shows that the *balance* and *lost* components of all the abstract purses remain unchanged. - **15.3** - **1**5 ## Chapter 16 # **Correctness of** *StartFrom* # 16.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), and *Abort* (in section 14.8), leaving the *Okay* branch to be proven here. - Since the *Okay* branch of this operation is expressed as a promotion of *AbortPurseOkay* composed with a simpler *EafromPurseOkay* operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. 122 CHAPTER 16. STARTFROM # 16.2 Instantiating lemma 'deterministic' We take the *pdThis* to be the *pdAuth* created by the start operation, and *chosenLost* to be unchanging. ``` P \Leftrightarrow pdThis = (conAuthPurse' name?).pdAuth Q \Leftrightarrow chosenLost = chosenLost' ``` #### 16.3 **Behaviour of** maybeLost and definitelyLost We argue that pdThis is not in fromInEpa or fromLogged before or after the operation, where pdThis = (conAuthPurse' pdThis.from).pdAuth. First, before the operation the purse is in *eaFrom*, and after it is in *epr*, and hence *pdThis* can never be in *fromInEpa*. From BetweenWorld constraint B-7 if pdThis were in fromLogged' then we
would have ``` (conAuthPurse name?).pdAuth.fromSeqNo > pdThis.fromSeqNo ``` but we know these two pdAuths are equal, so pdThis cannot be in fromLogged'. If the log isn't there after the operation, it certainly isn't there before, so pdThis is not in toLogged either. Only the *from* purse changes in this operation, so the sets *toInEpv* and *toLogged* can't change. Hence ``` toInEpv' = toInEpv toLogged' = toLogged fromInEpa' = fromInEpa fromLogged' = fromLogged ``` It follows that maybeLost is unchanged: ``` maybeLost' = toInEpv' \cap (fromInEpa' \cup fromLogged') = toInEpv \cap (fromInEpa \cup fromLogged) = maybeLost ``` 16.4. EXISTS-PD 123 ``` Also, definitelyLost is unchanged: definitelyLost' = toLogged' \cap (fromInEpa' \cup fromLogged') = toLogged \cap (fromInEpa \cup fromLogged) = definitelyLost 16.4 exists-pd ΦBOp; StartFromPurseEafromOkay; RabOut; RabCl'; RabIn \exists pdThis : PavDetails \bullet pdThis = (conAuthPurse' name?).pdAuth Proof Use the [one point] rule with the expression for pdThis in the quantifier. 16.4 16.5 exists-chosenLost ΦBOp; StartFromPurseEafromOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse' name?).pdAuth ∃ chosenLost : P PayDetails • chosenLost = chosenLost' \land chosenLost \subseteq maybeLost Proof: We use the [one point] rule on chosenLost to give ΦBOp; StartFromPurseEafromOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse' name?).pdAuth ``` [RabClPd'] [unchanging maybeLost] $chosenLost' \subseteq maybeLost$ $chosenLost' \subseteq maybeLost'$ ⊆ maybeLost We then have CHAPTER 16. STARTFROM **16.5** 124 # 16.6 check-operation #### Proof: From Rab, we have that lost is a function of $definitelyLost \cup chosenLost$, which is unchanging, and that balance is a function of $maybeLost \setminus chosenLost$, which is also unchanging. - **16.6** - **1**6 Chapter 17 # **Correctness of** *StartTo* # 17.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), and *Abort* (in section 14.8), leaving the *Okay* branch to be proven here. - Since the *Okay* branch of this operation is expressed as a promotion of *AbortPurseOkay* composed with a simpler *EafromPurseOkay* operation, we use lemma 'abort backward' (section C.5), and prove only that the promotion of the simpler operation is a refinement. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. 126 CHAPTER 17. STARTTO # 17.2 Instantiating lemma 'deterministic' We take *pdThis* to be the *pdAuth* created by the start operation, and *chosenLost* to be unchanging. ``` P \Leftrightarrow pdThis = (conAuthPurse' name?).pdAuth Q \Leftrightarrow chosenLost = chosenLost' ``` # 17.3 Behaviour of maybeLost and definitelyLost We argue that *pdThis* is not in any of the before sets *fromInEpa*, *fromLogged*, *toInEpv*, or *toLogged*, where we have ``` pdThis = (conAuthPurse' name?).pdAuth. ``` The operation moves one purse from eaFrom into epv; no logs are written. Hence pdThis is in toInEpv', but not newly added to any of the other after sets. So ``` toInEpv' = toInEpv ∪ {pdThis} toLogged' = toLogged fromInEpa' = fromInEpa fromLogged' = fromLogged ``` It follows that maybeLost is unchanged: ``` maybeLost' = toInEpv' \cap (fromInEpa' \cup fromLogged') = (toInEpv \cup \{pdThis\} \cap (fromInEpa \cup fromLogged)) = maybeLost \cup (\{pdThis\} \cap (fromInEpa \cup fromLogged)) = maybeLost ``` 17.4. EXISTS-PD 127 ``` Also, definitelyLost is unchanged: definitelyLost' = toLogged' \cap (fromInEpa' \cup fromLogged') = toLogged \cap (fromInEpa \cup fromLogged) = definitelyLost ``` #### 17.4 exists-pd ``` ΦBOp; StartToPurseEafromOkay; RabOut; RabCl'; RabIn ⊢ ∃ pdThis: PayDetails • pdThis = (conAuthPurse' name?).pdAuth ``` #### Proof: Use the [*one point*] rule with the expression for *pdThis* in the quantifier. **17.4** #### 17.5 exists-chosenLost ``` ΦBOp; StartToPurseEafromOkay; RabOut; RabClPd'[pdThis/pdThis'] RabIn | pdThis = (conAuthPurse' name?).pdAuth ⊢ ∃ chosenLost : ℙ PayDetails • chosenLost = chosenLost' ∧ chosenLost ⊆ maybeLost ``` #### Proof: We apply the [one point] rule for chosenLost in the consequent to give **17.5** CHAPTER 17. STARTTO #### Proof: From Rab, we have that lost is a function of $definitelyLost \cup chosenLost$, which is unchanging, and that balance is a function of $maybeLost \setminus chosenLost$, which is also unchanging. - **17.6** - **1**7 #### Chapter 18 # **Correctness of** *Req* # 18.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), leaving the *Okay* branch to be proven here. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. ## 18.2 Instantiating lemma 'deterministic' We must instantiate two general predicates relating to pdThis and chosenLost. The choices for these predicates are based on the fact that the important transaction is the one referred to by the req message being consumed by the ReqOkay operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation, but specifically excluding the transaction pdThis. Thus ``` P \Leftrightarrow req^{\sim} m? = pdThis Q \Leftrightarrow chosenLost = chosenLost' \setminus \{pdThis\} ``` 130 CHAPTER 18. REQ Figure 18.1: The correctness proof for Req. #### 18.3 Discussion The correctness proof for *Req* is summarised in figure 18.1. There are three cases: - The to purse for the transaction is in epv, and we choose that the transfer will succeed. - Before the operation, $pdThis \notin maybeLost \cup definitelyLost$, and the appropriate retrieve is RabEnd. - After the operation, $pdThis \in maybeLost' \setminus chosenLost'$, and the appropriate retrieve is RabOkay'; the abstract operation is AbTransferOkay. - The *to* purse is in *epv*, and we choose the transfer will fail (the *to* purse will move out of *epv* before receiving the *val*). - Before, $pdThis \notin maybeLost \cup definitelyLost$, and the appropriate retrieve is RabEnd'. - After, $pdThis \in chosenLost'$, and the appropriate retrieve is RabWillBe-Lost'; the abstract operation is AbTransferLost. - The *to* purse has already moved out of *epv*, so will not receive the *val*: the transfer has failed. - Before, $pdThis \notin maybeLost \cup definitelyLost$, and the appropriate retrieve is RabEnd - After, $pdThis \in definitelyLost'$, and the appropriate retrieve is RabHas-BeenLost'; the abstract operation is AbTransferLost. The following proof establishes that these are indeed the only cases, and that *ReqOkay* correctly refines *AbTransfer* in each case. 18.4. EXISTS-PD 131 #### 18.4 exists-pd ``` \Phi BOp; ReqPurseOkay; RabOut; RabCl'; RabIn \vdash \exists pdThis: PayDetails \bullet req^m? = pdThis ``` #### Proof: We discharge this by removing the existential for *pdThis* because we have an explicit equation for it, using the [*one point*] rule. **18.4** #### 18.5 exists-chosenlost ``` ΦBOp; ReqPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | req~m? = pdThis ⊢ ∃ chosenLost : ℙ PayDetails • chosenLost = chosenLost' \ {pdThis} ∧ chosenLost ⊆ maybeLost ``` #### Proof: That we can construct a *chosenLost* as the set difference is true because set difference is always defined. That the subset constraint holds follows as below: ``` chosenLost' \subseteq maybeLost' \qquad [RabClPd'] chosenLost' \setminus \{pdThis\} \subseteq maybeLost' \setminus \{pdThis\} \qquad [property of set minus] chosenLost \subseteq maybeLost' \setminus \{pdThis\} \qquad [eqn for chosenLost] chosenLost \subseteq maybeLost \qquad [lemma 'not lost before', section C.14] ``` **18.5** #### 18.6 check-operation ``` ΦBOp; ReqPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd; RabIn | req~m? = pdThis ∧ chosenLost = chosenLost' \ {pdThis} ⊢ AbTransfer ``` We invoke lemma 'not lost before' to add constraints on *maybeLost* and *definitelyLost* to the hypothesis. This allows us to further alter the hypothesis by replacing *RabClPd* with *RabEndClPd*. ``` ΦBOp; ReqPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; AbWorld; RabEndClPd; RabIn | req~m? = pdThis ∧ chosenLost = chosenLost' \ {pdThis} ∧ maybeLost = maybeLost' \ {pdThis} ∧ definitelyLost = definitelyLost' \ {pdThis} ⊢ AbTransfer ``` We use $[hyp \ disj]$ to split RabClPd'[...] into four separate cases (section 10.1.4) to prove (using identity in section 10.1.5). In each case, we strengthen the consequent by choosing an appropriate disjunct of AbTransfer. case 1: We choose that the value is not lost, so the corresponding abstract operation is AbTransferOkay ``` ΦBOp; ReqPurseOkay; RabOut; RabOkayClPd'[pdThis/pdThis']; AbWorld; RabEndClPd; RabIn | req~m? = pdThis ∧ chosenLost = chosenLost' \ {pdThis} ∧ maybeLost = maybeLost' \ {pdThis} ∧ definitelyLost = definitelyLost' \ {pdThis} ⊢ AbTransferOkay ``` case 2: We choose that the value
will be lost, so the corresponding abstract operation is AbTransferLost • case 3: We say that the value has already been lost, so the corresponding abstract operation is *AbTransferLost* 133 • **case 4:** The fourth case is impossible. We choose *RabEndClPd'*, and prove that the hypothesis is contradictory, so the choice of corresponding abstract operation is unimportant. ``` ΦBOp; ReqPurseOkay; RabOut; RabEndClPd'[pdThis/pdThis']; AbWorld; RabEndClPd; RabIn | req⁻m? = pdThis ∧ chosenLost = chosenLost' \ {pdThis} ∧ maybeLost = maybeLost' \ {pdThis} ∧ definitelyLost = definitelyLost' \ {pdThis} ⊢ AbTransfer ``` We now have four independent cases to prove. The next four sections each prove one case. #### 18.7 case 1: RegOkay and RabOkayClPd' #### 18.7.1 The behaviour of maybeLost and definitelyLost We argue that the transaction *pdThis* is initially not in *maybeLost* or *definitely-Lost*, and is moved into *maybeLost'* \ *chosenLost'* by this case of the *ReqOkay* operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it may be lost, but we are actually on the branch that will succeed. We have from RabOkayClPd' that ``` pdThis \in mavbeLost' \setminus chosenLost' ``` Therefore $pdThis \notin chosenLost'$ (by the definition of set minus) and $pdThis \notin definitelyLost'$ (by lemma 'lost'). So we have ``` definitelyLost = definitelyLost' maybeLost = maybeLost' \ {pdThis} chosenLost = chosenLost' ``` #### 18.7.2 AbTransferOkay In this section we prove that an AbWorld that has the correct retrieve properties also satisfies AbTransferOkay. Recall that our proof obligation is Each element of *AbWorld* is defined by an explicit equation in *RabEndClPd*, and we show that this value satisfies *AbTransferOkay* by showing each predicate holds. A-1 *AbOp*: This trivial: *AbOp* imposes no constraints. A-2 AbWorldSecureOp • *a*? ∈ ran *transfer* true by construction of *a*? from *m*? in *RabIn*. • no purses other than *from*? and *to*? change For *balance* and *lost* we show that *RabEndClPd* and ``` RabOkayClPd'[pdThis/pdThis'] ``` are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema *OtherPursesRab*. A-3 Authentic[from?/name?], Authentic[to?/name?] 18.7. CASE 1: REOOKAY AND RABOKAYCLPD' We have $pdThis \in maybeLost'$, hence it is in both authenticFrom' and in authenticTo'. Hence, by ΦBOp and AbstractBetween, it is also in both authenticFrom and in authenticTo. A-4 SufficientFundsProperty true from ConPurse constraint P-2b A-5 to? ≠ from? true because pdThis is a PayDetails. A-6 *abAuthPurse' from*? = ..., *abAuthPurse' to*? = ... Each of the four elements (*from* and *to* purses, each with *balance* and *lost*) are handled below, followed by all the other elements in one section. #### The from purse's balance component ``` (abAuthPurse pdThis.from).balance = (conAuthPurse pdThis.from).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \setminus \{pdThis\}) [RabEndClPd] = (conAuthPurse pdThis.from).balance + sumValue((((maybeLost' \ {pdThis}) \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.from \}) \setminus \{pdThis\}) [section 18.7.1] = (conAuthPurse pdThis.from).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.from \}) \setminus \{pdThis\}) [rearranging] ``` [section 18.7.1] ``` = pdThis.value + (conAuthPurse' pdThis.from).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \ {pdThis}) [ReaPurseOkay] = pdThis.value + (abAuthPurse' pdThis.from).balance [RabOkayClPd'[...]] So (abAuthPurse' from?).balance = (abAuthPurse from?).balance - value? The from purse's lost component (abAuthPurse pdThis.from).lost = sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.from \}) \setminus \{pdThis\}) [RabEndClPd] = sumValue(((definitelyLost' ∪ chosenLost') \cap \{ pd : PayDetails \mid pd.from = pdThis.from \}) \setminus \{pdThis\}) [section 18.7.1] = (abAuthPurse' pdThis.from).lost [RabOkayClPd'[...]] The to purse's balance component (abAuthPurse pdThis.to).balance = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \}) \setminus \{pdThis\}) [RabEndClPd] = (conAuthPurse pdThis.to).balance + sumValue((((maybeLost' \setminus \{pdThis\}) \setminus chosenLost'))) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \}) ``` $\setminus \{pdThis\})$ ``` = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [rearranging] = (conAuthPurse' pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [\Phi BOp] = (abAuthPurse' pdThis.to).balance + pdThis.value [RabOkayClPd'[...]] From the form of (abAuthPurse' pdThis.to).balance = pdThis.value + n in Ab- TransferOkay, we see that this last subtraction gives a positive result. So (abAuthPurse' to?).balance = (abAuthPurse to?).balance + value? The to purse's lost component (abAuthPurse pdThis.to).lost = sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \}) \ {pdThis}) [RabEndClPd] = sumValue(((definitelyLost' ∪ chosenLost') \cap \{ pd : PayDetails \mid pd.from = pdThis.to \} \} \setminus \{pdThis\}) [section 18.7.1] = (abAuthPurse' pdThis.to).lost [RabOkayClPd'[...]] ``` #### The remaining from and to purse components 18.7. CASE 1: REOOKAY AND RABOKAYCLPD' These are unchanging, by $\Xi ConPurseReq$, and that the retrieves each define a unique abstract world. - **18.7.2** - **18.7** ``` \Phi BOp; ReqPurseOkay; RabOut; RabWillBeLostClPd'[pdThis/pdThis']; \\ AbWorld; RabEndClPd; RabIn | \\ req^m? = pdThis \\ \land chosenLost = chosenLost' \setminus \{pdThis\} \\ \land maybeLost = maybeLost' \setminus \{pdThis\} \\ \land definitelyLost = definitelyLost' \setminus \{pdThis\} \\ \vdash \\ AbTransferLost ``` #### 18.8.1 The behaviour of maybeLost and definitelyLost We argue that the transaction *pd* is initially not in *maybeLost* or *definitelyLost*, and is moved into *chosenLost'* by this case of the *ReqOkay* operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it may be lost, and we choose that it will be lost. ``` We have from RabWillBeLostClPd'[...] that ``` Therefore ``` pdThis \in maybeLost' ``` $pdThis \in chosenLost'$ because $chosenLost' \subseteq maybeLost'$. But we can say that $pdThis \notin definitelyLost'$ (by lemma 'lost'). So we have ``` definitelyLost = definitelyLost' maybeLost = maybeLost' \ {pdThis} chosenLost = chosenLost' \ {pdThis} ``` #### 18.8.2 AbTransferLost In this section we prove that an *AbWorld* that has the correct retrieve properties also satisfies *AbTransferLost*. Recall, our proof obligation is ``` \Phi BOp; \ Reap urse O kay; \ Rab Out; \ Rab Will Be Lost C IP d'[pd This/pd This']; \\ Ab World; \ Rab End C IP d; \ Rab In | \\ req^m m? = pd This \\ \land \ chosen Lost = chosen Lost' \setminus \{pd This\} \\ \land \ may be Lost = may be Lost' \setminus \{pd This\} \\ \land \ definitely Lost = definitely Lost' \setminus \{pd This\} \\ \vdash \\ Ab Transfer Lost ``` Each element of *AbWorld* is defined by an explicit equation in *RabEndClPd*, and we show that this value satisfies *AbTransferLost* by showing each predicate holds A-1 *AbOp*: This trivial: *AbOp* imposes no constraints. 18.8. CASE 2: REOOKAY AND RABWILLBELOSTPD' A-2 AbWorldSecureOp • *a*? ∈ ran *transfer* true by construction of *a*? no purses other than from? and to? change For balance and lost we show that RabEndClPd and RabWillBeLost-ClPd [pdThis/pdThis'] are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema OtherPursesRab. #### A-3 Authentic[from?/name?], Authentic[to?/name?] We have $pdThis \in maybeLost'$, hence it is in both authenticFrom' and in authenticTo'. Hence, by ΦBOp and AbstractBetween, it is also in both authenticFrom and in authenticTo. ``` A-4 SufficientFundsProperty ``` true from ConPurse constraint P-2b A-5 to? \neq from? true because pdThis is a PayDetails. A-6 *abAuthPurse' from*? = ..., *abAuthPurse' to*? = ... Each of the four elements (*from* and *to* purses, each with *balance* and *lost*) are handled below, followed by all the other elements in one section. The from purse's balance component ``` (abAuthPurse pdThis.from).balance = (conAuthPurse pdThis.from).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \setminus \{pdThis\}) [RabEndClPd] = (conAuthPurse pdThis.from).balance + sumValue((((maybeLost' \ {pdThis}) \ chosenLost' \ {pdThis}) \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \setminus \{pdThis\}) [section 18.8.1] = (conAuthPurse pdThis.from).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \setminus \{pdThis\}) [rearranging] = pdThis.value + (conAuthPurse' pdThis.from).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.from \} \} \setminus \{pdThis\}) [ReaPurseOkay] = pdThis.value + (abAuthPurse' pdThis.from).balance [RabWillBeLostClPd'[...]] So (abAuthPurse' from?).balance = (abAuthPurse from?).balance - value? The from purse's lost component (abAuthPurse pdThis.from).lost = sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.from \} \} \setminus \{pdThis\}) [RabEndClPd] = sumValue(((definitelyLost' \cup chosenLost' \setminus \{pdThis\}))) \cap \{ pd : PayDetails \mid pd.from = pdThis.from \} \} \setminus \{pdThis\}) [section 18.8.1] ``` ``` = sumValue(((definitelvLost' ∪ chosenLost') \cap \{
pd : PavDetails \mid pd.from = pdThis.from \} \} \setminus \{pdThis\}) [rearrange] = (abAuthPurse' pdThis.from).lost - pdThis.value [RabWillBeLostClPd'[...]] The to purse's balance component (abAuthPurse pdThis.to).balance = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} [RabEndClPd] \setminus \{pdThis\}) = (conAuthPurse pdThis.to).balance + sumValue((((maybeLost' \ {pdThis}) \ chosenLost' \ {pdThis}) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [section 18.8.1] = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [rearranging] = (conAuthPurse' pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [\Phi BOp] = (abAuthPurse' pdThis.to).balance [RabWillBeLostClPd'[...]] The to purse's lost component (abAuthPurse pdThis.to).lost = sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \} \} \setminus \{pdThis\}) [RabEndClPd] ``` #### The remaining from and to purse components These are unchanging, by $\Xi ConPurseReq$, and that the retrieves each define a unique abstract world. - **18.8.2** - **18.8** #### **18.9** case 3: ReqOkay and RabHasBeenLostPd' ``` \Phi BOp; \ ReqPurseOkay; \ RabOut; \ RabHasBeenLostClPd'[pdThis/pdThis']; \\ AbWorld; \ RabEndClPd; \ RabIn \ | \\ req^m? = pdThis \\ \land \ chosenLost = chosenLost' \setminus \{pdThis\} \\ \land \ maybeLost = maybeLost' \setminus \{pdThis\} \\ \land \ definitelyLost = definitelyLost' \setminus \{pdThis\} \\ \vdash \\ AbTransferLost ``` #### 18.9.1 The behaviour of maybeLost and definitelyLost We argue that the transaction pd is initially not in maybeLost or definitelyLost, and is moved into definitelyLost' by this case of the ReqOkay operation. The transaction initially was not far enough progressed to have the potential of being lost; afterwards it has progressed far enough that it has in fact been lost. We have from RabHasBeenLostClPd' that ``` pdThis \in definitelyLost' ``` Therefore *pdThis* ∉ *maybeLost'* (by lemma 'lost'), and also *pdThis* ∉ *chosenLost'* ``` 18.9. CASE 3: REQOKAY AND RABHASBEENLOSTPD' (because this is a subset of maybeLost'). So we have ``` ``` definitelyLost = definitelyLost' \ {pdThis} maybeLost = maybeLost' chosenLost = chosenLost' ``` #### 18.9.2 AbTransferLost In this section we prove that an *AbWorld* that has the correct retrieve properties also satisfies *AbTransferLost*. Recall, our proof obligation is ``` \Phi BOp; \ ReqPurseOkay; \ RabOut; \ RabHasBeenLostClPd'[pdThis/pdThis']; \\ AbWorld; \ RabEndClPd; \ RabIn \mid \\ req^m m? = pdThis \\ \land \ chosenLost = chosenLost' \setminus \{pdThis\} \\ \land \ maybeLost = maybeLost' \setminus \{pdThis\} \\ \land \ definitelyLost = definitelyLost' \setminus \{pdThis\} \\ \vdash \\ AbTransferLost ``` Each element of *AbWorld* is defined by an explicit equation in *RabEndClPd*, and we show that this value satisfies *AbTransferLost* by showing each predicate holds. A-1 *AbOp*: This trivial: *AbOp* imposes no constraints. #### A-2 AbWorldSecureOp - *a*? ∈ ran *transfer* true by construction of *a*? - no purses other than *from*? and *to*? change For *balance* and *lost* we show that *RabEndClPd* and *RabHasBeenLost-ClPd* [*pdThis*/*pdThis*] are essentially the same. This is immediate because in both cases the relevant predicates are captured in the same schema *OtherPursesRab*. #### A-3 Authentic[from?/name?], Authentic[to?/name?] We have $pdThis \in maybeLost'$, hence it is in both authenticFrom' and in authenticTo'. Hence, by ΦBOp and AbstractBetween, it is also in both authenticFrom and in authenticTo. ``` A-4 SufficientFundsProperty true from ConPurse constraint P-2b ``` [section 18.9.1] So (abAuthPurse' from?).balance = (abAuthPurse from?).balance - value? #### The from purse's lost component ``` (abAuthPurse\ pdThis.from).lost \\ = sumValue(((definitelyLost \cup chosenLost) \\ \qquad \qquad \cap \{\ pd: PayDetails \mid pd.from = pdThis.from\}) \\ \qquad \qquad \{\ pdThis\}) \\ = sumValue(((definitelyLost' \setminus \{pdThis\} \cup chosenLost') \\ \qquad \qquad \cap \{\ pd: PayDetails \mid pd.from = pdThis.from\}) \\ \qquad \qquad \setminus \{pdThis\}) \\ \qquad \qquad [section\ 18.9.1] ``` ``` = sumValue(((definitelvLost' ∪ chosenLost') \cap \{ pd : PavDetails \mid pd.from = pdThis.from \} \} \setminus \{pdThis\}) [rearrange] = (abAuthPurse' pdThis.from).lost - pdThis.value [RabHasBeenLostClPd'[...]] The to purse's balance component (abAuthPurse pdThis.to).balance = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost \ chosenLost) \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} [RabEndClPd] \setminus \{pdThis\}) = (conAuthPurse pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \}) \setminus \{pdThis\}) [section 18.9.1] = (conAuthPurse' pdThis.to).balance + sumValue(((maybeLost' \ chosenLost') \cap \{ pd : PayDetails \mid pd.to = pdThis.to \} \} \setminus \{pdThis\}) [\Phi BOp] = (abAuthPurse' pdThis.to).balance [RabHasBeenLostClPd'[...]] The to purse's lost component (abAuthPurse pdThis.to).lost = sumValue(((definitelyLost ∪ chosenLost) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \}) \setminus \{pdThis\}) [RabEndClPd] = sumValue(((definitelvLost' \setminus \{pdThis\} \cup chosenLost'))) \cap \{ pd : PayDetails \mid pd.from = pdThis.to \} \} ``` 18.9. CASE 3: REOOKAY AND RABHASBEENLOSTPD' $\setminus \{pdThis\})$ 146 CHAPTER 18. REO ``` = sumValue(((definitelyLost' \cup chosenLost') \\ \cap \{pd: PayDetails \mid pd.from = pdThis.to\}) \\ \setminus \{pdThis\}) \qquad [rearrange] \\ = (abAuthPurse' pdThis.to).lost \qquad [RabHasBeenLostClPd'[...]] ``` #### The remaining from and to purse components These are unchanging, by $\Xi ConPurseReq$, and that the retrieves each define a unique abstract world. - **18.9.2** - **18.9** #### 18.10 case 4: RegOkay and RabEndPd' ``` \Phi BOp; Reap Purse O kay; Rab Out; Rab End C IP d' [pd This/pd This']; \\ Ab World; Rab End C IP d; Rab In | \\ rea^m m? = pd This \\ \land chosen Lost = chosen Lost' \setminus \{pd This\} \\ \land may be Lost = may be Lost' \setminus \{pd This\} \\ \land definitely Lost = definitely Lost' \setminus \{pd This\} \\ \vdash \\ Ab Transfer ``` We show that *RabEndClPd'*[...] is *false* under *ReqOkay*, and then proceed by [*contradiction*], because this shows the antecedent of the theorem is false, and hence the theorem is true. ``` ΦBOp; ReqPurseOkay; RabOut; AbWorld'; pdThis: PayDetails; chosenLost': ℙ PayDetails | req~m? = pdThis ¬ RabEndClPd'[pdThis/pdThis'] ``` It suffices to show that $pdThis \in definitelyLost' \cup maybeLost'$. We have ``` definitelyLost' \cup maybeLost' = (fromInEpa' \cup fromLogged') \cap (toInEpv' \cup toLogged') ``` ReqPurseOkay gives us that the after state of the purse is epa; pdThis is in #### 18.10. CASE 4: REOOKAY AND RABENDPD' *authenticFrom*, from ΦBOp ; hence *pdThis* is in *fromInEpa'*. So it is sufficient to 147 show either *pdThis* is in *toInEpv'* or in *toLogged'*. We know from the existence of the *reg*, with *BetweenWorld* constraint B-1, We know from the existence of the *req*, with *BetweenWorld* constraint B-1, that $pdThis \in authenticTo$. There is no ack in the ether': pdThis ∈ fromInEpr [precondition ReqPurseOkay] ⇒ ack pdThis \notin ether [BetweenWorld constraint B-9] ⇒ ack pdThis \notin ether' [defn. ReqPurseOkay and Φ BOp] Hence req pdThis ∈ ether' [precondition ReqPurseOkay] \land ack pdThis ∉ ether' [above] \Rightarrow pdThis ∈ toInEpv' \cup toLogged' [BetweenWorld constraint B-10] as required. - **18.10** - **18.6** - **1**8 #### Chapter 19 ## **Correctness of** *Val* #### 19.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), leaving the *Okay* branch to be proven here. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. #### 19.2 Instantiating lemma 'deterministic' The choices for the predicates relating to *pdThis* and *chosenLost* are based on the fact that the important transaction is the one stored in the purse performing the *ValOkay* operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation. Thus ``` P \Leftrightarrow pdThis = (conAuthPurse\,name?).pdAuth Q \Leftrightarrow chosenLost = chosenLost' ``` 151 ``` ΦBOp; ValPurseOkay; RabOut; RabCl'; RabIn ⊢ ∃ pdThis: PayDetails • pdThis = (conAuthPurse name?).pdAuth ``` #### Proof: This is immediate by the [*one point*] rule, as we have an explicit definition of *pdThis*. **1**9.3 #### 19.4 exists-chosenlost ``` ΦBOp; ValPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse name?).pdAuth ⊢ ∃ chosenLost : ℙ PayDetails • chosenLost = chosenLost' ∧ chosenLost ⊆ maybeLost ``` #### Proof: We can [one point] away the quantification because we have an explicit definition of *chosenLost* (as *chosenLost'*). We show that the constraint holds by ``` chosenLost = chosenLost' [defn.] ⊆ maybeLost' [RabClPd'[...]] ⊆ maybeLost \setminus \{pdThis\} [see 19.6.7] ⊆ maybeLost [defn. \] ■ 19.4 ``` #### 19.5 check-operation
We prove this first by investigating the way in which the key sets *definitelyLost* and *maybeLost* are modified by the operation. Having got equations for these changes, we then look at the equations for the components *balance* and *lost* for two types of purses: the *to* purse in the transaction *pdThis*, and all other purses. #### 19.6 Behaviour of maybeLost and definitelyLost 19.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST We argue that the transaction *pdThis* is initially in *maybeLost*, and is moved out of it, but not into *definitelyLost'*, by the *ValOkay* operation. This operation determines that the transaction is successful. #### 19.6.1 fromLogged ``` No logs change, so fromLogged' = fromLogged ``` ## 19.6.2 toLogged No logs change, so ``` toLogged' = toLogged ``` After the operation the purse is in eaTo, and pdThis is in authenticTo, from ΦBOp , hence $pdThis \in toInEapayee'$. Lemma 'notLoggedAndIn' (section C.12) gives us: ``` pdThis ∉ toLogged' ``` #### 19.6.3 toInEpv From the precondition of *ValPurseOkay* we know the purse is in *epv*, and we know that the name of this purse is equal to *pdThis.to*. After the operation, this purse is in *eaTo* (that is, not in *epv*). No other purses change. ``` toInEpv' = toInEpv \setminus \{pdThis\} toInEpv = toInEpv' \cup \{pdThis\} ``` ``` 19.6.4 fromInEpa ``` Only the to purse changes. fromInEpa' = fromInEpa #### 19.6.5 definitelyLost definitelyLost' ``` = toLogged' \cap (fromLogged' \cup fromInEpa') [defn] = toLogged \cap (fromLogged \cup fromInEpa) [above] = definitelyLost [defn] ``` #### 19.6.6 chosenLost chosenLost' = chosenLost by choice. So $definitelvLost \cup chosenLost = definitelvLost' \cup chosenLost'$ #### 19.6.7 maybeLost maybeLost' ``` = (fromInEpa' \cup fromLogged') \cap toInEpv' [defn] = (fromInEpa \cup fromLogged) \cap (toInEpv \setminus \{pdThis\}) [above] = ((fromInEpa \cup fromLogged) \cap toInEpv) \setminus \{pdThis\} [Spivey] = maybeLost \setminus \{pdThis\} [defn] val \in ether \land to.status = epv [precondition ValPurseOkay] \Rightarrow pdThis \in fromInEpa \cup fromLogged [B-11] \Rightarrow pdThis \in mavbeLost [toInEpv. defn maybeLost] pdThis ∈ maybeLost [above] ∧ pdThis ∉ chosenLost' ``` [because pdThis ∉ maybeLost'] \Rightarrow pdThis \in maybeLost \land pdThis \notin chosenLost \Rightarrow pdThis \in maybeLost \setminus chosenLost $maybeLost \setminus chosenLost = (maybeLost' \setminus chosenLost') \cup \{pdThis\}$ #### 19.7 Clarifying the hypothesis Also We can show that the hypothesis is actually stronger than it looks, in that we can replace RabClPd with RabOkayClPd and replace RabClPd' with RabEndClPd'. This is because $pdThis \in maybeLost \setminus chosenLost$, implying that RabOkayClPd pdThis ∉ maybeLost' (see construction of maybeLost') and so it cannot be in *chosenLost'*. pdThis ∉ maybeLost' and so it cannot be in maybeLost' \ *chosenLost'*. *pdThis* ∉ *definitelyLost'* because it is not in *toLogged'*. This implies that *RabEndClPd'*[...] holds. So we have to prove ``` ΦBOp; ValPurseOkay; RabEndClPd'[pdThis/pdThis']; AbWorld; RabOkayClPd | pdThis = (conAuthPurse name?).pdAuth \land chosenLost = chosenLost' \forall n : dom abAuthPurse \bullet (ahAuthPurse'n).halance = (ahAuthPursen).halance \land (abAuthPurse' n).lost = (abAuthPurse n).lost ``` We do this for each of the three components, for all the purses other than the to purse engaged in this transaction, and for exactly the to purse in this transaction. #### 19.7.1 Case balance component for non-pdThis.to purse ``` \forall n: dom abAuthPurse | n \neq pdThis.to • (abAuthPurse' n).balance = (conAuthPurse' n).balance + sumValue(((maybeLost' \ chosenLost') \cap \{pd : PayDetails \mid pd.to = n\} \setminus \{pdThis\}\} [RabEndClPd'[pdThis/pdThis']] = (conAuthPurse' n).balance + sumValue((((maybeLost' \setminus chosenLost') \cup \{pdThis\}) \cap \{pd : PayDetails \mid pd.to = n\} \setminus \{pdThis\} \} [union and subtraction cancel] ``` 154 CHAPTER 19. VAL ``` = (conAuthPurse' n).balance \\ + sumValue(((maybeLost \setminus chosenLost) \\ \cap \{pd : PayDetails \mid pd.to = n\}) \setminus \{pdThis\}) [equation earlier] = (conAuthPurse n).balance \\ + sumValue(((maybeLost \setminus chosenLost) \\ \cap \{pd : PayDetails \mid pd.to = n\}) \setminus \{pdThis\}) [\Phi BOp] = (abAuthPurse n).balance [RabOkayClPd] ``` **19.7.1** #### 19.7.2 Case *lost* component for non-pdThis.to purse In this case the defining equations in the retrieve depend upon $definitelyLost \cup chosenLost$, which we derived as unchanging earlier. ΦBOp does not change the concrete values, so the abstract values do not change either. **19.7.2** #### 19.7.3 Case balance component for pdThis.to purse ``` (abAuthPurse'\ pdThis.to).balance\\ = (conAuthPurse'\ pdThis.to).balance\\ + sumValue(((maybeLost'\ \ chosenLost')\\ \cap \{pd:PayDetails\ |\ pd.to=pdThis.to\})\ \ \{pdThis\}\}\\ [RabEndClPd'[...]]\\ = (conAuthPurse'\ pdThis.to).balance\\ + sumValue((((maybeLost'\ \ chosenLost')\ \cup \{pdThis\})\\ \cap \{pd:PayDetails\ |\ pd.to=pdThis.to\})\ \ \{pdThis\}\}\\ [union\ and\ subtraction\ cancel]\\ = (conAuthPurse'\ pdThis.to).balance\\ + sumValue(((maybeLost\ \ chosenLost)\\ \cap \{pd:PayDetails\ |\ pd.to=pdThis.to\})\ \ \{pdThis\}\}\\ [equation\ earlier] ``` #### 19.7. CLARIFYING THE HYPOTHESIS ``` = (conAuthPurse\ pdThis.to).balance + pdThis.value \\ + sumValue(((maybeLost \setminus chosenLost) \\ \cap \{pd: PayDetails \mid pd.to = pdThis.to\}) \setminus \{pdThis\}) \\ [ValPurseOkay] \\ = (abAuthPurse\ pdThis.to).balance \\ [RabOkayClPd] ``` 155 **19.7.3** #### 19.7.4 Case lost component for pdThis.to purse In this case the defining equations in the retrieve depend upon $definitelyLost \cup chosenLost$, which we derived as unchanging earlier. ValOkay does not change the concrete values, so the abstract values do not change either. - **■** 19.7.4 - **19.7** - **1**9 #### Chapter 20 ## **Correctness of** *Ack* #### 20.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), leaving the *Okay* branch to be proven here. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. #### 20.2 Instantiating lemma 'deterministic' We must instantiate two general predicates relating to *pdThis* and *chosenLost*. The choices for these predicates are based on the fact that the important transaction is the one stored in the purse performing the *AckOkay* operation, and that before the operation, the set of transactions chosen to be lost should be all those chosen to be lost after the operation, because this operation plays no 158 CHAPTER 20. ACK part in deciding which transactions succeed and which ones lose. Thus ``` \mathcal{P} \Leftrightarrow pdThis = (conAuthPurse\,name?).pdAuth \mathcal{Q} \Leftrightarrow chosenLost = chosenLost' ``` #### 20.3 exists-pd ``` ΦBOp; AckPurseOkay; RabOut; RabCl'; RabIn ⊢ ∃ pdThis: PayDetails • pdThis = (conAuthPurse name?).pdAuth ``` #### Proof: This is immediate by [one point] rule, as we have an explicit definition of pdThis. 20.3 #### 20.4 exists-chosenlost ``` ΦBOp; AckPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; RabIn | pdThis = (conAuthPurse name?).pdAuth ⊢ ∃ chosenLost : ℙ PayDetails • chosenLost = chosenLost' ∧ chosenLost ⊆ maybeLost ``` #### **Proof:** We can [one point] away the quantification because we have an explicit definition of chosenLost (as chosenLost'). We show that the constraint holds by ``` chosenLost = chosenLost' [def] \subseteq maybeLost' [RabClPd'[...]] \subseteq maybeLost [see 20.6.6] ``` **20.4** 20.5. CHECK-OPERATION 159 #### 20.5 check-operation #### Proof: We prove this by investigating the way in which the key sets *definitelyLost* and *maybeLost* are modified by the operation. #### **20.6 Behaviour of** *maybeLost* **and** *definitelyLost* We argue that the transaction *pd* is initially in neither *maybeLost* nor *definitely-Lost*, and is not moved into either of them by the *AckOkay* operation. The transaction was initially far enough along to have already succeeded. #### 20.6.1 Behaviour of fromLogged From ΦBOp , which says that only the purse *name*? changes, and then only according to AckPurseOkay, and from the definition of AckPurseOkay, in which exLog' = exLog, we can see that ``` fromLogged' = fromLogged ``` #### 20.6.2 Behaviour of toLogged Exactly as we argued for *fromLogged*, ``` toLogged' = toLogged ``` #### 20.6.3 Behaviour of toInEpv If $toInEpv' \neq toInEpv$, there must be some pd in one and not in the other. From the definition of toInEpv, this means that for some purse that changes, either before or after the operation its status must equal epv. That is, ``` (conAuthPurse pd.to).status = epv \((conAuthPurse' pd.to).status = epv ``` From ΦBOp we have that the only purse that changes is *name?*. From *AckPurse-Okay* we have that ``` (conAuthPurse name?).status = epa (conAuthPurse' name?).status = eaFrom ``` (neither equal to *epv*). Therefore, no such *pd* exists, and we have ``` toInEpv' = toInEpv ``` #### 20.6.4 Behaviour of fromInEpa If *fromInEpa'* ≠ *fromInEpa*, there must be some *pd* in one and not in the other. From the definition of *fromInEpa*, this means that for some purse that changes, either before or after the operation its status must equal *epa*. That is, ``` (conAuthPurse pd.from).status =
epa \(\forall \) (conAuthPurse' pd.from).status = epa ``` The only name that changes is name?, and from AckPurseOkay we have that ``` (conAuthPurse name?).status = epa (conAuthPurse' name?).status = eaFrom ``` Therefore, we have ``` fromInEpa' = fromInEpa \setminus \{ pd : PayDetails \mid pd.from = name? \\ \land (conAuthPurse name?).status = epa \\ \land (conAuthPurse name?).pdAuth = pd \} ``` In fact, the last predicate in this set limits the pd to a single value, equal to pdThis, so we have ``` fromInEpa' = fromInEpa \setminus \{pdThis\} ``` We now build up the two sets definitelyLost and maybeLost. #### 20.6.5 Behaviour of definitelyLost 20.6. BEHAVIOUR OF MAYBELOST AND DEFINITELYLOST ``` \begin{array}{ll} \textit{definitelyLost'} = \textit{toLogged'} \cap (\textit{fromLogged'} \cup \textit{fromInEpa'}) & [\text{defn}] \\ = \textit{toLogged} & [\text{above identities}] \\ \cap (\textit{fromLogged} \cup (\textit{fromInEpa} \setminus \textit{fpdThis}\})) \\ = \textit{toLogged} & [\textit{pdThis} \notin \textit{fromLogged}, \text{see below}] \\ \cap ((\textit{fromLogged} \cup \textit{fromInEpa}) \setminus \textit{fpdThis}\}) \\ = (\textit{fromLogged} \cup \textit{fromInEpa}) & [\text{algebra}] \\ \cap (\textit{toLogged} \setminus \textit{fpdThis}\}) \\ = (\textit{fromLogged} \cup \textit{fromInEpa}) \cap \textit{toLogoged} \cap \textit{fthis} \notin \textit{toLogged}, \text{see below}] \\ = \textit{definitelyLost} & [\text{defn}] \\ \end{array} ``` We have $pdThis \notin fromLogged$, from the fact that $pdThis \in fromInEpa$ (because the before purse state is epa, and ΦBOp gives $pdThis \in authenticFrom$), and using lemma 'notLoggedAndIn'. We have $pd \notin toLogged$: ``` ack pd ∈ ether [precondition AckPurseOkay] \Rightarrow pd \notin toInEpv \cup toLogged [BetweenWorld constraint B-10] \Rightarrow pd \notin toLogged [law] ``` Thus we have ``` definitelyLost' = definitelyLost ``` #### 20.6.6 Behaviour of maybeLost ``` maybeLost' = (fromInEpa' \cup fromLogged') \cap toInEpv' \qquad [defn.] = (fromInEpa \cup (fromLogged \setminus \{pdThis\})) \cap toInEpv [above identities] = ((fromInEpa \cup fromLogged) \setminus \{pdThis\}) \cap toInEpv [pdThis \notin fromLogged, as above] = (fromInEpa \cup fromLogged) \cap (toInEpv \setminus \{pdThis\}) [algebra] = (fromInEpa \cup fromLogged) \cap toInEpv[pdThis \notin toInEpv, see below] = maybeLost [defn.] ``` 162 CHAPTER 20. ACK We have $pdThis \notin toInEpv$: ``` ack pd ∈ ether [precondition AckOkay] \Rightarrow pdThis \notin toInEpv \cup toLogged [BetweenWorld constraint B-10] \Rightarrow pdThis \notin toInEpv [law] ``` Thus we have maybeLost' = maybeLost #### 20.7 Finishing proof of check-operation The above shows that none of the three sets *definitelyLost*, *maybeLost* or *chosen-Lost* changes. As *AckOkay* does not alter any concrete *balance* or *lost*, and given that the abstract values are defined solely in terms of these (unchanging) values, it follows that the abstract values don't change, thus discharging the **check-operation** proof obligation. **20.5** **2**0 Chapter 21 ## **Correctness of** ReadExceptionLog #### 21.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), and *Abort* (in section 14.8), leaving the *Okay* branch to be proven here. - Since the *Okay* branch of this operation is expressed as a promotion of *AbortPurseOkay* composed with a simpler *EafromPurseOkay* operation, we use lemma 'abort backward' (section C.5), and prove only that the pro-motion of the simpler operation is a refinement. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. We have the constraint $\exists ConPurse$ in the definition of ReadExceptionLogPurse-EafromOkay. From ΦBOp and $\Xi ConPurse$, we know that archive and conAuth-Purse remain unchanged, as do definitelyLost and maybeLost. Hence we can invoke lemma 'Lost unchanged'. #### 21.3 check-operation-ignore ``` ΦBOp; ReadExceptionLogPurseEafromOkay; RabOut; RabClPd' [pdThis/pdThis']; AbWorld; RabClPd; RabIn | chosenLost' = chosenLost ∧ maybeLost' = maybeLost ∧ definitelyLost' = definitelyLost ∀ n : dom abAuthPurse • (abAuthPurse' n).balance = (abAuthPurse n).balance ∧ (abAuthPurse' n).lost = (abAuthPurse n).lost ``` #### Proof: We have that *maybeLost* and *definitelyLost* are unchanged from the hypothesis. Hence the *balance* and *lost* components of all the abstract purses remain unchanged, satisfying our proof requirement. - **21.3** - **2**1 Chapter 22 ## **Correctness of** ClearExceptionLog #### 22.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' (section 14.2) to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. - We use lemma 'ignore' (see section 14.3) to simplify the proof obligation by proving the correctness of *Ignore* (in section 14.7), and *Abort* (in section 14.8), leaving the *Okay* branch to be proven here. - Since the *Okay* branch of this operation is expressed as a promotion of *AbortPurseOkay* composed with a simpler *EafromPurseOkay* operation, we use lemma 'abort backward' (section C.5), and prove only that the pro-motion of the simpler operation is a refinement. - We use lemma 'deterministic' (section C.1) to reduce the proof obligation to the three cases exists-pd, exists-chosenLost, and check-operation. - Since this operation leaves the sets maybeLost and definitelyLost unchanged, we use lemma 'lost unchanged' (section C.2) to discharge the exists pd-and exists chosenLost-obligations automatically. - Since this operation refines *AbIgnore*, we use lemma '*AbIgnore*' (from section C.3) to simplify **check-operation** to **check-operation-ignore**. The purse's exception log is cleared, so we cannot use the 'sufficient conditions' to invoke lemma 'lost unchanged': we need first to show that *fromLogged* and *toLogged* are unchanged. We have from the operation definition that the exception log details in the purse that are to be cleared match the ones in the *exceptionLogClear* message. We have, from constraint B–15 that the log details in the message are already in the *archive*. So deleting them from the purse will not change *allLogs*. But *fromLogged* and *toLogged* partition *allLogs*, so these do not change either. Hence we can invoke lemma 'Lost unchanged'. #### 22.3 check-operation-ignore #### Proof: We have that *maybeLost* and *definitelyLost* are unchanged from the hypothesis. Hence the *balance* and *lost* components of all the abstract purses remain unchanged. - **22.3** - **2**2 Chapter 23 ## **Correctness of** *AuthoriseExLogClear* #### 23.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' to split the proof obligation for each $\mathcal A$ operation into one for each individual $\mathcal B$ operation. This chapter proves the ${\mathcal B}$ operation. • We use lemma 'ignore' to simplify the proof obligation further to proving the correctness of *Ignore* (section 14.7), leaving the *Okay* branch to be proven. We cannot use any of the other simplifications directly for Authorise ExLog Clear, since it cannot be written as a promotion. So the correctness proof obligation for Authorise ExLog Clear is ``` AuthoriseExLogClearOkay; Rab'; RabOut ⊢ ∃ AbWorld; a?: AIN • Rab ∧ RabIn ∧ AbIgnore ``` #### 23.2 Proof First we choose an input. We argue exactly as in section 14.4.1 to reduce the obligation to: ``` AuthoriseExLogClearOkay; Rab'; RabOut; RabIn \vdash \exists AbWorld • Rab \land AbIgnore ``` We [cut] in a before AbWorld equal to the after AbWorld' in Rab' (the side lemma is trivial), and use [consq exists] to remove the quantifier from the consequent. ``` AuthoriseExLogClearOkay; Rab'; RabOut; RabIn; AbWorld | \theta AbWorld = \theta AbWorld' Rab ∧ AbIgnore ``` *AbIgnore* is certainly satisfied by the equal abstract before and after worlds. It remains to show that Rab is satisfied. The only difference between the concrete before and after worlds, as given by AuthoriseExLogClearOkay, is the addition of an exceptionLogClear message in the ether. But Rab does not depend on exceptionLogClear messages, and so we can deduce Rab directly from Rab' - **23.2** - **2**3 Chapter 24 ### Correctness of Archive #### 24.1 Proof obligation We have to prove the correct refinement of each abstract operation. In section 9.2.4 we give a general simplification of the correctness proof. We use lemma 'multiple refinement' to split the proof obligation for each $\mathcal A$ operation into one for each individual \mathcal{B} operation. This chapter proves the \mathcal{B} operation. We cannot use any more of the usual simplifications directly for Archive, since it cannot be written as a promotion. So the correctness proof obligation for Archive is ``` Archive; Rab'; RabOut \vdash \exists AbWorld; a?
: AIN \bullet Rab \land RabIn \land AbIgnore ``` #### 24.2 Proof First we choose an input. We argue exactly as in section 14.4.1 to reduce the obligation to: ``` Archive; Rab'; RabOut; RabIn \vdash \exists AbWorld \bullet Rab \land AbIgnore ``` We [cut] in a before AbWorld equal to the after AbWorld' in Rab' (the side lemma is trivial), and use [consq exists] to remove the quantifier from the consequent. ``` Archive; Rab'; RabOut; RabIn; AbWorld | \theta AbWorld = \theta AbWorld' Rab ∧ AbIgnore ``` 170 CHAPTER 24. ARCHIVE *AbIgnore* is certainly satisfied by the equal abstract before and after worlds. It remains to show that *Rab* is satisfied. The only difference between the concrete before and after worlds, as given by *Archive*, is the inclusion of some log details in the *archive*. We have, from *BetweenWorld* constraint B-14, that the log details added to the archive from the *exceptionLogResult* message are already in *allLogs*. So, although the *archive* grows, the operation does not add any new logs to the *world*. Thus *fromLogged* and *toLogged* don't change. Hence *maybeLost* and *definitelyLost* don't change. Therefore, nothing that *Rab* relies upon changes in the concrete world, and so we can deduce *Rab* directly from *Rab'*. - **24.2** - **2**4 ## Part III Second Refinement: \mathcal{B} to \mathcal{C} #### Chapter 25 ## **Refinement Proof Rules** #### 25.1 Security of the implementation We prove the concrete model C is secure with respect to the between model $\mathcal B$ by showing that every concrete operation correctly refines a between operation. The concrete and between operations are similarly-named. The full list of refinements is: $StartTo \sqsubseteq CStartTo$ $Req \sqsubseteq CReq$ $Val \sqsubseteq CVal$ $Ack \sqsubseteq CAck$ $ReadExceptionLog \sqsubseteq CReadExceptionLog$ $ClearExceptionLog \sqsubseteq CClearExceptionLog$ $AuthoriseExLogClear \sqsubseteq CAuthoriseExLogClear$ $Archive \sqsubseteq CArchive$ $Abort \sqsubseteq CAbort$ $Increase \sqsubseteq CIncrease$ *Ignore ⊆ CIgnore* Figure 25.1: A summary of the forward proof rules. The hypothesis is the existence of the lower (solid) path. The proof obligation is to demonstrate the existence of an upper (dashed) path. #### 25.2 Forwards rules proof obligations Each of these refinements must be proved correct. [Spivey 1992b, Chapter 5] presents the theorems that need to be proved for the most commonly-occurring case of non-determinism, sometimes called 'downward' or 'forward' conditions, where the abstract and concrete inputs and outputs are identical. These, augmented with a finalisation proof, are appropriate for the $\mathcal B$ to $\mathcal C$ refinement proofs. The forward rules are summarised in figure 25.1. Note how the paths are different from the backward case (figure 9.1) because of the direction of the R arrows. #### 25.2.1 Retrieve Initialisation The retrieve relation has one part that links the abstract and concrete states. #### 25.2.2 Initialisation $$CInit \vdash \exists B' \bullet BInit \land R'$$ #### 25.2.3 Finalisation $$R$$; $CFin \vdash BFin$ #### 25.2. FORWARDS RULES PROOF OBLIGATIONS #### 175 #### 25.2.4 Applicability *R*; *BIn* | pre $$BOp \vdash pre COp$$ #### 25.2.5 Correctness $$R$$; $COp \mid pre BOp \vdash \exists B' \bullet R' \land BOp$ We can simplify the correctness condition because we know that all the between operations are total, i.e. $$pre BOp = true$$ This was proved earlier, in section 8.3.2. We can therefore simplify the correctness condition to $$R$$; $COp \vdash \exists B' \bullet R' \land BOp$ #### Chapter 26 ## \mathcal{B} to \mathcal{C} retrieve relation #### 26.1 Retrieve state The $\mathcal B$ and C worlds are identical, except that the C world can 'lose' ether messages. The subscript zero on the concrete world serves to distinguish like-named between and concrete components. #### Chapter 27 # Initialisation, Finalisation, and Applicability #### 27.1 Initialisation proof $ConInitState \vdash \exists BetweenWorld' \bullet BetweenInitState \land Rbc'$ #### Proof: We expand *ConInitState* in the hypothesis according to its definition. ``` ConWorld_0' \mid (\exists BetweenWorld' \mid BetweenInitState \bullet conAuthPurse_0' = conAuthPurse' \land archive' = archive' \land \{\bot\} \subseteq ether_0' \subseteq ether') \vdash \exists BetweenWorld' \bullet BetweenInitState \land Rbc' ``` From the definition of Rbc', we can see that the consequent follows directly from the hypothesis. **27.1** #### 27.2 Finalisation proof ``` Rbc; ConFinState ⊢ BetwFinState ``` #### Proof: We have defined ${\it ConFinState}$ and ${\it BetwFinState}$ to have the same mathematical form. #### CHAPTER 27. INITIALISATION. FINALISATION. AND APPLICABILITY *Rbc* in the hypothesis requires the concrete and between purse states and archives to be identical, and allows the between *ether* to be bigger than the concrete *ether*. Finalisation of the purses depends only on the purse states (identical by hypothesis) and on the sets *definitelyLost* and *maybeLost*. These sets themselves depend only on purse states and on the archive (also identical for concrete and between worlds by the retrieve in the hypothesis). As result, *gAuth-Purse* for between finalisation is identical to that for concrete finalisation. **27.2** 180 #### 27.3 Applicability proofs Applicability follows automatically from the totality of the concrete operations as shown in section 8.4. **27.3** #### Chapter 28 # Lemmas for the $\mathcal B$ to $\mathcal C$ correctness proofs #### 28.1 Specialising the proof rules For each concrete operation ${\it COp}$ and corresponding between operation ${\it BOp}$ we have to show ``` Rbc; COp \vdash \exists BetweenWorld' \bullet Rbc' \land BOp ``` Many operations are defined as the disjunction of other operations. A *COp* will have the same branches as a corresponding *BOp*: a *CIgnore* branch, and either a *CAbort* or *COpOkay* branch, or both. We split the proof obligation into *CIgnore, CAbort* and *COpOkay* branches, as we did in section 14.3. This gives some or all of the following proof requirements, depending on which branches are in *COp*: ``` Rbc; CIgnore \vdash \exists BetweenWorld' • Rbc' \land Ignore Rbc; CAbort \vdash \exists BetweenWorld' • Rbc' \land Abort Rbc; COpOkay \vdash \exists BetweenWorld' • Rbc' \land BOpOkay ``` The correctness of the *CIgnore* branch is dealt with below in section 28.2. We then develop the correctness proof for the *CAbort* and *COpOkay* branches, and introduce a lemma applicable to certain operations. Following this, we present the proof of correctness of two common branches — *CIncrease* and *CAbort*. The correctness of the *CIgnore* branch follows trivially by choosing θ BetweenWorld' = θ BetweenWorld **28.2** #### 28.3 Correctness of a branch of the operation #### 28.3.1 Choosing BetweenWorld' In choosing *BetweenWorld'*, we base our choice of the *conAuthPurse'* and *ar-chive'* components on *Rbc'*, and our choice of the *ether'* component on *BOp-Okay'*. We have $conAuthPurse'_0$ and $archive'_0$ in the hypothesis, and we use this to provide the value for conAuthPurse' and archive', respectively (this satisfies the constraint on conAuthPurse' and archive' in Rbc'). ``` conAuthPurse' = conAuthPurse'_0 archive' = archive'_0 ``` m! and ether are declared in the hypothesis, and ether' can be constructed deterministically from these (note that the following construction satisfies the relevant constraint in BOpOkay — either in ΦBOp or explicitly as in Archive). ``` ether' = ether \cup \{m!\} ``` We need to show that the chosen BetweenWorld' and m! satisfy each of the conjuncts in the consequent (retrieve Rbc' and operation BOpOkay). We also need to show that this choice is indeed an after *BetweenWorld'* (that it satisfies the constraints on *BetweenWorld* specified in section 5.3). #### 28.3.2 Case BOpOkay From the choice of *ether'* above, the relevant constraint on *ether'* in *BOpOkay* is satisfied by construction. At most one purse changes in COpOkay. Let us call this new purse value p. This gives ``` conAuthPurse'_0 = conAuthPurse_0 \oplus \{p\} conAuthPurse'_0 = conAuthPurse \oplus \{p\} [Rbc] conAuthPurse' = conAuthPurse \oplus \{p\} [choice of conAuthPurse'] ``` This satisfies the constraint on *conAuthPurse'* in *BOpOkay* (where at most one purse changes in an identical manner to *COpOkay*). archive' is a function of archive and m!, defined in BOpOkay. Call this function f: ``` f: Logbook \times MESSAGE \rightarrow Logbook ``` 28.3. CORRECTNESS OF A BRANCH OF THE OPERATION Because COpOkay is defined in an analogous way, f also relates $archive_0'$ to $archive_0$ and m!. From the hypothesis we have COpOkay and Rbc, and with our choice of archive' we have, respectively ``` archive'_0 = f(archive_0, m!) \land archive = archive_0 \land archive' = archive'_0 ``` Substituting the latter two equations into the first gives the predicate in *BOp-Okay*. Thus, the *BOpOkay* constraints on all the components of our chosen *Between-World'* are satisfied under the correctness hypothesis and choice of *Between-World'*. **28.3.2** #### 28.3.3 Case *Rbc'* Both the *conAuthPurse'* and *archive'* components of *BetweenWorld'* satisfy *Rbc'* from the choice of *BetweenWorld'*. All COpOkay operations constrain ether' as ``` ether'_0 \subseteq ether_0 \cup \{m!\} ``` either through ΦCOp , or explicitly in *CArchive*. Hence for *ether'* we have ``` ether' \\ = ether \cup \{m!\} & [choice of ether'] \\ \supseteq ether_0 \cup \{m!\} & [Rbc] \\ \supseteq ether'_0 & [COpOkay] ``` This satisfies the constraint on *ether'* in *Rbc'*. # 28.4. CORRECTNESS OF CINCREASE 28.4 Correctness of Cincrease CIncrease does not change status or pdAuth, does not log, and no relevant message is emitted to the ether, so lemma 'constraint' (section C.6) is applicable. **28.4** ## 28.3.4 Case 'obey constraints' We know from the hypothesis that the before *BetweenWorld*
satisfies the constraints, so we need check only that the chosen message *m*!, and any change of purse state during the operation, maintains this constraint. ## **Lemma 28.1** (constraint) If an operation obeys the following properties, then it preserves the *BetweenWorld* constraints: • it does not change purse status or current transaction details (pdAuth) - it does not change allLogs - it does not change the payment detail messages, exception log read messages or exception log clear messages in the *ether* (either by not emitting such a message, or by emitting an already existing message) - no sequence number decreases (all concrete operations have the property, so it is automatically satisfied) _ #### Proof: The BetweenWorld constraints refer only to certain ether messages (req, val, ack, exceptionLogResult and exceptionLogClear), and relate their presence or absence to purse status (status, pdAuth and nextSeqNo) and allLogs. From the hypothesis we can invoke lemma 'logs unchanged' (section C.7) to say that, as allLogs does not change, not does allLogs. So operations that do not change the purse status, do not change allLogs, and do not emit any relevant new messages, will automatically preserve the constraints. #### **28.3.4** Even when lemma 'constraint' does not apply, we know from the form of the operation that at most one purse changes, and one message is emitted. As at most one purse changes, the proof that the *BetweenWorld* constraints are preserved need refer only to this purse; the constraints hold on the other purses before the operation by hypothesis, and so they hold afterward, too. #### 28.3.5 Summary of ConOkay proof obligation For each operation, we have to show that either lemma 'constraint' holds or that the choice of *BetweenWorld'* obeys the constraints (see section 5.3). #### 28.5 Correctness of CAhort Lemma 'constraint' is not applicable, because *CAbort* moves one purse into *eaFrom*, and it may not have been in this state before, and it may log a pending transaction. Therefore we have to show that our chosen *BetweenWorld'* obeys the constraints. One \perp message is emitted, and (possibly) one log is recorded. - B-1 $req \Rightarrow$ authentic to purse. No new req messages. - B-2 No future reqs. No new req messages. - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future *from* logs. The purse moves into *eaFrom*, possibly logging a transaction, and possibly increasing *nextSeqNo*. This does not invalidate this constraint for any previous logs. To create a new *from* log, the purse would have had to have been in *epa* (from *LogIfNecessary*). Hence, using *ConPurse* constraint P-??, we have ``` pdAuth.fromSeqNo < nextSeqNo ``` From AbortPurse, we also have nextSeqNo ≤ nextSeqNo' This gives pdAuth.fromSeqNo < nextSeqNo' The *pdAuth* is logged when the pre-state purse is in *epa*, and thus the new log obeys the constraint. B-6 No future *to* logs. The purse moves into *eaFrom*, possibly logging a transaction, and possibly increasing *nextSeqNo*. This does not invalidate this constraint for any previous logs. To create a new *to* log, the purse would 185 pdAuth.toSeqNo < nextSeqNo From AbortPurse, we also have nextSeqNo ≤ nextSeqNo' This gives pdAuth.toSeqNo < nextSeqNo' The pdAuth is logged when the pre-state purse is in epv, and thus the new log obeys the constraint. - B-7 *from* in {*epr*, *epa*}, so no future *from* logs. The purse moves into *eaFrom*, so no new purses in *epr* or *epa*. - B-8 *to* in {*epv*, *eaTo*}, so no future *to* logs. The purse moves into *eaFrom*, so no new purses in *epv* or *eaTo*. - B-9 $epr \Rightarrow \neg val \land \neg ack$. The purse moves into eaFrom, and so does not move into epr. - B-10 $reg \land \neg ack \Leftrightarrow toInEpv \lor toLogged$. - case ⇒: No new *req* messages; no *ack* messages removed from the *ether*. The purse may have moved out of *epv*, but in such a case *LogIf Necessary* says that it logs, hence re-establishing the condition. case ←: No purses newly in *epv*. There might be a new *to* log, in which case we must show there was a *req*, but no *ack* before. A *to* log can be made only by a purse moving out of *epv*. Then the *BetweenWorld* constraint B-10, on *toInEpv*, before the operation gives us the required *req* and lack of *ack*. B-11 $epv \land val \Rightarrow from InEpa \lor from Logged$. No purses newly in epv; no new val messages. The purse may have moved out of *epa*. But in such a case *LogIfNecessary* says that it logs, hence re-establishing the condition. B-12 $fromInEpa \lor fromLogged \Rightarrow req$. No purses newly in epa. There might be a new *from* log, in which case we must show there was a *req* before. A *from* log can be made only by a purse moving out of - *epa*. Then the *BetweenWorld* constraint B-12, on *fromInEpa*, before the operation gives us the required *req*. - B-13 toLogged finite. At most one to log written, so finite before gives finite after - B-14 exceptionLogResults in allLogs. No new exception log result messages. - $B\mbox{-}15\,$ Cleared logs archived. No $\it exception Log Clear$ messages are added, and the archive is unchanged. - B-16 $\ req$ for each log. If there are no new logs, then the constraint holds from the pre-state. If a transaction exception is logged, then the purse status must have been either epv or epa. From constraints B-10 and B-12, there was a req in the pre-state ether for the transaction which was logged. This req will also be in the post-state ether. **28.5** #### 28.6 Lemma 'logs unchanged' 28.6. LEMMA 'LOGS UNCHANGED' **Lemma 28.2** (logs unchanged) When the *archive* and the individual purse logs do not change, and when no new *req* messages are added to the *ether*, the set of *PayDetails* representing all the logs does not change either. #### Proof: ``` allLogs = archive \cup { n : dom conAuthPurse; ld : PayDetails | ld \in (conAuthPurse n).exLog [defn] = archive' \cup { n : dom conAuthPurse'; ld : PayDetails | ld \in (conAuthPurse' n).exLog \} [assumption and \Phi BOp] = allLogs' [defn] allLogs = \{ n : dom conAuthPurse; pd : PayDetails | \} n \mapsto pd \in allLogs \land reg pd \in ether \} [defn] = { n : dom conAuthPurse'; pd : PayDetails | n \mapsto pd \in allLogs' \land req pd \in ether' [assumption and above] = allLogs' [defn] ``` The arguments for *toLogged* and *fromLogged* follow in exactly the same way. \blacksquare 28.6 #### 28.7 Lemma 'abort forward': operations that first abort Some concrete operations are written as a composition of *Abort* and a simpler operation starting from *eaFrom* (*StartFrom*, *StartTo*, *ReadExceptionLog*, *Clear-ExceptionLog*, etc.). **Lemma 28.3** (abort forward) Where a C operation is written as a composition of CAbort and a simpler operation starting from eaFrom, and the corresponding $\mathcal B$ operation is structured analogously, it is sufficient to prove that the simpler C operation refines the corresponding $\mathcal B$ operation. ``` (CAbort \ COpEafrom); Rbc; (\forall COpEafrom; Rbc \bullet \exists BetweenWorld' \bullet Rbc' \land BOpEafrom) \vdash \exists BetweenWorld' \bullet Rbc' \land (Abort \ BOpEafrom) ``` $28.7. \ \ LEMMA\ 'ABORT\ FORWARD': OPERATIONS\ THAT\ FIRST\ ABORT$ **Proof** We have already proved in section 28.5 that *CAbort* refines *Abort*. Adding this to our hypothesis, we get The hypothesis is now in precisely the form required to use lemma 'compose forward', (section C.10) and we do so to prove the consequent. **28.7** #### Chapter 29 ## **Correctness proofs** #### 29.1 Introduction Many of the following arguments are about constraints of the form antecedent ⇒ consequent The correctness arguments are of three kinds: - B-1 Argue that the operation leaves the truth values of both antecedent and consequent unaltered, so that the truth before the operation establishes the truth afterwards. - B-2 The operation might make the antecedent true after when it was false before, by adding a new message to a set, or moving a purse into a set. In this case it is necessary to show that the consequent is true after. - B-3 The operation might make the consequent false after when it was true before, by moving a purse out of a set. In this case it is necessary to show that the antecedent is false after. Note that we do not need to argue that a constraint cannot be changed by *removing* a message: messages stay in the *ether* once there. #### 29.2 Correctness of CStartFrom StartFromOkay comprises AbortPurse followed by StartFromEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of StartFromEafromPurseOkay. Lemma 'constraint' is not applicable, because StartFromEafromPurseOkay changes status: it moves the purse from eaFrom into epr. Therefore we have to show that our chosen BetweenWorld' obeys the constraints. One \perp message is emitted, and no logs are recorded. We can invoke lemma 'logs unchanged', section C.7, because no new req messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLogs, fromLogged and toLogged remain unchanged. - B-1 $req \Rightarrow$ authentic to purse. No new req messages. - B-2 No future *reqs*. No new *req* messages. - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future *from* logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\} \Rightarrow$ no future from logs. There are no new logs, but the purse moves into epr, so we must prove that the constraint for this purse holds (for all other purses in epr. the constraint holds beforehand, and so holds afterwards). In StartFrom, the post-state pdAuth'.fromSeqNo is equal to pre-state *nextSeqNo*. Coupling this with constraint B-5 we have ``` \forall pd: fromLogged | pd.from = name? • pd.fromSeaNo < (conAuthPurse' pd.from).pdAuth.fromSeaNo ``` Since the
logs don't change we have ``` \forall pd: fromLogaed' | pd.from = name? • pd.fromSeqNo < (conAuthPurse' pd.from).pdAuth.fromSeqNo ``` which proves the constraint for purse name?. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No new logs, and the purse moves - B-9 $epr \Rightarrow \neg val \land \neg ack$. The purse moves into epr, so it is necessary to show there was no val or ack before. The pd we are considering is given by ``` pd == (conAuthPurse' name?).pdAuth ``` Noting that pd.from = name?, the definition of StartFrom then gives us that ``` (conAuthPurse name?).nextSeqNo = (conAuthPurse' name?).pdAuth.fromSeqNo ``` ⇒ (conAuthPurse pd.from).nextSeqNo = pd.fromSeqNo ∧ ack pd ∉ ether [BetweenWorld constraint B-3] [BetweenWorld constraint B-4] B-10 $reg \land \neg ack \Leftrightarrow toInEpv \lor toLogged$. ⇒ val vd € ether 29.3. CORRECTNESS OF CSTARTTO case ⇒: No new *req* messages. The purse moved from *eaFrom* to *epr* without generating new logs. Hence, true before implies true after. No purses newly in *epv* and no new logs. No *ack*s added to the *ether*. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. No purses newly in epv; no new *val* messages. The purse did not move out of *epa*. - B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs. - B-13 toLogged finite. No new logs. - B-14 exceptionLogResults in allLogs. No new log result messages. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. - **29.2** #### 29.3 Correctness of CStartTo StartToOkay is composed of AbortPurse followed by StartToEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of StartToEafromPurseOkay. Lemma 'constraint' is not applicable, because StartToEafromPurseOkay moves one purse into epv, and it was not in this state before. Therefore we have to show that our chosen BetweenWorld' obeys the constraints. One rea message is emitted, and no new logs are recorded. We cannot invoke lemma 'logs unchanged' because we do have a new req message, but constraint B-16 gives us the same result. This is not a circular argument. - B-2 No future *reqs*. *StartToPurseEafromOkay* emits one *req* message, which has its *nextSeqNo* in it by construction. It also increases *nextSeqNo*. The *req* message meets the constraints because the referenced *to* purse (itself) has a larger *nextSeqNo* after the operation. - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future *from* logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\}$ \Rightarrow no future from logs. There are no new logs and the purse moves into epv, so this constraint does not apply to this purse. - B-8 *to* in $\{epv, eaTo\} \Rightarrow$ no future *to* logs. There are no new logs, but the purse moves into epv, so we must prove that the constraint for this purse holds (for all other purses in epv, the constraint holds beforehand, and so holds afterwards). In *StartTo*, the post-state pdAuth'. *toSeqNo* is equal to pre-state nextSeqNo. Coupling this with constraint B-6 we have ``` \forall pd: toLogged | pd.to = name? • pd.toSeqNo < (conAuthPurse' pd.to).pdAuth.toSeqNo ``` Since the logs don't change, we have ``` ∀ pd: toLogged' | pd.to = name? • pd.toSeaNo < (conAuthPurse' pd.to).pdAuth.toSeaNo ``` which proves the constraint for purse *name*?. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr; no new vals or acks. - B-10 $req \land \neg ack \Leftrightarrow toInEpv \lor toLogged$. We claim that there is a new req for which there is no ack in the ether, and the purse moves into epv. As a result, we prove the consequent for each implication direction. - case ⇒: We must prove $toInEpv \lor toLogged$. The purse moves into epv, thus establishing the consequent. case ⇐: The purse moves into epv, so we must show that there is a req, but no ack, for the purse's pdAuth'. From StartTo, we have m! = req pdAuth', so the req is in the ether. It is then necessary to show there is no ack before. The pd we are considering is given by ``` pd = = (conAuthPurse' name?).pdAuth ``` 29.3. CORRECTNESS OF CSTARTTO Noting that pd.to = name?, the definition of *StartTo* gives us that ``` \label{eq:conAuthPurse name?} (conAuthPurse name?).nextSeqNo \\ = (conAuthPurse' name?).pdAuth.toSeqNo \\ \Rightarrow (conAuthPurse pd.to).nextSeqNo = pd.toSeqNo \\ \Rightarrow ack pd \notin ether \qquad [BetweenWorld constraint B-4] ``` Hence, we have the corresponding *req* but no *ack*. B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. To prove this constraint, we demonstrate that the antecedent is false: the purse moves into epv, so we must show that there is no val before. The pd we are considering is given by ``` pd == (conAuthPurse' name?).pdAuth ``` Noting that pd.to = name?, the definition of StartTo gives us that ``` (conAuthPurse name?).nextSeqNo = (conAuthPurse' name?).pdAuth.toSeqNo ⇒ (conAuthPurse pd.to).nextSeqNo = pd.toSeqNo ⇒ val pd ∉ ether [BetweenWorld constraint B-3] ``` Hence, there is no *val* before, and no *val* is emitted by this operation. - B-12 *fromInEpa* \lor *fromLogged* \Rightarrow *req*. No purses newly in *epa*; no new logs. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. No new log result messages. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. **29.3** 196 Lemma 'constraint' is not applicable, because a purse moves from *epr* to *epa* and emits a *val* message. Therefore we have to show that our chosen *Between-World'* obeys the constraints. We can invoke lemma 'logs unchanged', section C.7, because no new *req* messages are produced, no new purse logs are produced, and the *archive* does not change. Therefore, the sets *allLogs*, *fromLogged* and *toLogged* remain unchanged. - B-1 $reg \Rightarrow$ authentic to purse. No new reg messages. - B-2 No future reas. No new rea messages. - B-3 No future *vals*. *Req* puts a *val* in the *ether'*. Let *pd* be the pay details of the *val*. Hence, ``` pd == (conAuthPurse name?).pdAuth m? = req pd m! = val pd ``` To show that the new *val* message upholds this constraint, we have to demonstrate that this is not a future message with respect to purse *name*?: ``` pd.toSeqNo < (conAuthPurse' pd.to).nextSeqNo pd.fromSeqNo < (conAuthPurse' pd.from).nextSeqNo ``` Since *req pd* is in the ether, from B-2 we can then satisfy the requirement for the *to* sequence number. Since the pre-state *status* was *epr*, using purse constraint P-2c we know that ``` pd.fromSeqNo < nextSeqNo ``` Since *Rea* does not alter *nextSeqNo*, we thus have ``` pd.fromSeqNo < (conAuthPurse' pd.from).nextSeqNo ``` - B-4 No future acks. No new ack messages. - B-5 No future from logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in {epr, epa} ⇒ no future from logs. No new logs. The from purse moves from epr into epa. BetweenWorld constraint B-7 held on epr. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No new logs; no purses newly in epv or eaTo. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr; no new acks. We need to show the emitted val does not have the same pd as the stored pdAuth of any purse currently in epr. It has the same pd as the pdAuth stored in the purse from which it was emitted, which moved from epr and is now in epa. No other purse can also have this pdAuth, because pdAuth includes the name of the purse (ConPurse constraint P-2a), and purse names are unique. - B-10 $rea \land \neg ack \Leftrightarrow toInEpv \lor toLogaed$. 29.5. CORRECTNESS OF CVAL - case ⇒: No new req or ack messages. - case ←: No purses newly in *epv*; no new logs. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. The from purse emits a val. It also moves into epa, thereby establishing the constraint. - B-12 $fromInEpa \lor fromLogged \Rightarrow req$. The purse moves into epa. The operation precondition gives the presence of the required req. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. No new log result messages. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. - **29.4** #### 29.5 Correctness of CVal Lemma 'constraint' is not applicable, because a purse moves from *epv* to *ea-Payee* and emits an *ack* message. Therefore we have to show that our chosen *BetweenWorld'* obeys the constraints. We can invoke lemma 'logs unchanged', section C.7, because no new *req* messages are produced, no new purse logs are produced, and the *archive* does not change. Therefore, the sets *allLogs*, *fromLogged* and *toLogged* remain unchanged. - B-1 $req \Rightarrow$ authentic *to* purse. No new req messages. - B-2 No future reas. Val emits no new rea messages. - B-3 No future vals. Val emits no new val messages. - B-4 No future acks. ValOkay puts an ack in the ether', but it has the same pd as the val read from the ether, which obeys BetweenWorld constraint B-3. So the *ack*'s *pd* obeys the constraint. - B-5 No future *from* logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\} \Rightarrow$ no future from logs. No new logs; no purses newly in epr or epa. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No new logs. The to purse moves from epv into eaTo. BetweenWorld constraint B-8 held on epv. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr. We need to show the emitted ack does not have the same pd as any purse currently in epr. It has the same pd as the val message, and so BetweenWorld constraint B-9 on val gives us the required condition. - B-10 $reg \land \neg ack
\Leftrightarrow toInEpv \lor toLogged$. - case ⇒: ValOkay emits an ack, making the antecedent false. - case ←: From lemma 'notLoggedAndIn', section C.12, the purse cannot be in toLogged. ValOkav moves the purse out of epv without logging, making the antecedent false. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. No purses newly in epv; no new *val* messages; no purses leaving *epa*, no changing logs. - B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. No new log result messages. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. - **29.5** #### 29.6 Correctness of CAck Lemma 'constraint' is not applicable, because a purse moves from epa to ea-Payer. Therefore we have to show that our chosen BetweenWorld' obeys the constraints. It emits a \perp message. We can invoke lemma 'logs unchanged', section C.7, because no new req messages are produced, no new purse logs are produced, and the archive does not change. Therefore, the sets allLoas, fromLoaged and toLogged remain unchanged. - B-1 $req \Rightarrow$ authentic to purse. No new req messages. - B-2 No future reqs. No new req messages. 29.6. CORRECTNESS OF CACK - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future from logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\} \Rightarrow$ no future from logs. No purses newly in epr or epa. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr; no new vals or acks. - B-10 $rea \land \neg ack \Leftrightarrow toInEpv \lor toLogaed$. - case ⇒: No new reqs; no new acks; no purses moving out of epv, no - case ←: No purses newly in epv; no new logs. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. No purses newly in epv; no new The purse moves out of *epa* without logging, so we need to show that the antecedent is false for this purse. It is sufficient to show the antecedent is false before the operation (since the operation does not change it). There is an ack message, AckOkay's input, so BetweenWorld constraint B-10 gives us $pd \notin toInEpv$. - B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. No new log result messages. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. - **29.6** #### 29.7 Correctness of CReadExceptionLog ReadExceptionLogOkay is composed of AbortPurse followed by ReadException-LogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of ReadException-LogEafromPurseOkay. This operation does not change any purse, but it does emit an *exception-LogResult* message. As a result, lemma 'constraint' is not applicable. We can invoke lemma 'logs unchanged', section C.7, because no new *req* messages are produced, no new purse logs are produced, and the *archive* does not change. Therefore, the sets *allLogs*, *fromLogged* and *toLogged* remain unchanged. - B-1 $req \Rightarrow$ authentic to purse. No new req messages. - B-2 No future reqs. No new req messages. - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future from logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\} \Rightarrow$ no future from logs. No purses newly in epr or epa. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr; no new vals or acks. - B-10 $req \land \neg ack \Leftrightarrow toInEpv \lor toLogged$. - case ⇒: No new reqs; no new acks; no purses moving out of epv, no logs lost. - case ←: No purses newly in *epv*; no new logs. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. No purses newly in epv; no new vals; no purse moves out of epa; no logs lost. - B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. There may be a new *exceptionLogResult* message. If this is so, then we must show that this refers to a stored exception log record. From *ReadExceptionLogPurseEafrom-Okay*, we have - $m! \in \{\bot\} \cup \{ld : exLog' \bullet exceptionLogResult(name, ld)\}$ Hence, if there is an *exceptionLogResult* message, it refers to an exception record which is in the log of purse *name*?, and so is in *allLogs'*. This upholds the constraint. - B-15 Cleared logs archived. No new exceptionLogClear messages. - B-16 reg for each log. No new elements added to fromLogged or toLogged. **29.7** #### 29.8 Correctness of CClearExceptionLog ClearExceptionLogOkay is composed of AbortPurse followed by ClearException-LogEafromPurseOkay at the unpromoted level. As a result, we can apply lemma 'abort forward' (section C.8), leaving us to prove the correctness of ClearException-LogEafromPurseOkay. The operation changes only one purse, and emits a \perp message. The only change to the purse is that its exception log is cleared. However, we have the pre-condition that the input message matches the the exception log (exLog). The input message comes from the ether, and hence from constraint B-15 we know that the purse's exception log must have already been recorded in the archive. In this way, clearing the purse's log does not affect allLogs. So lemma 'constraint' (section C.6) is applicable. **29.8** #### 29.9 Correctness of CAuthoriseExLogClear Lemma 'constraint' is not applicable, because an *exceptionLogClear* message is emitted to the ether. So, we must show that the constraints hold afterwards. No purses are changed. We can invoke lemma 'logs unchanged', section C.7, because no new *req* messages are produced, no new purse logs are produced, and the *archive* does not change. Therefore, the sets *allLogs*, *fromLogged* and *toLogged* remain unchanged. - B-1 $req \Rightarrow$ authentic to purse. No new req messages. - B-2 No future reas. No new rea messages. - B-3 No future vals. No new val messages. - B-4 No future acks. No new ack messages. - B-5 No future from logs. No new logs. - B-6 No future to logs. No new logs. - B-7 from in $\{epr, epa\} \Rightarrow$ no future from logs. No purses newly in epr or epa. - B-8 to in $\{epv, eaTo\} \Rightarrow$ no future to logs. No purses newly in epv or eaTo. - B-9 $epr \Rightarrow \neg val \land \neg ack$. No purses newly in epr; no new vals or acks. - B-10 $req \land \neg ack \Leftrightarrow toInEpv \lor toLogged$. - case ⇒: No new reqs; no new acks; no purses moving out of epv; no logs lost. - case ←: No purses newly in *epv*; no new logs. - B-11 $epv \land val \Rightarrow fromInEpa \lor fromLogged$. No purses newly in epv; no new vals; no purse moves out of epa; no logs lost. - B-12 fromInEpa \vee fromLogged \Rightarrow req. No purses newly in epa; no new logs. - B-13 toLogged finite. No new logs. - B-14 Read exception record messages are logged. No new exception log read messages. - B-15 Cleared logs archived. There is a new *exceptionLogClear* message. However, the operation contains the pre-condition that the log records for which the message is generated must be in the archive. Hence, the constraint is upheld. - B-16 req for each log. No new elements added to fromLogged or toLogged. #### 29.10 Correctness of CArchive This operation archives the contents of some of the *exceptionLogResult* messages in the ether. It does not change any purse, or change the ether. From B-14, we know that those exception records referred to by the *exceptionLogResult* messages are already in *allLogs*. As a result, adding them to *archive* does not change *allLogs*. This operation does not change any purse, and does not emit a payment details message. So lemma 'constraint' is applicable. - **29.10** - **2**9 #### Chapter 30 ## **Summary** The proofs presented in this report constitute a proof that the architectural design given by the $\mathcal C$ model is *secure* with respect to the security properties as described in the Formal Security Policy Model (the $\mathcal A$ model) and the Security Properties. We have presented the proofs in a logical sequence, but even so, it can be hard to be sure that no steps have been missed. The following table gives a hierarchical view of the proof, showing at each level how a proof goal is satisfied by a number of subgoals. Each line in the table is one proof goal, together with a section reference for where that proof goal is addressed. If the proof goal has child goals (goals one level of indent deeper) then the section reference explains how it is that the goal can be satisfied by its collection of subgoals. For example, goal 1.4 (AbTransfer upholds properties) is proved by proving three subgoals: 1.4.1 (SP 1), 1.4.2 (SP 2.1) and 1.4.3 (SP 6.2). The reference for goal 1.4 is to section 2.4, where it is argued that we have only to prove the three SPs 1, 2.1 and 6.2 because all other SPs can be proved trivially. If a goal has no further subgoals, its section reference is the proof of this goal directly. It can be seen that all proof goals have section references, and all steps have been addressed. 204 CHAPTER 30. SUMMARY | System secure | by definition | |--|---------------| | Abstract preserves security properties | by definition | | 1.1. AbIgnore upholds properties | 2.4 | | 1.2. AbTransfer upholds properties | 2.4 | | 1.2.1. SP 1 | 2.4 | | 1.2.1.1. Okay | 2.4.1 | | 1.2.1.2. Lost | 2.4.3 | |
1.2.2. SP 2.1 | 2.4 | | 1.2.2.1. Okay | 2.4.2 | | 1.2.2.2. Lost | 2.4.4 | | 2. Concrete preserves security properties | by definition | | 2.1. Each concrete operation upholds proper- | 2.4 | | ties | | | 3. Abstract operations are total | 8.2.2 | | 4. A is refined by B | by definition | | 4.1. Init | by definition | | 4.1.1. state initialisation | 11.2 | | 4.1.2. input initialisation | 11.3 | | 4.2. Applicability | 9.2.3 | | 4.2.1. $pre AOp = true$ | 8.2.2 | | 4.2.2. simpler applicability | by definition | | 4.2.2.1. pre BOp = true | 8.3.2 | | 4.3. Correctness | 9.2.4 | | 4.3.1. $pre AOp = true$ | 8.2.2 | | 4.3.2. simpler correctness | by definition | | 4.3.2.1. AbTransfer | 9 and 14.3 | | 4.3.2.1.1. Ignore | 14.7 | | 4.3.2.1.2. Okay and Lost | C.1 | | 4.3.2.1.2.1. exists-pd | 18.4 | | 4.3.2.1.2.2. exists-chosenLost | 18.5 | | 4.3.2.1.2.3. check-operation | 18.6 | | 4.3.2.2. AbIgnore | 9 and 14.2 | | 4.3.2.2.1. StartFrom | 14.3 | | 4.3.2.2.1.1. Ignore | 14.7 | | 4.3.2.2.1.2. Abort | 14.8 | | 4.3.2.2.1.3. Okay | C.5 | | 4.3.2.2.1.3.1. Abort | 14.8 | | | | | 4.3.2.2.1.3.2. EaPayer operation | C.1 | |---|--------------| | 4.3.2.2.1.3.2.1. exists-pd | 16.4 | | 4.3.2.2.1.3.2.2. exists-chosenLost | 16.5 | | 4.3.2.2.1.3.2.3. check-operation | C.3 | | 4.3.2.2.1.3.2.3.1. check-operation-ignore | 16.6 | | 4.3.2.2.2. StartTo | 14.3 | | 4.3.2.2.2.1. Ignore | 14.7 | | 4.3.2.2.2. Abort | 14.8 | | 4.3.2.2.3. Okay | C.5 | | 4.3.2.2.3.1. Abort | 14.8 | | 4.3.2.2.3.2. EaPayer operation | C.1 | | 4.3.2.2.3.2.1. exists-pd | 17.4 | | 4.3.2.2.3.2.2. exists-chosenLost | 17.5 | | 4.3.2.2.3.2.3. check-operation | C.3 | | 4.3.2.2.3.3.1. check-operation-ignore | 17.6 | | 4.3.2.2.3. Val | 14.3 | | 4.3.2.2.3.1. Ignore | 14.7 | | 4.3.2.2.3.2. Okay | C.1 and 19.2 | | 4.3.2.2.3.2.1. exists-pd | 19.3 | | 4.3.2.2.3.2.2 exists-chosenLost | 19.4 | | 4.3.2.2.3.2.3. check-operation | C.3 | | 4.3.2.2.3.2.3.1. check-operation-ignore | 19.5 and on | | 4.3.2.2.4. Ack | 14.3 | | 4.3.2.2.4.1. Ignore | 14.7 | | 4.3.2.2.4.2. Okay | C.1 and 20.2 | | 4.3.2.2.4.2.1. exists-pd | 20.3 | | 4.3.2.2.4.2.2 exists-chosenLost | 20.4 | | 4.3.2.2.4.2.3. check-operation | C.3 | | 4.3.2.2.4.2.3.1. check-operation-ignore | 20.5 and on | 205 206 CHAPTER 30. SUMMARY 207 | 4.3.2.2.5. ReadExceptionLog | 14.3 | |---|------------------------| | 4.3.2.2.5.1. Ignore | 14.7 | | 4.3.2.2.5.2. Okay | C.5 | | 4.3.2.2.5.2.1. Abort | 14.8 | | 4.3.2.2.5.2.2. EaPayer operation | C.1 and 21 | | 4.3.2.2.5.2.2.1. lemma lost unchanged | C.2 | | 4.3.2.2.5.2.2. check-operation | C.3 | | 4.3.2.2.5.2.2.1. check-operation-ignore | 21.3 | | 4.3.2.2.6. ClearExceptionLog | 14.3 | | 4.3.2.2.6.1. Ignore | 14.7 | | 4.3.2.2.6.2. Abort | 14.8 | | 4.3.2.2.6.3. Okay | C.5 | | 4.3.2.2.6.3.1. Abort | 14.8 | | 4.3.2.2.6.3.2. EaPayer operation | C.1 and 22 | | 4.3.2.2.6.3.2.1. lemma lost unchanged | C.2 | | 4.3.2.2.6.3.2.2. check-operation | C.3 | | 4.3.2.2.6.3.2.2.1. check-operation-ignore | 22.3 | | 4.3.2.2.7. AuthoriseExLogClear | 14.3 | | 4.3.2.2.7.1. Ignore | 14.7 | | 4.3.2.2.7.2. Okay | 23.2 | | 4.3.2.2.8. Archive | 24.2 | | 4.3.2.2.9. Ignore | 14.7 | | 4.3.2.2.10. Increase | 15.3 | | 4.3.2.2.11. Abort | 14.8 | | 4.4. Finalisation | by definition | | 4.4.1. output finalisation | 12.2 | | 4.4.2. state finalisation | 12.3 | | 5. B is refined by C | established rules 25.2 | | 5.1. Init | 27.1 | | 5.2. Applicability | 27.3 | | 5.2.1. pre COp = true | 8.4.2 | | 5.3. Correctness | 25.2.5 | | 5.3.1. Simpler correctness | 25 | | 5.3.1.1. StartTo is refined | 28.1 | | 5.3.1.1.1. Okay branch | 29.3 and C.10 | | 5.3.1.1.1.1. Eafrom branch | 29.3 | | 5.3.1.1.1.2. Abort branch | 28.5 | | | | | 5.3.1.1.2. CIgnore branch | 28.2 | |---|---------------| | 5.3.1.1.3. CAbort branch | 28.5 | | 5.3.1.2. StartFrom is refined | 28.1 | | 5.3.1.2.1. Okay branch | 29.2 and C.10 | | 5.3.1.2.1.1. Eafrom branch | 29.2 | | 5.3.1.2.1.2. Abort branch | 28.5 | | 5.3.1.2.2. CIgnore branch | 28.2 | | 5.3.1.2.3. CAbort branch | 28.5 | | 5.3.1.3. Req is refined | 28.1 | | 5.3.1.3.1. Okay branch | 29.4 | | 5.3.1.3.2. CIgnore branch | 28.2 | | 5.3.1.4. Val is refined | 28.1 | | 5.3.1.4.1. Okay branch | 29.5 | | 5.3.1.4.2. CIgnore branch | 28.2 | | 5.3.1.5. Ack is refined | 28.1 | | 5.3.1.5.1. Okay branch | 29.6 | | 5.3.1.5.2. CIgnore branch | 28.2 | | 5.3.1.6. ReadExceptionLog is refined | 28.1 | | 5.3.1.6.1. Okay branch | 29.7 and C.10 | | 5.3.1.6.1.1. Eafrom branch | 29.7 | | 5.3.1.6.1.2. Abort branch | 28.5 | | 5.3.1.6.2. CIgnore branch | 28.2 | | 5.3.1.7. ClearExceptionLog is refined | 28.1 | | 5.3.1.7.1. Okay branch | 29.8 and C.10 | | 5.3.1.7.1.1. Eafrom branch | 29.8 | | 5.3.1.7.1.2. Abort branch | 28.5 | | 5.3.1.7.2. CIgnore branch | 28.2 | | 5.3.1.7.3. CAbort branch | 28.5 | | 5.3.1.8. AuthoriseExLogClear is refined | 28.1 | | 5.3.1.8.1. Okay branch | 29.9 | | 5.3.1.8.2. CIgnore branch | 28.2 | | 5.3.1.9. Archive is refined | 29.10 | | 5.3.2. Totality of BOp | 8.3.2 | | 5.4. Finalisation | 27.2 | | | | # Part IV # Appendices ## Appendix A ## **Proof Layout** ## A.1 Notation The notation $$Abs \sqsubseteq Conc$$ says the the *Abs* operation is refined by the *Conc* operation. In order to prove that *Abs* is indeed validly refined by *Conc*, we need to prove various 'correctness conditions', expressed as theorems (section 9). That the predicate $$\forall D \mid P \bullet Q$$ is always true is expressed as the theorem $$\vdash \forall D \mid P \bullet Q$$ which is equivalent to $$D \mid P \vdash Q$$ This can be read as a theorem that states that, under hypothesis $D \mid P$ (declarations D constrained by predicates P), consequent Q (a predicate) has been proved to hold. $D \mid P$ is usually written as a schema text, and Q may be written using a schema as predicate. ## A.2 Labelling proof steps In labelling various steps of the proofs below, we use the following notation. - [hyp]: from the hypothesis of the theorem - [prop *x*]: from a property of the Z operator *x* - [name]: use of inference rule name ## Appendix B ## Inference rules The proofs presented are rigorous, but informal, in that they have not been checked by a machine proof-checker. We present below the sort of inference rules we have used. Such explicit use of inference rules improves the readability of the proofs by showing exactly what steps of mathematical reasoning are being made. These inference rules are not intended as a definition of the logic being used, but as guidance about the reasoning steps. The inference rule $$\frac{P1 \quad P2 \quad \dots \quad Pn}{C} \quad [rulename]$$ says that conclusion $\mathcal C$ can be inferred if every premiss Pi can be proved. (The rule name is used for labelling proof steps.) The inference rule $$\frac{P1, P2, \dots, Pn}{C} \quad [rulename]$$ says that conclusion *C* can be inferred if any premiss *Pi* can be proved. ## **B.1** Universal quantifier becomes hypothesis $$\frac{S \vdash P}{\vdash \forall S \bullet P} \quad [uni hyp]$$ ### **B.2** Disjunction in the hypothesis Given an hypothesis containing a disjunct, it is sufficient to prove the theorem for each case. $$\frac{R \vdash P \quad S \vdash P}{R \lor S \vdash P} \quad [hyp disj]$$ ## **B.3** Disjunction in the consequent Given a consequent containing a disjunct, it is sufficient to prove the theorem for only one case (since this is a harder thing to prove). $$\frac{R \vdash P, R \vdash Q}{R \vdash P \lor Q} \quad [consq disj]$$ #### **B.4** Conjunction in the consequent Given a consequent containing a conjunct, it is sufficient to prove the theorem for each case separately. $$\frac{R \vdash P \quad R \vdash Q}{R \vdash P \land Q} \quad [consq conj]$$ We can add conjuncts to the consequent (since this is a harder thing to prove). $$\frac{R \vdash P \land Q}{R \vdash P} \quad [strengthen consq]$$ ### **B.5** Cut for lemmas Cut is a way to introduce new hypotheses, and discharge them as lemmas. $$R; D \mid Q \vdash P \quad R \vdash \exists D \bullet Q$$ $$R \vdash P$$ [cut] B.6. THIN 215 ### B.6 Thin We can remove assumptions. $$\frac{\vdash R}{P \vdash R} \quad [thin]$$ ### **B.7** Universal Quantification Universals can be replaced by a particular choice in the hypothesis $$\frac{x_1 \in X \Rightarrow P(x_1) \vdash R}{\forall x : X \bullet P(x) \vdash R} \quad [hyp uni]$$ ## **B.8** Negation In order to prove something, you can assume its negation. $$\frac{\neg P \vdash}{\vdash P} \quad [negation]$$ #### **B.9** Contradiction If R can be proved, assuming its negation allows you to prove anything (because *false* \Rightarrow *anything*). $$\frac{\vdash R}{\lnot R \vdash anything} \quad [contradiction]$$ ### **B.10** One Point Rule In order to prove there exists a value with a property, it is enough to exhibit such a value. $$\frac{ \vdash P[t/x]}{ \vdash \exists x \bullet P \land x = t} \quad [one point]$$ provided *x* is not free in *t*. ### **B.11** Derived Rules We find it useful to derive some compound rules. These make the proofs in the body of the document easier to follow, and can themselves be proved from the inference rules above. ### **B.11.1** One point cut $$P \vdash Q$$ $$P \vdash \exists P \bullet Q$$ [consq exists] and very similarly $$\frac{P \vdash Q}{P \vdash (\exists P) \land Q} \quad [\textit{consq exists}]$$ ## **B.11.2** Existential in the hypothesis $$\frac{x:X; \ D \mid P \vdash}{D \mid \exists x:X \bullet P \vdash} \quad [\ hyp \ exists]$$ ### **B.12** Proof of the Derived Rules We derive each of the derived rules above from the main inference rules. ### **B.12.1** Derivation of One point cut We can derive the first one-point cut rule ([$consq\ exists$]) as follows. First, we expand P into a declaration D and a predicate p. $$D \mid p \vdash \exists D \bullet p \land q$$ [starting point] $$D \mid p \vdash \exists D' \bullet p[D'/D] \land q[D'/D]$$ [rename bound declaration] $$D \mid p \vdash \exists D' \bullet
p[D'/D] \land q[D'/D] \land D' = D$$ [strengthen consequent] $$D \mid p \vdash p[D'/D][D/D'] \land q[D'/D][D/D']$$ [one point rule] $$D \mid p \vdash p \land q$$ [simplify renaming] $$D \mid p \vdash q$$ [discharge p from hyp] The second one point-cut rule follows exactly the same way, except that q is not bound by the existential, and so none of the renamings alters it. #### B.12. PROOF OF THE DERIVED RULES #### **B.12.2** Derivation of existential in the hypothesis $$\begin{array}{lll} D \mid (\exists x : X \bullet P) \vdash & & [\text{starting point}] \\ D; \ x : X \mid P \land (\exists x : X \bullet P) \vdash & D \mid (\exists x : X \bullet P) \vdash \exists x : X \bullet P \\ & [\text{cut in } x : X \mid P] \\ D; \ x : X \mid P \land (\exists x : X \bullet P) \vdash & [\text{discharge side lemma from hyp}] \\ D; \ x : X \mid P \vdash & [\text{thin}] \end{array}$$ 217 as required. ## Appendix C ## Lemmas and their proofs ## C.1 Lemma 'deterministic' **Lemma 1** (deterministic) The correctness proof for a general *Okay* branch consists of the following three proof obligations: 1 **exists-pd**: ``` \vdash \\ \exists \ pdThis : PayDetails \bullet \mathcal{P} exists-chosenLost: \Phi BOp; \ BOpPurseOkay; \ RabOut; \ RabClPd'[pdThis/pdThis']; \ RabIn \mid \\ \mathcal{P} \\ \vdash \\ \exists \ chosenLost : \mathbb{P} \ PayDetails \bullet \ \mathcal{Q} \land chosenLost \subseteq maybeLost check-operation: ``` # ΦΒΟρ; BOpPurseOkay; RabOut; RabClPd'[pdThis/pdThis']; ФВОр; ВОрРигseOkay; RabOut; RabCl'; RabIn ``` AbWorld; RabClPd; RabIn | \mathcal{P} \land \mathcal{Q} | \vdash AOp ``` $^{^1}$ Used in: lemma '*Abignore*', section 14.6; lemma '*Ignore*', section 14.7; lemma '*Abort* refines *Abignore*', section 14.8; used to simplify every $\mathcal{A}\text{-}\mathcal{B}$ operation proof. #### Proof: See section 14.4.5. ■ C.1 ## C.2 Lemma 'lost unchanged' **Lemma 2** (lost unchanged) For $BOp\Xi Lost$ operations, where we have that may-beLost' = maybeLost and definitelyLost' = definitelyLost, the proof obligations **exists-pd** and **exists-chosenLost** are satisfied automatically by the instantiation of the predicates \mathcal{P} and \mathcal{Q} as: 2 ``` P \Leftrightarrow true Q \Leftrightarrow chosenLost = chosenLost' ``` #### Proof: See section 14.5 ■ C.2 ## C.3 Lemma 'AbIgnore' Consider an operation *BOpIg* which refines *AbIgnore*. The operation should have the following properties. - *BOpIq* is a promoted operation, and thus alters only one concrete purse. - for any purse, the *name* is unchanged. - the domain of conAuthPurse is unchanged (by construction of the promotion) - for any purse, either nextSeqNo is unchanged, or increased. Where these properties hold for *BOpIg*, we can apply lemma *AbIgnore*. **Lemma 3** (*AbIgnore*) For a *BOpIg* operation, the **check-operation** proof obliga- ``` tion reduces to ^3 \Phi BOp; BOplgPurse; RabClPd'[pdThis/pdThis']; AbWorld; RabClPd | P \land Q \vdash \forall n: \text{dom } abAuthPurse \bullet \\ (abAuthPurse' n).lost = (abAuthPurse n).lost \\ \land (abAuthPurse' n).balance = (abAuthPurse n).balance ``` _ #### Proof: See section 14.6. ■ C.3 ### C.4 Lemma 'Abort refines AbIgnore' C.4. LEMMA 'ABORT REFINES ABIGNORE' Lemma 4 (Abort refines AbIgnore) Concrete Abort refines abstract AbIgnore.4 ``` Abort; Rab'; RabOut \vdash \exists AbWorld; a? : AIN \bullet Rab \land RabIn \land AbIgnore ``` ### Proof: See section 14.8. ■ C.4 #### C.5 Lemma 'abort backward' **Lemma 5** (abort backward) Where a concrete operation is written as a composition of *AbortPurseOkay* and a simpler operation starting from *eaFrom*, it is sufficient to prove that the promotion of the simpler operation alone refines ²Used in ExceptionLogEnquiry, chapter 21; ExceptionLogClear, chapter 22. ³Used in: 'Ignore', section 14.7; lemma 'Abort refines Ablgnore', section 14.8; used to simplify every A-B operation proof that refines Ablanore. ⁴Used in: lemma 'abort backward', section C.5 ``` the relevant abstract operation. ⁵ ``` ``` (\exists \Delta ConPurse \bullet \Phi BOp \land (AbortPurseOkay \ \ BOpPurseEafromOkay)); \\ Rab'; RabOut; \\ (\forall BOpEafromOkay; Rab'; RabOut \bullet \\ \exists AbWorld; \ a? : AIN \bullet Rab \land RabIn \land AOp) \\ \vdash \\ \exists AbWorld; \ a? : AIN \bullet Rab \land RabIn \land AOp ``` #### Proof: See section 14.9. ■ C.5 #### C.6 Lemma 'constraint' **Lemma 6** (constraint) If an operation does not change purse status and does not change the presence of payment detail messages in the ether (either by not emitting such a message, or by emitting an already existing message), then it preserves the *BetweenWorld* constraints. ⁶ ■ #### Proof: See section 28.3.4. ■ C.6 ### C.7 Lemma 'logs unchanged' **Lemma 7** (logs unchanged) When the *archive* and the individual purse logs do not change, and when no new *req* messages are added to the *ether*, the set of PayDetails representing all the logs does not change either. 7 ``` BOpOkay \mid archive' = archive \\ \land (ran req) \cap ether' = (ran req) \cap ether \bullet \\ \land \forall n : dom conAuthPurse \bullet \\ (conAuthPurse' n).exLog = (conAuthPurse n).exLog \vdash \\ allLogs' = allLogs \\ \land toLogged' = toLogged \\ \land fromLogged' = fromLogged ``` #### Proof: See section 28.6. ■ C.7 ### C.8 Lemma 'abort forward' C.8. LEMMA 'ABORT FORWARD' **Lemma 8** (abort forward) Where a C operation is written as a composition of CAbort and a simpler operation starting from eaFrom, and the corresponding \mathcal{B} operation is structured similarly, it is sufficient to prove that the simpler C operation refines corresponding \mathcal{B} operation 8 . ``` (CAbort \centsymbol{``gamma} COpEafrom); Rbc; \\ (\cont COpEafrom; Rbc \ \bullet \ \exists \ BetweenWorld' \ \bullet \ Rbc' \ \land \ BOpEafrom) \\ \vdash \\ \exists \ BetweenWorld' \ \bullet \ Rbc' \ \land \ (Abort \centsymbol{``gamma} BOpEafrom) ``` Proof: See section 28.7. ■ C.8 ⁵Used in: StartFrom, section 16; StartTo, section 17; ClearExceptionLog, section 22; ReadExceptionLog, section 21 ⁶Used in: *Increase*, section 28.4; *CClearExceptionLog*, section 29.8; *CArchive*, section 29.10. ⁷Used in: lemma 'constraint', section 28.3.4; *CStartFrom*, section 29.2; *CReq*, section 29.4; *CVal*, section 29.5; *CAck*, section 29.6; *CReadExceptionLog*, section 29.7; *CAuthoriseExLogClear*, section 29.0 ⁸Used in: CStartFrom, section 29.2; CStartTo, section 29.3; CReadExceptionLog, section 29.7; CClearExceptionLog, section 29.8. **Lemma C.1** (compose backward) If, under the backwards refinement rules, a concrete operation COp_1 is a refinement of abstract operation AOp_1 , and COp_2 is a refinement of AOp_2 , then their composition is a refinement of the abstract composition 9 . ``` \begin{array}{l} (COp_1\, {}^\circ_\circ\,COp_2);\; R';\; ROut;\\ (\;\forall\; COp_1;\; R';\; ROut \bullet (\;\exists\; A;\; AIn \bullet R \wedge RIn \wedge AOp_1\;)\;);\\ (\;\forall\; COp_2;\; R';\; ROut \bullet (\;\exists\; A;\; AIn \bullet R \wedge RIn \wedge AOp_2\;)\;)\\ \vdash \\ \exists\; A;\; AIn \bullet R \wedge RIn \wedge (AOp_1\, {}^\circ_\circ\,AOp_2) \end{array} ``` #### Proof: This result is reasonably self-evident, from the definition of refinement in terms of complete programs. We show that the particular form of the theorem holds here Without loss of generality, assume that the concrete and abstract state schemas have a single component, c and a respectively. (A multi-component state is isomorphic to a single component state consisting of all the multi-components bundled into a single schema or Cartesian product.) Expand the compositions, and rename the quantified variables in the hypothesis. ``` (\exists C_0 \bullet COp_1[c_0/c'] \land COp_2[c_0/c]); R'; ROut; (\forall COp_1[c_0/c']; R_0; ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp_1[a_0/a'])); (\forall COp_2[c_0/c]; R'; ROut \bullet (\exists A_0; AIn \bullet R_0 \land RIn \land AOp_2[a_0/a])) \vdash \exists A; AIn \bullet R \land RIn \land (\exists A_0 \bullet AOp_1[a_0/a'] \land AOp_2[a_0/a]) ``` Use [hyp exists] to drop the \exists in the hypothesis, then simplify. ``` COp_{1}[c_{0}/c']; COp_{2}[c_{0}/c]; R'; ROut; (\forall COp_{1}[c_{0}/c']; R_{0}; ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp_{1}[a_{0}/a'])); (\forall COp_{2}[c_{0}/c]; R'; ROut \bullet (\exists A_{0}; AIn \bullet R_{0} \land RIn \land AOp_{2}[a_{0}/a])) \vdash \exists A; AIn \bullet R \land RIn \land (\exists A_{0} \bullet AOp_{1}[a_{0}/a'] \land AOp_{2}[a_{0}/a]) ``` Use $D \wedge (\forall D \bullet P) \Rightarrow P$ to simplify the second universal quantifier in the hypothesis. ``` COp_1[c_0/c']; COp_2[c_0/c]; R'; ROut; (\forall COp_1[c_0/c']; R_0; ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp_1[a_0/a'])) \mid \exists A_0; AIn \bullet R_0 \land RIn \land AOp_2[a_0/a] \vdash \exists A; AIn \bullet R \land RIn \land (\exists A_0 \bullet AOp_1[a_0/a'] \land AOp_2[a_0/a]) ``` Use [hyp exists] to drop the \exists in the hypothesis, then simplify. C.10. LEMMA 'COMPOSE FORWARD' ``` COp_1[c_0/c']; COp_2[c_0/c]; R_0; R'; ROut; RIn; AOp_2[a_0/a]; (\forall COp_1[c_0/c']; R_0; ROut \bullet (\exists A; AIn \bullet R \land RIn \land AOp_1[a_0/a'])) \vdash \exists A; AIn \bullet R \land RIn \land (\exists A_0 \bullet AOp_1[a_0/a'] \land AOp_2[a_0/a]) ``` Repeat the previous three steps to simplify the remaining quantifier in the hypothesis. ``` COp_1[c_0/c']; COp_2[c_0/c]; R; R_0; R'; ROut; RIn; AOp_1[a_0/a']; AOp_2[a_0/a] \vdash \exists A; AIn \bullet R \land RIn \land (\exists A_0 \bullet AOp_1[a_0/a'] \land AOp_2[a_0/a]) ``` Move the inner \exists in the consequent outwards. ``` COp_1[c_0/c']; COp_2[c_0/c]; R; R_0; R'; ROut; RIn; AOp_1[a_0/a']; AOp_2[a_0/a] \vdash \exists A; A_0; AIn • R \land RIn \land AOp_1[a_0/a'] \land AOp_2[a_0/a] ``` All the terms are in the hypothesis. ■ C.9 ### C.10 Lemma 'compose forward' **Lemma C.2** (compose forward) If, under the forwards refinement rules, concrete operation COp_1
is a refinement of abstract operation AOp_1 , and COp_2 is a refinement of AOp_2 , then their composition is a refinement of the abstract ⁹Used in: lemma 'abort backward', section C.5. $\exists A' \bullet R' \land (AOp_1 \circ AOp_2)$ #### Proof Follows as for lemma 'compose backward', above. ■ C.10 ## C.11 Lemma 'promoted composition' **Lemma C.3** (promoted composition) The promotion of the composition of two operations is equal to the composition of the promotions of the two operations 11 Assume the existence of a local state *Local*, which, without loss of generality we assume has a single variable x; a global state *Global*, with a standard promotion framing schema, Φ ``` Local x: X Global locals: NAME \rightarrow Local \Phi \Delta Global <math display="block">\Delta Local n?: NAME n? \in dom locals locals n? = \theta Local ``` $locals' = locals \oplus \{n? \mapsto \theta Local'\}$ ``` \Phi; Op_1; Op_2 \\ \vdash \\ \exists \Delta Local \bullet \Phi \wedge (Op_1 \circ Op_2) \\ = (\exists \Delta Local \bullet \Phi \wedge Op_1) \circ (\exists \Delta Local \bullet \Phi \wedge Op_2) ``` C.11. LEMMA 'PROMOTED COMPOSITION' #### Proof: We prove this by expanding the definition of composition as an existential quantification, and then showing that this quantification and the quantification used in the promotion commute. Expand the composition on the right hand side, and then expand the definition of $\boldsymbol{\Phi}.$ ``` (\exists \Delta Local \bullet \Phi \land Op_1) \circ (\exists \Delta Local \bullet \Phi \land Op_2) = \exists Global_0 \bullet (\exists \Delta Local \bullet \Phi[locals_0/locals'] \land Op_1) \land (\exists \Delta Local \bullet \Phi[locals_0/locals] \land Op_2) = \exists Global_0 \bullet (\exists \Delta Local \bullet [locals; locals₀ : NAME \rightarrow Local | n? \in \text{dom } locals \wedge locals n? = \thetaLocal \land locals_0 = locals \oplus \{n? \mapsto \theta Local'\} \wedge Op_1) \wedge (\exists \Delta Local \bullet [locals₀; locals' : NAME → Local | n? \in \text{dom } locals_0 \wedge locals_0 n? = \theta Local \land locals' = locals_0 \oplus \{n? \mapsto \theta Local'\}] \wedge Op_2) ``` Rename the after state in the first operation to $Local_a$ and the before state in the second operation to $Local_b$. Choosing different names makes it easier to ¹⁰Used in: lemma 'abort forward', section 28.7. ¹¹Used in: lemma 'abort backward', section C.5 ``` =\exists \ Global_0 \bullet \\ (\exists \ Local; \ Local_a \bullet \\ [\ locals; \ locals_0 : NAME \rightarrow Local \ | \\ n? \in dom \ locals \\ \land \ locals \ n? = \theta Local \\ \land \ locals_0 = locals \oplus \{n? \mapsto \theta Local_a\} \] \\ \land \ Op_1[x_a/x']) \\ \land (\exists \ Local_b; \ Local' \bullet \\ [\ locals_0; \ locals' : NAME \rightarrow Local \ | \\ n? \in dom \ locals_0 \\ \land \ locals_0 \ n? = \theta Local_b \\ \land \ locals' = \ locals_0 \oplus \{n? \mapsto \theta Local'\} \] \\ \land \ Op_2[x_b/x]) ``` Combine all these as a single schema, putting the quantifications into the predicate. ``` = [\ locals; \ locals' : NAME \rightarrow Local \ | \\ \exists \ local_0; \ Local; \ Local'; \ Local_a; \ Local_b \bullet \\ n? \in \text{dom} \ locals \\ \land \ locals \ n? = \theta Local \\ \land \ locals_0 = locals \oplus \{n? \mapsto \theta Local_a\} \\ \land \ n? \in \text{dom} \ locals_0 \\ \land \ locals' = locals_0 \\ \land \ locals' = locals_0 \oplus \{n? \mapsto \theta Local'\} \\ \land \ Op_1[x_a/x'] \\ \land Op_2[x_b/x]] ``` We can remove the quantification of $local_0$ because we have a full definition of it in terms of other variables. This leaves the following equations relating the remaining variables. ``` = [locals; locals' : NAME \rightarrow Local | \\ \exists Local; Local'; Local_a; Local_b \bullet \\ n? \in dom locals \\ \land locals n? = \theta Local \\ \land \theta Local_b = \theta Local_a \\ \land locals' = locals \oplus \{n? \rightarrow \theta Local'\} \\ \land Op_1[x_a/x'] \\ \land Op_2[x_b/x]] ``` Using the equation that $\theta Local_b = \theta Local_a$, rename $Local_a$ and $Local_b$ both to $Local_b$. ``` = [locals; locals' : NAME \rightarrow Local | \exists Local; Local'; Local_0 \bullet n? \in dom locals \land locals n? = \theta Local \land locals' = locals \oplus \{n? \mapsto \theta Local'\} \land Op_1[x_0/x'] \land Op_2[x_0/x]] ``` Redistribute the quantifications C.12. LEMMA 'NOTLOGGEDANDIN' ``` =\exists Local; \ Local' \bullet [\ locals; \ locals' : NAME \rightarrow Local \ | n? \in \text{dom} \ locals \land \ locals \ n? = \theta Local \land \ locals' = locals \oplus \{n? \mapsto \theta Local'\} \land \ (\exists \ Local_0 \bullet \ Op_1[x_0/x'] \land Op_2[x_0/x]) \] ``` and rewrite in terms of composition ``` = \exists Local; Local' \bullet \Phi \land (Op_1 \circ Op_2) = \exists \Delta Local \bullet \Phi \land (Op_1 \circ Op_2) ``` This is the left hand side of the equation, and hence the proof is complete. **■** C.11 ## C.12 Lemma 'notLoggedAndIn' **Lemma C.4** (notLoggedAndIn) If a purse is engaged in a transaction, it does not have a log for that transaction ¹². ``` \label{eq:betweenWorld} \vdash \\ (\textit{fromInEpr} \cup \textit{fromInEpa}) \cap \textit{fromLogged} = \varnothing \\ \land (\textit{toInEpv} \cup \textit{toInEapayee}) \cap \textit{toLogged} = \varnothing ``` ¹²Used in: Val, behaviour of toLogged, section 19.6.2; Ack, behaviour of definitelyLost, section 20.6.5; CVal, B-10, section 29.5; lemma 'lost', section C.13; lemma 'not lost before', section C.14. 230 APPENDIX C. LEMMAS #### Proof: Consider the *to* purse case. We consider the *pd* stored in the *to* purse, so ``` pd \in (toInEpv \cup toInEapayee) \Rightarrow pd.toSeqNo = (conAuthPurse pd.to).pdAuth.toSeqNo ``` We have, from BetweenWorld constraint B-8, that ``` pd \in toLogged \Rightarrow pd.toSeqNo < (conAuthPurse pd.to).pdAuth.toSeqNo ``` Hence there can be no *pd* in both sets. The arguments for the *from* cases follow similarly, from *BetweenWorld* constraint B-7. ■ C.12 #### C.13 Lemma 'lost' **Lemma C.5** (lost) The sets definitelyLost and maybeLost are disjoint: a pd can never be in both. 13 $BetweenWorld \vdash definitelyLost \cap maybeLost = \emptyset$ **Proof:** $definitelyLost \cap maybeLost$ ``` = toLogged \cap (fromLogged \cup fromInEpa) \\ \cap (fromInEpa \cup fromLogged) \cap toInEpv \qquad [defn.] = toLogged \cap toInEpv \cap (fromLogged \cup fromInEpa) \qquad [rearranging] = \varnothing \qquad \qquad [Lemma 'notLoggedAndIn' (section C.12)] ``` ■ C.13 C.14. LEMMA 'NOT LOST BEFORE' 231 #### C.14 Lemma 'not lost before' **Lemma C.6** (not lost before) pdThis is not lost before the Req operation, although it maybe lost after. 14 ``` \Phi BOp; ReqPurseOkay; pdThis : PayDetails | (req^m?) = pdThis \vdash definitelyLost = definitelyLost' \ {pdThis} \ maybeLost = maybeLost' \ {pdThis} ``` #### Proof: From the definition of the way the state changes in *ReqOkay* we can say that the following sets are the same before and afterward: ``` fromLogged = fromLogged' ∧ toLogged = toLogged' ∧ toInEpv = toInEpv' ``` For the set *fromInEpa*, we know from *ReqOkay* that beforehand this *pdThis* was *not* in the set and afterward it *was*. So ``` pdThis \in fromInEpa' \land fromInEpa = fromInEpa' \setminus \{pdThis\} ``` From Lemma 'notLoggedAndIn' (section C.12), we have: ``` pdThis \in fromInEpa' \Rightarrow pdThis \notin fromLogged' ``` Reminding ourselves of the definitions of *definitelyLost* and using the identities above, we have ``` definitelyLost ``` ``` = toLogged \cap (fromLogged \cup fromInEpa) \qquad [defn] \\ = toLogged' \cap (fromLogged' \cup fromInEpa' \setminus \{pdThis\}) \qquad [above] \\ = toLogged' \cap (fromLogged' \cup fromInEpa') \setminus \{pdThis\} \\ \qquad [pdThis \notin fromLogged'] \\ = (toLogged' \cap (fromLogged' \cup fromInEpa')) \setminus \{pdThis\} \qquad [Spivey] \\ = definitelyLost' \setminus \{pdThis\} \qquad [defn] ``` $^{^{13} \}text{Used in: } \textit{Req}, \text{case 1, section 18.7.1; } \textit{Req}, \text{case 2, section 18.8.1; } \textit{Req}, \text{case 3, section 18.9.1.}$ ¹⁴Used in: *Req*, exists-chosenLost, section 18.5; *Req*, check-operation, section 18.6. 232 APPENDIX C. LEMMAS Similarly for *maybeLost*: ``` \begin{array}{ll} \textit{maybeLost} \\ &= (\textit{fromInEpa} \cup \textit{fromLogged}) \cap \textit{toInEpv} & [\text{defn}] \\ &= ((\textit{fromInEpa'} \setminus \{\textit{pdThis}\}) \cup \textit{fromLogged'}) \cap \textit{toInEpv'} & [\text{above}] \\ &= ((\textit{fromInEpa'} \cup \textit{fromLogged'}) \setminus \{\textit{pdThis}\}) \cap \textit{toInEpv'} \\ &= ((\textit{fromInEpa'} \cup \textit{fromLogged'}) \cap \textit{toInEpv'}) \setminus \{\textit{pdThis}\} & [\text{prop} \setminus] \\ &= \textit{maybeLost'} \setminus \{\textit{pdThis}\} & [\text{def}] \end{array} ``` ■ C.14 ### C.15 Lemma 'AbWorld unique' **Lemma C.7** (*AbWorld* unique) Given *BetweenWorld* and a choice of which transactions will be lost, there is always exactly one *AbWorld* that retrieves.¹⁵ ``` \label{eq:betweenWorld} BetweenWorld; \ chosenLost: \mathbb{P}\ PayDetails; \ pdThis: PayDetails | \\ chosenLost \subseteq maybeLost \\ \vdash \\ \exists_1\ AbWorld \bullet \ RabClPd ``` ### Proof: Each element of *AbWorld* has an explicit equation in *Rab* defining it uniquely in terms of *BeweenWorld* components. The components are entirely independent, and the only constraint that ties any together is that on *chosenLost* and *maybeLost*, which we have directly in the hypothesis. The constraints required of any AbWorld can be shown to hold as follows: - *abAuthPurse*: *NAME AbPurse conAuthPurse* is a finite function. From the retrieve *AbstractBetween* the domain of *abAuthPurse* equals the domain of *conAuthPurse*, and so is finite, too. - **■** C.15 - C ### Appendix D ## **Auxiliary toolkit definitions** #### D.1 Total abstract balance The function total AbBalance returns the total value held in a finite collection of purses. This recursive definition is valid,
because it is finite, and hence bounded. ### D.2 Total lost value The function *totalLost* returns the total value lost by a finite collection of purses. ``` totalLost: (NAME → AbPurse) → \mathbb{N} totalLost \emptyset = 0 \forall w : NAME \rightarrow AbPurse; n : NAME; AbPurse | n \notin \text{dom } w \bullet \text{totalLost}(\{n \mapsto \theta AbPurse\} \cup w) = \text{lost} + \text{totalLost } w ``` This recursive definition is valid, because it is finite, and hence bounded. ¹⁵Used in: lemma 'deterministic', section 14.4.4. 234 APPENDIX D. TOOLKIT ## D.3 Summing values We define the sum of the values in a set of exception logs, or a set of payment details. This recursive definition is valid, because it is finite, and hence bounded. ``` sumValue : \mathbb{F} PayDetails \rightarrow \mathbb{N} sumValue \varnothing = 0 \forall pds : \mathbb{F} PayDetails; PayDetails \mid \thetaPayDetails \notin pds \bullet sumValue(\{\thetaPayDetails}) \cup pds) = value + sumValue pds ``` ## **Bibliography** ### [Barden et al. 1994] Rosalind Barden, Susan Stepney, and David Cooper. *Z in Practice*. BCS Practitioners Series. Prentice Hall, 1994. ### [Flynn et al. 1990] Mike Flynn, Tim Hoverd, and David Brazier. Formaliser—an interactive support tool for Z. In John E. Nicholls, editor, *Z User Workshop: Proceedings of the 4th Annual Z User Meeting, Oxford 1989*, Workshops in Computing, pages 128–141. Springer Verlag, 1990. ### [Spivey 1992a] J. Michael Spivey. *The fuzz Manual*. Computer Science Consultancy, 2nd edition, 1992. ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz. #### [Spivey 1992b] J. Michael Spivey. *The Z Notation: a Reference Manual.* Prentice Hall, 2nd edition, 1992. ### [Stepney] Susan Stepney. Formaliser Home Page. http://public.logica.com/~formaliser/. ### [Woodcock & Davies 1996] Jim Woodcock and Jim Davies. *Using Z: Specification, Refinement, and Proof.* Prentice Hall, 1996. ## Index ΦBOp , 31 allLogs; AuxWorld, 28 ΦCOp , 37 AllValueAccounted, 13 ⊥, 20 aNullIn. 16 aNullOut, 16 abAuthPurse: AbWorld, 16 AOUT, 16 AbFinOut. 18 Archive, 34 AbFinState, 18 archive, 27 AbIgnore, 16 Authentic, 13 AbInitIn, 18 AuthenticAckMessage, 24 AbInitState, 17 authenticFrom; AuxWorld, 28 AbOp, 16AuthenticReaMessage, 24 Abort, 32 authenticTo; AuxWorld, 28 AbortPurseOkay, 22 AuthenticValMessage, 24 AbPurse, 15 AuthoriseExLogClearOkay, 33 AbPurseTransfer, 16 AuxWorld, 28 AbstractBetween, 45 AbTransfer, 17 balance; AbPurse, 15 AbTransferLost, 17 balance; ConPurse, 20 BetweenInitState, 35 AbTransferLostTD, 17 AbTransferOkay, 17 BetweenWorld, 30 AbTransferOkayTD, 17 BetwFinOut, 36 AbWorld, 16 BetwFinState, 36 AbWorldSecureOp, 16 BetwInitIn, 36 Ack. 33 CAbort, 38 ack. 20 *CAck*, 38 AckPurseOkay, 24 CArchive, 39 AIN, 16 CAuthoriseExLogClear, 39 eaPavee, 18 CClearExceptionLog, 38 eaPayer, 18 check-operation, 58 epa, 18 CIgnore, 38 epr, 18 CIncrease, 38 epv, 18 CLEAR. 19 ether: ConWorld, 27 ClearExceptionLog, 33 exceptionLogClear, 20 ClearExceptionLogEapayerOkay, 33 exceptionLogResult, 20 ClearExceptionLogPurseEapayerOkay, exists-chosenLost, 58 exists-pd, 58 ClearExceptionLogPurseOkay, 26 exLog; ConPurse, 20 ConFinState, 39 from; TransferDetails, 16 ConInitState, 39 fromInEpa: AuxWorld. 28 ConPurse, 20 fromInEpr; AuxWorld, 28 ConPurseAbort, 22 fromLogged; AuxWorld, 28 ConPurseAck, 22 fromSeqNo; PayDetails, 19 ConPurseClear, 26 ConPurseIncrease, 21 GlobalWorld, 18 ConPurseRea, 22 ConPurseStart, 22 hypdisi, 116 ConPurseVal. 22 hypexists, 117 consequent, 114 hypuni, 116 consqconj, 116 hypothesis, 114 consadisi, 116 consaexists, 117 Ignore, 32, 55 contradiction, 117 image, 19 ConWorld, 27 Increase, 32 CounterPartyDetails, 19 IncreasePurseOkay, 21 cpd; StartFromPurseEapayerOkay, 22 lemma 'Abort refines AbIgnore', 61 cpd: StartToPurseEapaverOkav. 23 lemma 'AbIgnore', 119 cpd; ValidStartFrom, 22 lemma 'abort backward', 65, 119 cpd; ValidStartTo, 23 lemma 'abort forward', 120 CReadExceptionLog, 38 lemma 'Abort refines AbIgnore', 119 CReq, 38 CStartFrom, 38 lemma 'AbWorld unique', 125 lemma 'compose backward', 121 CStartTo, 38 lemma 'compose forward', 121 cut, 116 lemma 'constraint', 100, 120 CVal, 38 lemma 'deterministic', 58, 118 definitelyLost; AuxWorld, 28 lemma 'ignore', 55 lemma 'logs unchanged', 120 D.3. SUMMING VALUES lemma 'lost unchanged', 59, 119 readExceptionLog, 20 lemma 'lost', 124 ReadExceptionLogEapayerOkay, 33 lemma 'not lost before', 124 ReadExceptionLogPurseEapayerOkay, lemma 'notLoggedAndIn', 124 lemma 'promoted composition', 122 ReadExceptionLogPurseOkay, 25 Logbook, 27 Req, 33 LogIfNecessary, 13 req, 20 lost; AbPurse, 15 ReqPurseOkay, 24 RetryAck, 25 maybeLost; AuxWorld, 28 RetryReq, 25 MESSAGE, 20 RetryVal, 25 NAME, 15 StartFrom, 32 name; ConPurse, 20 startFrom, 20 name; CounterPartyDetails, 19 StartFromEapayerOkay, 33 negation, 116 StartFromPurseEapayerOkay, 22 nextSeqNo; ConPurse, 20 StartFromPurseOkay, 23 nextSeqNo; CounterPartyDetails, 19 StartTo, 32 NoValueCreation, 12 startTo, 20 StartToEapayerOkay, 33 onepoint, 117 StartToPurseEapayerOkay, 23 OtherPursesRab. 46 StartToPurseOkay, 24 STATUS, 18 PayDetails, 19 status; ConPurse, 20 pdAuth; ConPurse, 20 strengthenconsq, 116 purse; ConWorld, 27 SufficientFundsProperty, 13 sumValue, 127 Rab, 46 RabCl, 45 thin, 116 RabClPd, 46 to; TransferDetails, 16 RabEnd, 49 toInEapayee; AuxWorld, 28 RabEndClPd, 48 toInEpv; AuxWorld, 28 RabHasBeenLost, 49 toLogged; AuxWorld, 28 RabHasBeenLostClPd, 48 toSeqNo; PayDetails, 19 RabIn, 50 totalAbBalance, 126 RabOkay, 49 totalLost, 126 RabOkayClPd, 47 transfer, 16 RabOut, 50 TransferDetails, 16 RabWillBeLost, 49 RabWillBeLostClPd, 47 unihyp, 115 Rbc, 96 ReadExceptionLog, 33 Val, 33 val. 20 ValidStartFrom, 22 ValidStartTo, 23 ValPurseOkay, 24 value; CounterPartyDetails, 19 value; TransferDetails, 16 D.3. SUMMING VALUES