
Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

Making Intelligent Walking Robots Accessible to Educators:

 A Brain and Sensor Pack for Legged Mobile Robots

Jerry B. Weinberg
†
, William Yu

†
, Kim Wheeler-Smith*, Robin Knight*, Ross Mead

†
, Ian

Bernstein*, Jeff Croxell
†
, Doug Webster*

*RoadNarrows LLC

1151 Eagle Drive #140

Loveland, CO 80537

†
Southern Illinois University Edwardsville

Department of Computer Science

Edwardsville, IL 62026

kim.wheeler@roadnarrows.com, jweinbe@siue.edu

Abstract

Wheeled robot platforms have reached an ease of use that
allows AI educators to easily incorporate them into their
courses to provide an opportunity for students to program
physically embodied agents. This invites an opportunity for
students to learn AI techniques for dealing with the physical
environment and, just as importantly, brings an added
interest and excitement to the course. Legged robot
platforms have yet to reach the same ease of use. These
robots add interesting problem dimensions and an additional
level of inspiration to the AI class. This paper describes
SkwelZone, a generalized system that brings affordable,
programmable, legged robot platforms with reusable
sensors, a microcontroller, and a common computing
platform into AI curricula.

Introduction

Wheeled robot platforms have evolved to the point that
instructors who have little or no background in robots can
still use them in their AI courses. This gives students the
opportunity to program embedded agents and learn AI
techniques for dealing with the difficulties of the physical
environment. It also brings an important level of interest
and excitement to AI courses (Klassner 2206). Robot
microcontrollers such as the Handy Board, the XBC, and
the LEGO RCX (Martin, et al. 2000) provide users with
simple techniques for connecting sensors and motors, as
well as straightforward methods for programming in a
variety of programming languages (Fagin 2003, Klassner
2002, Bagnall 2002). However wheeled platforms, which
these controllers are primarily used for, require only a
small number of motors (e.g. two or four). These
controllers cannot be used for legged platforms that require
a large number of servos for complex walking motions.

While there are wheeled robot platforms with sufficiently
developed middleware products that make robotics
accessible to undergraduate educators, there are yet
platforms with sufficiently developed middleware to do the
same with legged robots. One noted exception is the Sony
quadruped AIBO, but this robot has been discontinued.
Sony’s target market was entertainment; however,
educators had found AIBO with third party middleware
useful in the classroom and research, e.g., (Drexel
University, Chilton & Maria 2007).

The interest in legged robots is evident in the increase of
legged robot platforms and competitions. For example, see
Robot Magazine issue 5 (Robot Magzine 2007) and the
Robo-One Tournament (Robo-One Tournament 2007). The
discontinuation of the AIBO has left educators interested in
walking robots a choice of platforms unfortunately without
sufficient middleware tools to make them easy to use.

Carnegie Mellon University’s (CMU) CMRoboBits course
has shown that a robotics course can successfully introduce
students to the complexities of legged locomotion. The
course uses the Sony AIBO to introduce students to all the
“bits” necessary for creating a complete intelligent robot
(Veloso, et al. 2006, CMRboboBits 2008). The curriculum
covers intelligent behaviors, motion, vision, localization,
path planning, and multi-robot coordination. The course
leverages the open-source development framework
Tekkotsu developed by CMU for programming the Sony
AIBO. A number of teachers have subsequently made use
of Tekkotsu to incorporate AIBO’s in courses, for robo
soccer competitions, and for the Urban Search and Rescue
competition (Tejada, et al. 2003).

More recently, Pyro libraries have been developed for the
Sony AIBO that provide a programming environment that

84

is more accessible to students and educators (Blank et al.
2003, Blank et al. 2004, Pyro 2008). Pyro, which stands for
Python Robotics, is a Python-based programming
environment for easily exploring robotics without having
to worry about the low-level details of the underlying
hardware of different robot platforms. By creating a
collection of Python object classes that abstract all of the
underlying hardware details, Pyro provides a uniform
software interface for the users to explore different types of
mobile robots.

The goal of this project is to bring affordable,
programmable, legged robot platforms with reusable
sensors, a microcontroller, and a common computing
platform into classroom curricula. The system, called
SkewlZone, incorporates the Brain Pack (See Figure 1),
which is a single processor pack with sensors that can be
used on several commercial legged platforms. Investment
in sensors, software and curricula is reduced by having the
Brain Pack compatible with different robots. One of our
objectives in this project is to develop advanced modules
that support mobility, localization, navigation, path-
planning, and intelligent behaviors. These software
modules are being developed with the intent of supporting
curriculum for courses in AI and robotics. We are
leveraging the already well developed open source
framework of Tekkotsu and the many developed modules
for intelligent behavior for this purpose.

Figure 1: Exploded view of Brain Pack and sensor suite

SkewlZone: The Brain Pack and Sensors

SkewlZone is a generalized system that provides
perception and cognitive ability to off-the-shelf legged
robots such as the Kondo KHR-2HV. We have developed
specialized haptic foot and hand sensors, and inner-ear
balance (3-axis inertial measurement unit) using a standard
I2C interface integrated with an on-board embedded
XScale Linux board. The software architecture has been
developed to allow real-time sensing and control on-board.
Applications can be quickly developed using the
SkewlZone open interface, which provides a layer of
abstraction away from the details of the mechanical control
of the legged system.

Many of the popular legged robots operate almost entirely
in open-loop. That is, the robots have no or limited sensory
input from the environment outside of servo position and
speed data. Manufacturer-supplied robot controllers are
usually dedicated for the real-time control of 17 or more
servos. They have little access capacity to process more
complex sensory input from the environment and integrate
these input streams with the current set of desired robot
behaviors and high-level goals. Augmenting a legged robot
with the SkewlZone Brain Pack endows it with far greater
potential. An easy-to-program single board Linux
computer (SBC) connects to add-on sensors, such as hand
and foot tactile sensors, an inertial measurement unit, and a
USB color camera. The Linux SBC is also connected to the
the manufacturer's servo controller to issue commands and
receive timely servo state updates. Taken altogether, a
robot with a Brain Pack provides a platform with
capabilities of motion, touch, balance, eyesight. A Wi-Fi
connection is an option for monitoring and for even more
intense off-target AI applications.

Figure 2: SkewlZone Humanoid Foot

85

The SkewlZone Humanoid Foot is one of the key sensors
of the system (See Figure 2). It gives the roboticist the
ability to continuously measure the location of the center
of gravity of the robot, the center of pressure on each foot,
and the magnitude of force on the bottom of the foot. The
toe also gives force feedback making it ideal for soccer
competitions. Its on board LEDs give the user instant
feedback on the foot's current status and high visual appeal.
An onboard Atmel® microcontroller comes
preprogrammed with sensor calibration and operation
controls, however, an I2C interface offers programmable
control over all of the foot's functions for advanced users.
When integrated with the Linux Brain Pack, on-board
autonomous responses can be programmed for quick, low-
level reaction to the environment.

The electrical and communication connections between the
SkewlZone Brain Pack and the robots are provided by
custom connectors made by RoadNarrows. The mechanical
attachments for the Feet and Brain Pack are designed to
easily connect to the supported robot platforms, and should
take the user only a few minutes to assemble. All of the
software and libraries developed for the Brain Pack
hardware are provided and is open-source. RoadNarrows
has developed a command-line shell that is generalized to
very easily control different robot platforms with different
sensor configurations. Specific robot controller interfaces,
such as the RCB3 protocol, are contained in separate
libraries. Only those libraries specific for the configuration
in use are required to be loaded on the Brain Pack. The
shell and TCP/IP interface developed for the Brain Pack
make it very easy to integrate the SkewlZone system with a
variety of higher-level applications, such as Webots™ by
Cyberbotics, Microsoft Robot Studio, and Pyro Robotics
(Pyro 2008). Simple platform-agnostic examples for
controlling the robot and retrieving sensor data are
provided in Python.

SkewlZone: AI Programming

As an open source application development framework for

intelligent robots, CMU’s Tekkotsu provides many

modules, written as C++ classes, for controlling 4-legged

robots, including movements of the four legs and head, as

well as getting input from cameras, microphones, and

touch sensors (Tekkotsu 2008). It has been successfully

adopted in many AIBO based robotic courses (Turner

2008, Bowling 2008). Tekkotsu also provides a means for

users (or developers) to define their own robot

configurations. We are currently going through the process

of defining new hardware configurations for legged robots

such as the Kondo KHR-2HV. This includes creating a

new namespace, defining the parameters in the newly

created namespace, and providing kinematics information

to allow modeling and manipulation of the robot's frame.

Defining New Behavior

As mentioned earlier, software modules are being

developed to support curriculum of AI and robotics

courses. In Tekkotsu, a user defines behaviors by creating

C++ classes derived from existing Tekkotsu base classes.

Given the large number of existing classes, it is relatively

easy to create additional modules. The following is an

outline of a simple obstacleAvoidance class which

continues to walk while avoiding obstacles. It is a simple

extension of the WalkForwardAndStop module (Tekkotsu

2008).

/* Robot will walk straight until an obstacle is detected by the IR

sensor. It will turn until no obstacle is detected and then resume

walking. */

#include "Behaviors/BehaviorBase.h"

 // base for all; include other head files such as WalkMC.h

class obstacleAvoidance : public BehaviorBase {

public:

… // init various ids to invalid

virtual void DoStart() {

 BehaviorBase::DoStart();

 //define walk MotionCommand

 SharedObject<WalkMC> walk;

 walkID=motman->addPersistentMotion(walk);

 …// add head MotionCommands

 // set up head position, this is hardware dependent

 …

 // listen to all events

 erouter->addListener(this,

 EventBase::sensorEGID);

}

virtual void DoStop() {

 // remove motCommands, stop listening, etc

 // call superclass DoStop

 BehaviorBase::DoStop();

}

virtual void processEvent(const EventBase& event) {

 if(event.getGeneratorID() ==

 EventBase::sensorEGID) {

 //access the walk motion command

 MMAccessor<WalkMC> walk(walkID);

 //get the current value for the IR sensor

 float distance =

 state->sensors[FarIRDistOffset];

 if(distance <= IRMinDist) {

 walk->walk.mc()->

 setTargetVelocity(0.0, 0, 0.5f);

 }

 else

 walk->walk.mc()->

 setTargetVelocity(150.0, 0, 0);

86

http://www.cmu.edu/

 }

 else {

 cout << "Bad Event:"

 << event.getName() << endl;

 }

}

//class variables

protected:

 MotionManager::MC_ID walkID, headID;

}; // end of class

Creating new behavior in Tekkotsu involves defining three

essential functions: DoStart() which does the initial set up,

DoStop() which does the clean up, and processEvent(). In

this example, DoStart() initializes the walk and head

variable and set the EventRouter variable (erouter) to

subscribe to all events. The function processEvent() is

called when a registered event is caught, which, in this

case, involves a distance reading from the IR sensor and

setting the target (robot) velocity (x, y, ω), where x is the

forward-reverse motion, y is the side-to-side strafing

motion (orthogonal to x), and ω is the angular velocity. It

sets the target velocity to (0, 0, 0.5f) (i.e., making a turn) if

the distance is less than a pre-defined minimum threshold

value. Otherwise, it maintains the target velocity at (150,

0, 0) (i.e., walk straight forward). As we can see from this

example, Tekkotsu users are able to define behavior at a

higher level of abstraction, leaving Tekkotsu to handle the

hardware details.

Figure 3: An FSM representing behavior of a trash pickup robot

(reproduced from Murphy 2000, p. 181)

Defining Behavior using FSM

This technique of behavior definition follows the

reactive/behavior-based approach (Murphy 2000), where

behaviors are built by successive layers of lower level

reactive control. A Finite State Machines (FSM) can be

used to describe the overall behavior of a robot, in terms

of a finite number of action states (or nodes) and events (or

triggers) that cause the transition between these states.

Being in a state means that the robot only responds to a

specific subset of inputs and reacts in a specific way. FSMs

provide an elegant and effective way of describing and

analyzing robotic behavior. For example, the behavior of a

trash pickup robot can be described by the FSM in Figure 3.

As you can see from the FSM diagram, the robot begins in

the Wander_for_Trash state; it then changes to the

Move_to_Trash state when it sees the trash (i.e.,

SEE_RED) and its hands are EMPTY, and so on. Tekkotsu

supports FSMs with a StateNode class. The

obstacleAvoidance behavior discussed previously can be

implemented as a simple FSM as illustrated in Figure 4.

Figure 4: Obstacle Avoidance FSM

The following is an outline of its implementation in

Tekkotsu demo behavior ExploreMachine (Tekkotsu 2008):

class ExploreMachine : public StateNode {

public:

… // constructor

// destructor, check if we need to call our teardown

~ExploreMachine() {

if(issetup)

 teardown();

}

virtual void setup() {

SharedObject<WalkMC> walk;

walkid=motman->addPersistentMotion(walk);

WalkNode * move=NULL;

addNode(move=new WalkNode(getName()

+"::move",150,0,0));

move->setMC(walkid);

start=addNode(turn=new WalkNode(getName()

+"::turn",0,0,0.5f));

turn->setMC(walkid);

// Add a transition from turn to move after 2 ms

turn->addTransition(new TimeOutTrans(move,2000));

// add a transition from move to turn

…

StateNode::setup();

}

void DoStart();

void ExploreMachine::DoStop();

virtual void processEvent(const EventBase& /*e*/);

virtual void teardown();

// called each time the turn node is activated, sets a new

// random turn direction and speed

virtual void processEvent(const EventBase& /*e*/);

move turn

Obstacle

No Obstacle

87

protected:

StateNode * start; // the node to begin with

WalkNode * turn; // walk node to use when turning

// we want to share a walk

// between turning and walking nodes

MotionManager::MC_ID walkid;

};

The setup() function creates the actual automaton by

creating nodes and transitions using the addNode() and

addTransition() methods. For example, move is defined as

a walkNode and added with the statement

addNode(move=new WalkNode(getName()

 +"::move",150,0,0)); ,

which also specifies its name as ExploreMachine::move,

and the velocity as (150, 0, 0) (walking straight at a speed

of 150). DoStart() is run when a node is activated while

DoStop() is run when a node stops. In other words, during

a transition, DoStop() of the source node as well as

DoStart() of the destination node are both executed.

Sample Projects

The nature of Tekkotsu’s class structure allows more

complex behaviors to be defined or expanded from simpler

methods. Students will be able to focus on design of

higher level behavior while leaving Tekkotsu to handle

lower level hardware control. We illustrate that with a few

sample projects

Project 1 – Basic Event-driven Motion Control

In this project, students will implement behavior for an

obstacle avoiding robot, which is an extension of the

obstacleAvoidance behavior outlined earlier. Specifically,

the obstacle avoiding robot should act as follows:

 Start in a waiting state.

 Walk forward when the start button is pushed.

 Continue to walk in the same direction until either

an obstacle is detected,

 When an obstacle is detected, repeatedly turn an

angle and look for obstacle,

 Resume walking forward.

 Stop when the stop button is pushed.

The goal of this assignment is for students to gain

understanding of sensor and motion control as well as

Tekkotsu’s event-driven programming.

Project 2 – Defining Behavior with FSM

In this project, students will implement the obstacle

avoiding robot using a Finite State Machine (FSM). The

emphasis of this assignment is on using appropriate

Tekkotsu modules to construct automata that create the

desired robotic behavior. Contrasting with project 1,

students will develop an appreciation of FSMs, how they

can describe generate overall intelligent behavior. For this

assignment, students are encouraged first create diagrams

of their FSMs. They will then use Tekkotsu Walking node

to model walk and turn behavior.

Tekkotsu also includes a Storyboard Tool which allows the

user to monitor the execution of a state machine and

display a graphical execution trace called a "storyboard",

as shown in figure 5 (Tekkotsu 2008). Created by Akkarit

Sangpetch of CMU as a Senior honors project, the

Storyboard tool provides detailed information on the nodes

(name, type, etc) and the transitions (sources and

destinations of each) as well as the execution of your FSM

including state activation and deactivation events,

transition firings, and sensor events. Students can use the

Tekkotsu Storyboard Tool to monitor their FSMs.

Figure 5: Tekkotsu Storyboard tool screen shots

Project 3 – Object Recognition and Subsumption

Architecture

In this project, students will implement a treasure hunting

behavior which extends from the object avoiding behavior

created in previous projects. Specifically, the treasure

hunting robot should act as follows:

 Start in a waiting state.

 Walk forward when the start button is pushed.

 Continue to walk green colored treasure is

detected, at which point it stops.

 If an obstacle (i.e., the wall) is detected, the robot

will repeat the turn and observe process until no

obstacle is found, and then resume walking

forward.

 If a treasure is detected, it will use its arm to pick

up the treasure, play a sound and then stop.

The goal of this assignment is for students to develop a

88

reactive control architecture using a simple suppression

network (subsumption) for a foraging robot which should

exhibit obstacle avoidance as well as a searching behavior

and a collect behavior. Additional behaviors such as

fleecing can be introduced with the introduction of a

predator recognized by another color such as red.

Another objective of this assignment is to introduce

students to simple object recognition with a camera.

Tekkotsu’s DualCoding package provides support for in-

depth image processing and has been used to successfully

extract features from fair complex object such as a tic-tac-

toe board (Touretsky & Tira-Thompson 2008). As a first

assignment that uses the camera, students will only need to

program the robot to recognized objects based on their

colors.

Conclusions

SkewlZone is currently in prototype testing. The Brain
Pack along with the device libraries and scripting
language has been developed. Tekottsu definitions
necessary to connect to the Brain Pack have also been
developed. The Humanoid Foot sensors have been
engineered and are currently being tested. Many of the
other sensors are in various stages of creation. A full
prototype implementation is expected by this summer
and a production model will be designed from the results
of the prototype testing.

For further information, images, and video for this project

please see:

http://wiki.roadnarrows.com/index.php?title=schoolZone_-

_Main_Page . A video showing the foot haptics and

adaptive response of a humanoid foot robot is available at:

http://www.roadnarrows.com/customer/SkewlZone/latest/

media/KondoFootSensors.MPG

Acknowledgements
This grant is supported by the National Science Foundation

Small Business Technology Transfer Research (STTR)

Program under Grant No. 0711909.

References

Bagnall, B., Core LEGO MINDSTORMS Programming: Unleash

the Power of the Java Platform, Prentice Hall, 2002.

Blank, D., Meeden L., and Kumar, D., “Python Robotics: An

Environment for Exploring Robotics Beyond LEGOs”,

Proceedings of the Thirty-Fourth SIGCSE Technical Symposium

on Computer Science Education, Reno Nevada, ACM Press,

February 2003.

Blank, D.S., Yanco, H., Kumar, D., and Meeden L. “The Karel-

the-Robot Paradox: A framework for making sophisticated

robotics accessible”, AAAI 2004 Spring Symposium on

Accessible, Hands-on Artificial Intelligence and Robotics,

Stanford University, CA, March 2004. AAAI Press Technical

report SS-04-01, 2004

Bowling, M. “Course Material for CMPUT412: Experimental

Mobile Robots” , March 2008

http://www.cs.ualberta.ca/~bowling/classes/cmput412/

Chilton, J. and Maria, G., “Using AIBO’s in a CS1 Course”, in

the Technical Report (SS-07-09) of the AAAI Spring Symposium

on Robots and Robot Venues: Resources for AI Education, pp. 24

– 28.

CMRoboBits, March 2008,

http://www-2.cs.cmu.edu/~robosoccer/cmrobobits/

Drexel University’s CS 511, September 2007,

http://www.cs.drexel.edu/~pmodi/cs511.html

Fagin, B, “Ada/Mindstorms 3.0: A Computational Environment

for Introductory Robotics and Programming”, IEEE Robotics and

Automation, Spring 2003, pp 19-24.

Klassner, F, “A Case Study of LEGO Mindstorms Suitability for

Artificial Intelligence and Robotics Courses at the College

Level”, Proceeding of the 33rd SIGCSE Technical Symposium on

Computer Science Education, Northern Kentucky, February

2002, pp. 8-12.

Klassner, F., “Launching into AI’s October Sky with Robotics

and Lisp”, AI Magazine, Vol. 27, No. 1, Spring 2006, pp. 51-65.

Martin, F., Mikhak, B., Resnick, M., Silverman, B., and Berg, R.,

“To Mindstorms and Beyond: Evolution of a Construction Kit for

Magical Machines,” Robots for Kids: Exploring New

Technologies for Learning; A. Druin and J. Hendler, eds.,

Morgan Kaufmann, 2000, pp. 9-33.

Murphy, R , Introduction to AI Robotics, 2000, MIT Press,

Cambridge, Massachusetts.

Pyro website, March 2008, http://www.pyrorobotics.org/

Robot Magazine issue 5, September 2007,

http://www.botmag.com/articles/robo_one_ten.shtml

Robo-One Tournament, Septemper 2007,

http://www.botmag.com/issue5/index.shtml

Tejada, S. Cristina, A., Goodwyne, P., Normand, E., O’Hara, R.,

and Tarapore, S., “Virtual Synergy: A Human-Robot Interface for

Urban Search and Rescue”, In the Proceedings of the AAAI 2003

Robot Competition, 2003.

Tekkotsu website, March 2008,

http://www.cs.cmu.edu/~tekkotsu/

Touretzky, D. & Tira-Thompson, E. “The Vision Pipeline and

Color Image Segmentation”, March 2008,

http://www.cs.cmu.edu/afs/cs/academic/class/15494-

s08/lectures/vision_pipeline.pdf

Turner, S., “Introduction to Behavior using Tekkotsu”, March

2008, http://www.tekkotsu.org/media

Veloso, M., Rybski P., Lenser S., Chernova S., and Vail D.,

“CMRoboBits: Creating an Intelligent AIBO Robot”, AI

Magazine, Vol. 27, No. 1, Spring 2006, pp. 67-82.

89

http://wiki.roadnarrows.com/index.php?title=schoolZone_-_Main_Page
http://wiki.roadnarrows.com/index.php?title=schoolZone_-_Main_Page
http://www.roadnarrows.com/customer/SkewlZone/latest/media/KondoFootSensors.MPG
http://www.roadnarrows.com/customer/SkewlZone/latest/media/KondoFootSensors.MPG
http://www.cs.ualberta.ca/~bowling/classes/cmput412/
http://www-2.cs.cmu.edu/~robosoccer/cmrobobits/
http://www.cs.drexel.edu/~pmodi/cs511.html
http://www.pyrorobotics.org/
http://www.botmag.com/articles/robo_one_ten.shtml
http://www.botmag.com/issue5/index.shtml
http://www.cs.cmu.edu/~tekkotsu/
http://www.cs.cmu.edu/afs/cs/academic/class/15494-s08/lectures/vision_pipeline.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15494-s08/lectures/vision_pipeline.pdf
http://www.tekkotsu.org/media

