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Abstract 

Wheeled robot platforms have reached an ease of use that 
allows AI educators to easily incorporate them into their 
courses to provide an opportunity for students to program 
physically embodied agents. This invites an opportunity for 
students to learn AI techniques for dealing with the physical 
environment and, just as importantly, brings an added 
interest and excitement to the course. Legged robot 
platforms have yet to reach the same ease of use. These 
robots add interesting problem dimensions and an additional 
level of inspiration to the AI class. This paper describes 
SkwelZone, a generalized system that brings affordable, 
programmable, legged robot platforms with reusable 
sensors, a microcontroller, and a common computing 
platform into AI curricula. 

Introduction 

Wheeled robot platforms have evolved to the point that 
instructors who have little or no background in robots can 
still use them in their AI courses. This gives students the 
opportunity to program embedded agents and learn AI 
techniques for dealing with the difficulties of the physical 
environment. It also brings an important level of interest 
and excitement to AI courses (Klassner 2206). Robot 
microcontrollers such as the Handy Board, the XBC, and 
the LEGO RCX (Martin, et al. 2000) provide users with 
simple techniques for connecting sensors and motors, as 
well as straightforward methods for programming in a 
variety of programming languages (Fagin 2003, Klassner 
2002, Bagnall 2002). However wheeled platforms, which 
these controllers are primarily used for, require only a 
small number of motors (e.g. two or four). These 
controllers cannot be used for legged platforms that require 
a large number of servos for complex walking motions.  

 
While there are wheeled robot platforms with sufficiently 
developed middleware products that make robotics 
accessible to undergraduate educators, there are yet 
platforms with sufficiently developed middleware to do the 
same with legged robots. One noted exception is the Sony 
quadruped AIBO, but this robot has been discontinued. 
Sony’s target market was entertainment; however, 
educators had found AIBO with third party middleware 
useful in the classroom and research, e.g., (Drexel 
University, Chilton & Maria 2007).  
 
The interest in legged robots is evident in the increase of 
legged robot platforms and competitions. For example, see 
Robot Magazine issue 5 (Robot Magzine 2007) and the 
Robo-One Tournament (Robo-One Tournament 2007). The 
discontinuation of the AIBO has left educators interested in 
walking robots a choice of platforms unfortunately without 
sufficient middleware tools to make them easy to use.  
 
Carnegie Mellon University’s (CMU) CMRoboBits course 
has shown that a robotics course can successfully introduce 
students to the complexities of legged locomotion. The 
course uses the Sony AIBO to introduce students to all the 
“bits” necessary for creating a complete intelligent robot 
(Veloso, et al. 2006, CMRboboBits 2008). The curriculum 
covers intelligent behaviors, motion, vision, localization, 
path planning, and multi-robot coordination. The course 
leverages the open-source development framework 
Tekkotsu developed by CMU for programming the Sony 
AIBO. A number of teachers have subsequently made use 
of Tekkotsu to incorporate AIBO’s in courses, for robo 
soccer competitions, and for the Urban Search and Rescue 
competition (Tejada, et al. 2003). 
 
More recently, Pyro libraries have been developed for the 
Sony AIBO that provide a programming environment that 
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is more accessible to students and educators (Blank et al. 
2003, Blank et al. 2004, Pyro 2008). Pyro, which stands for 
Python Robotics, is a Python-based programming 
environment for easily exploring robotics without having 
to worry about the low-level details of the underlying 
hardware of different robot platforms. By creating a 
collection of Python object classes that abstract all of the 
underlying hardware details, Pyro provides a uniform 
software interface for the users to explore different types of 
mobile robots.   
 
The goal of this project is to bring affordable, 
programmable, legged robot platforms with reusable 
sensors, a microcontroller, and a common computing 
platform into classroom curricula. The system, called 
SkewlZone, incorporates the Brain Pack (See Figure 1), 
which is a single processor pack with sensors that can be 
used on several commercial legged platforms. Investment 
in sensors, software and curricula is reduced by having the 
Brain Pack compatible with different robots. One of our 
objectives in this project is to develop advanced modules 
that support mobility, localization, navigation, path-
planning, and intelligent behaviors. These software 
modules are being developed with the intent of supporting 
curriculum for courses in AI and robotics. We are 
leveraging the already well developed open source 
framework of Tekkotsu and the many developed modules 
for intelligent behavior for this purpose. 

 
Figure 1: Exploded view of Brain Pack and sensor suite 

SkewlZone: The Brain Pack and Sensors 

SkewlZone is a generalized system that provides 
perception and cognitive ability to off-the-shelf legged 
robots such as the Kondo KHR-2HV. We have developed 
specialized haptic foot and hand sensors, and inner-ear 
balance (3-axis inertial measurement unit) using a standard 
I2C interface integrated with an on-board embedded 
XScale Linux board. The software architecture has been 
developed to allow real-time sensing and control on-board. 
Applications can be quickly developed using the 
SkewlZone open interface, which provides a layer of 
abstraction away from the details of the mechanical control 
of the legged system. 
 
Many of the popular legged robots operate almost entirely 
in open-loop. That is, the robots have no or limited sensory 
input from the environment outside of servo position and 
speed data. Manufacturer-supplied robot controllers are 
usually dedicated for the real-time control of 17 or more 
servos. They have little access capacity to process more 
complex sensory input from the environment and integrate 
these input streams with the current set of desired robot 
behaviors and high-level goals. Augmenting a legged robot 
with the SkewlZone Brain Pack endows it with far greater 
potential. An easy-to-program single board Linux 
computer (SBC) connects to add-on sensors, such as hand 
and foot tactile sensors, an inertial measurement unit, and a 
USB color camera. The Linux SBC is also connected to the 
the manufacturer's servo controller to issue commands and 
receive timely servo state updates. Taken altogether, a 
robot with a Brain Pack provides a platform with 
capabilities of motion, touch, balance, eyesight. A Wi-Fi 
connection is an option for monitoring and for even more 
intense off-target AI applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: SkewlZone Humanoid Foot 
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The SkewlZone Humanoid Foot is one of the key sensors 
of the system (See Figure 2). It gives the roboticist the 
ability to continuously measure the location of the center 
of gravity of the robot, the center of pressure on each foot, 
and the magnitude of force on the bottom of the foot. The 
toe also gives force feedback making it ideal for soccer 
competitions. Its on board LEDs give the user instant 
feedback on the foot's current status and high visual appeal. 
An onboard Atmel® microcontroller comes 
preprogrammed with sensor calibration and operation 
controls, however, an I2C interface offers programmable 
control over all of the foot's functions for advanced users. 
When integrated with the Linux Brain Pack, on-board 
autonomous responses can be programmed for quick, low-
level reaction to the environment.   
 
The electrical and communication connections between the 
SkewlZone Brain Pack and the robots are provided by 
custom connectors made by RoadNarrows. The mechanical 
attachments for the Feet and Brain Pack are designed to 
easily connect to the supported robot platforms, and should 
take the user only a few minutes to assemble. All of the 
software and libraries developed for the Brain Pack 
hardware are provided and is open-source. RoadNarrows 
has developed a command-line shell that is generalized to 
very easily control different robot platforms with different 
sensor configurations. Specific robot controller interfaces, 
such as the RCB3 protocol, are contained in separate 
libraries. Only those libraries specific for the configuration 
in use are required to be loaded on the Brain Pack. The 
shell and TCP/IP interface developed for the Brain Pack 
make it very easy to integrate the SkewlZone system with a 
variety of higher-level applications, such as Webots™ by 
Cyberbotics, Microsoft Robot Studio, and Pyro Robotics 
(Pyro 2008). Simple platform-agnostic examples for 
controlling the robot and retrieving sensor data are 
provided in Python.  

SkewlZone: AI Programming 

As an open source application development framework for 

intelligent robots, CMU’s Tekkotsu provides many 

modules, written as C++ classes, for controlling 4-legged 

robots, including movements of the four legs and head, as 

well as getting input from cameras, microphones, and 

touch sensors (Tekkotsu 2008). It has been successfully 

adopted in many AIBO based robotic courses (Turner 

2008, Bowling 2008). Tekkotsu also provides a means for 

users (or developers) to define their own robot 

configurations. We are currently going through the process 

of defining new hardware configurations for legged robots 

such as the Kondo KHR-2HV. This includes creating a 

new namespace, defining the parameters in the newly 

created namespace, and providing kinematics information 

to allow modeling and manipulation of the robot's frame. 

 

 

Defining New Behavior  

As mentioned earlier, software modules are being 

developed to support curriculum of AI and robotics 

courses.  In Tekkotsu, a user defines behaviors by creating 

C++ classes derived from existing Tekkotsu base classes. 

Given the large number of existing classes, it is relatively 

easy to create additional modules.  The following is an 

outline of a simple obstacleAvoidance class which 

continues to walk while avoiding obstacles.   It is a simple 

extension of the WalkForwardAndStop module (Tekkotsu 

2008). 

 
/* Robot will walk straight until an obstacle is detected by the IR 

sensor.  It will turn until no obstacle is detected and then resume 

walking. */ 

 

#include "Behaviors/BehaviorBase.h" 

 // base for all; include other head files such as WalkMC.h  

 

class obstacleAvoidance : public BehaviorBase { 

public: 

 

… // init various ids to invalid  

virtual void DoStart() { 

 BehaviorBase::DoStart();  

 

 //define walk MotionCommand 

 SharedObject<WalkMC> walk; 

 walkID=motman->addPersistentMotion(walk); 

 …// add head MotionCommands 

 

  // set up head position, this is hardware dependent 

  …   

 

 // listen to all events 

 erouter->addListener(this, 

            EventBase::sensorEGID); 

} 

 

virtual void DoStop() { 

 // remove motCommands, stop listening, etc 

 // call superclass DoStop  

 BehaviorBase::DoStop(); 

} 

 

virtual void processEvent(const EventBase& event) { 

 if(event.getGeneratorID() == 

   EventBase::sensorEGID) { 

   //access the walk motion command 

         MMAccessor<WalkMC> walk(walkID); 

       

   //get the current value for the IR sensor 

         float distance = 

    state->sensors[FarIRDistOffset]; 

         if(distance <= IRMinDist) { 

              walk->walk.mc()-> 

       setTargetVelocity(0.0, 0, 0.5f); 

         } 

         else 

    walk->walk.mc()-> 

       setTargetVelocity(150.0, 0, 0); 
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     } 

    else { 

      cout << "Bad Event:" 

        << event.getName() << endl; 

 } 

} 

 

//class variables   

protected: 

 MotionManager::MC_ID walkID, headID; 

 

};  // end of class 

 

Creating new behavior in Tekkotsu involves defining three 

essential functions: DoStart() which does the initial set up, 

DoStop() which does the clean up, and processEvent().  In 

this example, DoStart() initializes the walk and head 

variable and set the EventRouter variable (erouter) to 

subscribe to all events.  The function processEvent() is 

called when a registered event is caught, which, in this 

case, involves a distance reading from the IR sensor and 

setting the target (robot) velocity (x, y, ω), where x is the 

forward-reverse motion, y is the side-to-side strafing 

motion (orthogonal to x), and ω is the angular velocity.  It 

sets the target velocity to (0, 0, 0.5f) (i.e., making a turn) if 

the distance is less than a pre-defined minimum threshold 

value.  Otherwise, it maintains the target velocity at (150, 

0, 0) (i.e., walk straight forward).  As we can see from this 

example, Tekkotsu users are able to define behavior at a 

higher level of abstraction, leaving Tekkotsu to handle the 

hardware details.    

 

 
Figure 3: An FSM representing behavior of a trash pickup robot 

(reproduced from Murphy 2000, p. 181) 

 

Defining Behavior using FSM  

This technique of behavior definition follows the 

reactive/behavior-based approach (Murphy 2000), where 

behaviors are built by successive layers of lower level 

reactive control.  A Finite State Machines (FSM) can be 

used to describe the overall behavior of  a robot, in terms 

of a finite number of action states (or nodes) and events (or 

triggers) that cause the transition between these states.  

Being in a state means that the robot only responds to a 

specific subset of inputs and reacts in a specific way. FSMs 

provide an elegant and effective way of describing and 

analyzing robotic behavior. For example, the behavior of a 

trash pickup robot can be described by the FSM in Figure 3. 

As you can see from the FSM diagram, the robot begins in 

the Wander_for_Trash state; it then changes to the 

Move_to_Trash state when it sees the trash (i.e., 

SEE_RED) and its hands are EMPTY, and so on. Tekkotsu 

supports FSMs with a StateNode class. The 

obstacleAvoidance behavior discussed previously can be 

implemented as a simple FSM as illustrated in Figure 4. 

 

 
Figure 4: Obstacle Avoidance FSM 

 

The following is an outline of its implementation in 

Tekkotsu demo behavior ExploreMachine (Tekkotsu 2008): 

 
class ExploreMachine : public StateNode { 

public: 

 

… // constructor 

 

// destructor, check if we need to call our teardown 

~ExploreMachine() { 

if(issetup) 

    teardown(); 

} 

 

virtual void setup() { 

SharedObject<WalkMC> walk; 

walkid=motman->addPersistentMotion(walk); 

WalkNode * move=NULL; 

addNode(move=new WalkNode(getName() 

+"::move",150,0,0)); 

move->setMC(walkid);  

start=addNode(turn=new WalkNode(getName() 

+"::turn",0,0,0.5f)); 

turn->setMC(walkid); 

 

// Add a transition from turn to move after 2 ms 

turn->addTransition(new TimeOutTrans(move,2000)); 

// add a transition from move to turn 

… 

StateNode::setup(); 

} 

 

void DoStart(); 

void ExploreMachine::DoStop(); 

virtual void processEvent(const EventBase& /*e*/); 

virtual void teardown(); 

 

// called each time the turn node is activated, sets a new  

// random turn direction and speed 

virtual void processEvent(const EventBase& /*e*/); 

move   turn 

Obstacle 

No Obstacle 
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protected: 

StateNode * start; // the node to begin with 

WalkNode * turn; // walk node to use when turning 

// we want to share a walk 

// between turning and walking nodes 

MotionManager::MC_ID walkid; 

 

}; 

 

The setup() function creates the actual automaton by 

creating nodes and transitions using the addNode() and 

addTransition() methods. For example, move is defined as 

a walkNode and added with the statement  

 

addNode(move=new WalkNode(getName() 

                                               +"::move",150,0,0));          , 

 

which also specifies its name as ExploreMachine::move, 

and the velocity as (150, 0, 0) (walking straight at a speed 

of 150).  DoStart() is run when a node is activated while 

DoStop() is run when a node stops.  In other words, during 

a transition, DoStop() of the source node as well as 

DoStart() of the destination node are both executed.   

 
Sample Projects 

The nature of Tekkotsu’s class structure allows more 

complex behaviors to be defined or expanded from simpler 

methods.  Students will be able to focus on design of 

higher level behavior while leaving Tekkotsu to handle 

lower level hardware control.  We illustrate that with a few 

sample projects 

 

Project 1 – Basic Event-driven Motion Control  

In this project, students will implement behavior for an 

obstacle avoiding robot, which is an extension of the 

obstacleAvoidance behavior outlined earlier.  Specifically, 

the obstacle avoiding robot should act as follows: 

 Start in a waiting state. 

 Walk forward when the start button is pushed. 

 Continue to walk in the same direction until either 

an obstacle is detected,  

 When an obstacle is detected, repeatedly turn an 

angle and look for obstacle, 

 Resume walking forward. 

 Stop when the stop button is pushed. 

 

The goal of this assignment is for students to gain 

understanding of sensor and motion control as well as 

Tekkotsu’s event-driven programming.   

 

Project 2 – Defining Behavior with FSM 

In this project, students will implement the obstacle 

avoiding robot using a Finite State Machine (FSM).  The 

emphasis of this assignment is on using appropriate 

Tekkotsu modules to construct automata that create the 

desired robotic behavior. Contrasting with project 1, 

students will develop an appreciation of FSMs, how they 

can describe generate overall intelligent behavior. For this 

assignment, students are encouraged first create diagrams 

of their FSMs. They will then use Tekkotsu Walking node 

to model walk and turn behavior.   

 
Tekkotsu also includes a Storyboard Tool which allows the 

user to monitor the execution of a state machine and 

display a graphical execution trace called a "storyboard", 

as shown in figure 5 (Tekkotsu 2008).   Created by Akkarit 

Sangpetch of CMU as a Senior honors project, the 

Storyboard tool provides detailed information on the nodes 

(name, type, etc) and the transitions (sources and 

destinations of each) as well as the execution of your FSM 

including state activation and deactivation events, 

transition firings, and sensor events.  Students can use the 

Tekkotsu Storyboard Tool to monitor their FSMs. 

 

 

Figure 5: Tekkotsu Storyboard tool screen shots 

Project 3 – Object Recognition and Subsumption 

Architecture  

In this project, students will implement a treasure hunting 

behavior which extends from the object avoiding behavior 

created in previous projects.  Specifically, the treasure 

hunting robot should act as follows: 

 Start in a waiting state. 

 Walk forward when the start button is pushed. 

 Continue to walk green colored treasure is 

detected, at which point it stops. 

 If an obstacle (i.e., the wall) is detected, the robot 

will repeat the turn and observe process until no 

obstacle is found, and then resume walking 

forward. 

 If a treasure is detected, it will use its arm to pick 

up the treasure, play a sound and then stop. 

 

The goal of this assignment is for students to develop a 
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reactive control architecture using a simple suppression 

network (subsumption) for a foraging robot which should 

exhibit obstacle avoidance as well as a searching behavior 

and a collect behavior. Additional behaviors such as 

fleecing can be introduced with the introduction of a 

predator recognized by another color such as red.   

  

Another objective of this assignment is to introduce 

students to simple object recognition with a camera.  

Tekkotsu’s DualCoding package provides support for in-

depth image processing and has been used to successfully 

extract features from fair complex object such as a tic-tac-

toe board (Touretsky & Tira-Thompson 2008). As a first 

assignment that uses the camera, students will only need to 

program the robot to recognized objects based on their 

colors.   
 

Conclusions  

SkewlZone is currently in prototype testing. The Brain 
Pack along with the device libraries and scripting 
language has been developed. Tekottsu definitions 
necessary to connect to the Brain Pack have also been 
developed. The Humanoid Foot sensors have been 
engineered and are currently being tested. Many of the 
other sensors are in various stages of creation.  A full 
prototype implementation is expected by this summer 
and a production model will be designed from the results 
of the prototype testing. 
 

For further information, images, and video for this project 

please see:  

http://wiki.roadnarrows.com/index.php?title=schoolZone_-

_Main_Page . A video showing the foot haptics and 

adaptive response of a humanoid foot robot is available at: 

http://www.roadnarrows.com/customer/SkewlZone/latest/

media/KondoFootSensors.MPG 
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