
gm
Stamp

Case Study:
Space Station Robot Embeds Ada

Despite rumors of its demise, Adas is at the heart of the International Space
Station’s in-orbit Canadarm 2 where it assures software safety and reliability.

View
COTS

While safety-critical characteristics have been introduced
into the design of many programming languages, Ada
is the language specifically targeted at “life-critical”

systems. Developed between 1975 and 1984 by the US Department
of Defense (DoD), Ada has been classically targeted for use in
mission-critical embedded systems that emphasize safety, low cost,
and a near-perfect degree of reliability. The most important safety
features that make Ada ideal for development of fail-safe software
include its information-hiding capability, its ability to provide
re-useable code and its “strong typing”, which helps detect and
solve many types of coding errors at compile time, very early in
the development cycle.

Despite the perception by some that Ada is a dying language,
the fact is that Ada’s use is on the rise and it’s being adopted for
some of the most rigorous and critical embedded applications
under development today. Under contract to the Canadian Space
Agency (CSA), MacDonald Dettwiler (MDA) chose open-source
GNAT Ada 95 from Ada Core Technologies to develop control
software for the Mobile Servicing System (MSS), an essential com-
ponent of the International Space Station (ISS).

The MSS is a complex robotic manipulator system that
plays a key role in space station assembly and maintenance. It
helps move equipment and supplies around the station, supports
astronauts working in space, and services instruments and other
payloads attached to the space station (Figure 1).

Space-Based Robotic Arm
Ideal for a program like the MSS, Ada has clearly carved itself

a comfortable and sustainable niche in large, complex high-reli-
ability systems, including safety-critical systems where human
life might be at stake. This language, which has little visibility
compared with its cousins C and C++, continues be very effective
in developing systems that absolutely must be reliable. So it is no
surprise to find Ada in space—a harsh, unyielding environment
where the slightest malfunction can lead to death.

The ISS-based, next-generation Canadarm 2, the key element
of the MSS, is a bigger, better, smarter version of Canadarm, the
robotic arm that operates from the cargo bay of the Space Shuttle.
This arm is capable of handling large payloads and assisting with
docking the space shuttle to the space station. The new arm, built
specifically for the space station, is 17.6 meters (57.7 feet) long
when fully extended and has seven motorized joints, each of
which operates as a complex real-time embedded control system.

Canadarm 2 is “self-relocatable” and can move around the sta-
tion’s exterior like an inchworm. Each end of the arm is equipped
with a specialized mechanism called a Latching End Effector that
can lock its free end on one of many special fixtures, called Power
Data Grapple Fixtures placed strategically around the station, and
then detach its other end and pivot it forward. Unlike the original
Canadarm, Canadarm 2 stays in space for its useful life, requiring
a high-reliability design that allows astronauts to repair it in-orbit.
It nearly goes without saying that the reliability of Canadarm 2
must be unimpeachable, based on high-integrity software and

Reprinted from COTS Journal March 2002

Canadian Astronaut Chris A. Hadfield stands on the end of the
Space Shuttle’s Canadarm while bolting Canadarm 2 together.

Figure 1
(Courtesy of: MacDonald Dettwiler.)

Robert Dewar, President,
Ada Core Technologies

COTS View

safety-critical design constructs that need to be formally and rigor-
ously specified, designed and implemented.

Safety-critical software systems like Canadarm 2 often employ
multiple levels of safety criticality. Historically, these have been
deployed on systems where each function executes on a dedicated
processor. The need to lower maintenance costs and reduce the
size, weight, and power consumption of older embedded computer
systems, combined with the availability of modern processor tech-
nology, has created the demand for commercial run-time systems.

Ada Core’s GNAT High-Integrity Edition no-run-time instantia-
tion of Ada 95 was used to develop Canadarm 2, allowing processing
tasks with multiple threads of activity, as well as coordination and
conformance of multiple processors communicating over well-
defined interfaces. GNAT also facilitates a software architecture and
implementation that is seamlessly extensible, allowing the integration
of future phases of the robotic system.

The main Ada target processor on the Canadarm 2 is an embed-
ded Intel386 device running on a proprietary board that sits at the
heart of the arm’s Robotic Work Station (RWS). The RWS controls
the seven-joint servo mechanisms on the arm, sending commands to
motor-control microprocessors, and closing the control loop by read-
ing feedback from position sensors (Figure 2).

The RWS computer also handles the task of scanning user-inter-
face inputs that allow astronauts to control the arm. Software for each
joint-control processor is also written in Ada. I/O communications
between the RWS and the joint processors occurs over MIL-STD-
1553, known as the Aircraft Internal Time-Division Command/
Response Multiplex Data Bus (handled by one processor).

Performance Legacy
While the concept of mission-critical systems has been widely

adopted throughout the computing industry, it was the DoD that
created the original concept. Ada, named after Ada Byron, founder
of scientific computing, was born out of the DoD’s mid-1970s

The Mobile Servicing System’s Robotic Work Station (RWS)
features a display and control panel, hand controllers, video
monitors and computers to provide a highly reliable, seamless
interface between man and machine.

Figure 2
(Courtesy of: MD Robotics.)

concern over the proliferation of programming languages.
The DoD advocated a single language, based on solid software
engineering principles. Following its 1983 unveiling, the DoD
mandated Ada as the official language in 1986. Ada’s demise was
widely predicted after the DoD removed the mandate in 1997.
However, Ada’s use has actually risen since then. Ada increasing-
ly has its place as a model of software reliability, reusability, read-
ability, and portability among embedded systems developers.

Ada was the first mainstream programming language to
incorporate constructs for multi-tasking and real-time pro-
gramming, with well-defined interactions between complex fea-
tures such as tasking and exceptions. It also includes asynchro-
nous transfer of control, protected records, better user access to
scheduling primitives, additional forms of delay statements, and
parameterized tasks.

In the 1980s, Ada consistently outperformed established
programming languages like Pascal, Fortran, and C. In the
1990s, Ada continued to surpass C++ in performance evalu-
ations measuring capability, efficiency, maintenance, risk,
and lifecycle cost. In a 1993-94 study of the 10-year history of
Verdix Corporation’s use of Ada and C development, prelimi-
nary findings indicated that Ada was twice as cost effective as
C, said Stephen F Zeigler, Ph.D. in his document “Comparing
Development Costs of C and Ada”.

In-depth analysis of Verdix’s general development meth-
odology ultimately showed that when the effects of makefiles
and of external costs were factored in, Ada costs were on the
order of half the cost of “carefully crafted” C code. The simplest
reason for this is that Ada inherently encourages developers to
spend more time notating their code in writing, communicat-
ing information to future readers of that code. The benefits
derived from this include:

Improved Error Locality. Ada bugs are often indicated
directly by the compiler, giving developers fewer places to look
for bugs. Bugs are often discovered very soon after they are
created, and are considered “local in time.” If a bug is easily
identified as being close to the place in the code where it actu-
ally occurs, it is considered “local in space.” Ada compilers are
good at both time and space locality for bugs, greatly reducing
development time.

Better Tool Support. Ada development intrinsically causes
a great deal of information to be sent to the development tools.
This characteristic is most pronounced for tasking, where the
Ada tools can create parallel, distributed multiprocessing ver-
sions of ordinary-looking programs without developers having
to do much more than they did for a single processor. Another
big win is in machine code, where users can get free access to the
underlying hardware without having to give up the semantic
checks and supports of the high level language.

Improved program design. One of Ada’s more subtle effects
is to encourage better program design, avoiding the “quick-fix”
habits unfortunately common to C programming. Examples
include: C allows users to create a global variable without regis-
tering it in a “.h” file; C allows users to avoid strong typing easily.
The effects of such details are subtle, but can account for some
of the “progressive design deterioration” effects that can lead to
many extra hours of debugging and interpreting old code.

Reprinted from COTS Journal March 2002

Ada’s Lifecycle
Research has shown that between 60 and 80 percent of soft-

ware costs occur in code maintenance—after a system is actu-
ally developed and implemented. MacDonald Dettwiler knew
these post-project costs could be even higher for the space-based
Canadarm 2. Thus, the reliability and long-term robustness of the
Ada code took on a very real economic incentive as the MDA engi-
neers considered project lifecycle costs that went far beyond issues
pertaining to the development phase of the project.

But will Ada survive? Despite the steady increase in Ada use
for safety-critical embedded systems, inaccurate perceptions still
linger about this stalwart language. Some programmers remain
convinced that Ada will eventually fade away without its DoD
mandate.

But, the truth is that Ada is not going to go away. Instead,
it will thrive as a language-of-choice for the most demanding
life-critical applications. Ada’s founding principle was based on
rigorous software engineering practices, and Ada is still the only
internationally standardized programming language specifically
designed for large, complex applications. For real-time, safety-
critical applications Ada is still the undisputed leader.

Ada Core Technologies
New York, NY.
(212) 620 7300.
[www.gnat.com].

Ada Embedded
With embedded systems residing in a variety of applications

ranging from satellite and telecommunication systems to network-
ing routers and passenger aircraft, an increasing number of lives
and dollars now depend on the reliability of embedded systems
software. Joint Strike Fighter, various armored vehicle programs,
the Apache helicopter—dozens of programs, maybe more—are
still actively developing in Ada and spending millions of dollars.
Boeing’s choice of Ada for high-profile commercial projects like
the Boeing 777 is a good example. The 777 is an all-Ada plane
except for the entertainment system which is coded in C++.

Penetrating markets long dominated by C++, Ada is surfac-
ing outside the traditional realm of aviation and aerospace, in
applications as diverse as meteorological imaging and yachting
security. Compaq, for example, used Ada to implement its IN7
project, first on SCO Unix, then on Tru64 Unix v5.1, replacing
DECada. IN7 is a relatively complex code mixing several languages
and compilation tools, and one of the major difficulties was to get
the generated code to run correctly.

IN7, one of the major implementations of the telephone
central office switch Signaling System Number 7 (SS7) standard,
needed to be fully distributed across multi-computer systems for
high availability and high performance to telecom equipment
manufacturers and software developers. Compaq turned to Ada to
meet these demands, and GNAT specifically because it is targeted
at many platforms supported by IN7. While Ada’s primary advan-
tage is its support for open systems and interoperability, Table 1
shows several other factors also contribute to higher productivity
and lower cost.

A list of factors making Ada increasingly popular in military and high-availability commercial systems.

Table 1

Metric

Availability/Reliability

Code Size

Isolation

Portability

Readability

Reusability

Verifiability

Reasons

Ada is highly reliable because its compilers rigorously check the code at compile-time, enabling the
programmer to locate and remove defects early in the programming process.

First generation Ada compilers produced large executables, and the stigma of large executables stuck with
the language. Today's optimizing Ada compilers produce the tightest embedded system code available.

Ada effectively compartmentalizes code at run-time, eliminating unpredictable interactions between code
modules.

Ada code is easily portable across microprocessor architectures, making hardware migration and upgrades
cheaper and faster.

Ada code is inherently very readable; errors are easy to locate and correct before compile-time.

Ada uses a modularized structure with generic procedures and data abstractions. The result is exceedingly
reusable software components, reducing costs for each new project. NASA did a systematic assessment
that measured between 60 percent and 80 percent Ada code reuse from one satellite system to the next.
This was comparing reuse against past use of Fortran, which was NASA's primary language for satellite
systems. With Fortran, code reuse was about 25 percent to 30 percent.

All Ada compilers verify code against the Ada standard using the Ada Conformance Assessment Test Suite
(ACATS formerly known as the ACVC tests).

COTS View

Reprinted from COTS Journal March 2002

gm
Stamp

	Case study: Case Study
	Text2:
	case study title: MDA - Canadian Space Arm
	EU Address: European Headquarters
8, rue de Milan
75009 Paris
France
Tel: +33 (0)1 49 70 67 16
Fax: +33 (0) 1 49 70 05 52
Email: sales@adacore.com
	US Address: North American Office
104 Fifth Avenue, 15th floor
New York, NY 10011
USA
Tel. +1 212 620 7300
Fax +1 212 807 0162
Email: sales@adacore.com
	adacore:
	com: www.adacore.com

