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Introduction

A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ =
(λ1, λ2, . . . , λk) of non-negative integers λi such that

∑k
i=1 λi = n. The λi’s are the parts of the

partition λ. Integer partitions are of particular interest in combinatorics, partly because many
profound questions concerning integer partitions, solved and unsolved, are easily stated, but not
easily proved. Even the most basic question “How many partitions are there of weight n?” has
no simple solution. Remarkably, however, there are a variety of partition identities of the form
“The number of partitions of n satisfying condition A is equal to the number of partitions of n
satisfying condition B,” even though no simple formulas are known for the number of partitions
of n satisfying A or B. The motivating example of such a partition identity is due to Euler: The
number of partitions of n into distinct parts is equal to the number of partitions of n into odd
parts. We will start here and our ultimate goal will be to examine a very recent development in
the theory of partition identities: the so-called “Lecture Hall Partitions” of Bousquet-Mélou and
Eriksson. Along the way, we will briefly visit some earlier results such as the Rogers-Ramanujan
identities which have also extended the study of partition identities.

1 Preliminaries

Definition 1.1. A partition of a positive integer n (or a partition of weight n) is a non-decreasing
sequence λ = (λ1, λ2, . . . , λk) of non-negative integers λi such that

∑k
i=1 λi = n. The weight, |λ|,

of the partition λ is defined to be
∑k

i=1 λi.

For example, there are 5 partitions of 4: (1, 1, 1, 1), (1, 1, 2), (2, 2), (1, 3), (4).
The study of partitions identities begins with the following result due to Euler. The proof of

this result will demonstrate the power of using generating functions to prove partitions identities.
The use of generating function permeates the study of partition identities and we will again en-
counter similar uses of generating functions when we examine more recent development in partition
identities.

Theorem 1.2 (Euler). The number of partitions of n into distinct parts (i.e. no part is repeated
more than once) is equal to the number of partitions of n into odd parts.

Proof. Let pD(n) be the number of partitions of n into distinct parts. For instance, pD(5) = 3,
since (1, 4), (2, 3) and (5) are the only partitions of 5 into distinct parts.
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Similarly, let pO(n) be the number of partitions of n into odd parts. For instance, pO(5) = 3,
since (1, 1, 1, 1, 1), (1, 1, 3) and (5) are the only partitions of 5 into odd parts.

We will show that pD(n) = pO(n) by showing that their generating functions, PD(x) and PO(x),
are equal:

PD(x) = pD(0) + pD(1)x + pD(2)x2 + · · · = pO(0) + pO(1)x + pO(2)x2 + · · · = PO(x)

Consider the product F (x) =
∏∞

i=1 (1 + xi). When this product is expanded, every term has
the form xi1+i2+···+i` where the ij ’s are distinct. Furthermore, for any set of distinct ij ’s, the term
xi1+i2+···+i` occurs only once. Therefore, the number of occurrences of xn = xi1+i2+···+i` is exactly
the number of ways to partition n into distinct parts. So the coefficient of xn in F (x) is pD(n).
Therefore PD(x) =

∏∞
i=1 (1 + xi).

Similarly, we consider the product G(x) =
∏∞

i odd (1 + xi + x2i + x3i + · · · ). If we expand this
product, each term has the form xn = xk1i1+k2i2+···+k`i` . This term represents a natural partition
of n into odd parts; in particular, if we construct a partition with k1 parts equal to i1, and k2

parts equal to i2 and so forth, we have a partition of n into odd parts (since all the ij ’s are odd).
Conversely, if we take any partition of n into odd parts, we can write that partition (uniquely) as
k1i1 +k2i2 + · · ·+k`i`, where the ij ’s are the (odd) parts that occur and the kj ’s are the number of
times each ij occurs. Therefore, the coefficient of xn in G(x) is equal to the number of partitions
of n into odd parts, or pO(n). It follows that G(x) = PO(x).

To prove that PD(x) = PO(x) we must show that

∞∏
i=1

(1 + xi) =
∞∏

i odd

(1 + xi + x2i + x3i + · · · )

This can be achieved by manipulating PO(x) as follows:

PO(x) =
∞∏

i odd

(1 + xi + x2i + x3i + · · · ) =
∞∏

i odd

1
1− xi

=
∞∏
i=1

1
1− x2i−1

and then

PD(x) =
∞∏
i=1

(1 + xi) =
∞∏
i=1

1− x2i

1− xi
=

(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3) · · ·

=
1

(1− x)(1− x3)(1− x5) · · ·
=

∞∏
i=1

1
1− x2i−1

= PO(x)

Thus PD(x) = PO(x) and so pD(n) = pO(n) for all n.

2 Some Generalizations of Euler’s Theorem

Now it is natural to ask whether there exist other similar partition identities, and indeed there are
many. The Rogers-Ramanujan identites, stated here without proof, are two other examples of this
type of partition identity:
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Proposition 2.1 (The First Rogers-Ramanujan Identity). The number of partitions of n
such that the difference between any two parts is at least 2 is equal to the number of partitions of n
such that each part is congruent to 1 or 4 modulo 5.

Example 2.2. There are 4 partitions of 9 such that each part differs by at least 2: (1, 3, 5), (1, 8),
(2, 7), (3, 6). There are also exactly 4 partitions of 9 such that each part is congruent to 1 or 4
modulo 5: (1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 4), (1, 1, 1, 6), (9).

Proposition 2.3 (The Second Rogers-Ramanujan Identity). The number of partitions of n
such that 1 is not a part and the difference between any two parts is at least 2 is equal to the number
of partitions of n such that each part is congruent to 2 or 3 modulo 5.

Example 2.4. There are 2 partitions of 9 such that each part differs by at least 2 and where 1 is
not a part: (2, 7), (3, 6). There are also exactly 2 partitions of 9 such that each part is congruent to
2 or 3 modulo 5: (2, 2, 2, 3), (2, 7).

It turns out that the Rogers-Ramanujan identities can be generalized even further, as is demon-
strated by the following result due to Gordon from which the Rogers-Ramanujan identities follow
as corollaries. Again, the proof is omitted.

Theorem 2.5. The number of partitions (λ1, λ2, . . . , λr) of n such that no more than i− 1 of the
parts are 1 and where λj − λj−k+1 ≥ 2 is equal to the number of partitions of n into parts not
congruent to 0 or ±i modulo 2k + 1.

Example 2.6. Letting i = 2 and k = 2, we obtain the first Rogers-Ramanujan identity. Letting
i = 1 and k = 2, we obtain the second Rogers-Ramanujan identity.

Example 2.7. Letting i = 1 and k = 3, we find that the number of partitions of n such that
λj − λj−2 ≥ 2 and where 1 is not a part is equal to the number of partitions of n into parts not
congruent to 0 or ±1 modulo 7.

The proof of Theorem 2.5 is similar to that of Theorem 1.2 in that two generating functions are
shown to be equal in order to show that these partitions are equinumerous for all n. However, the
generating functions for the proof of Theorem 2.5 are considerably more complicated than those
of Theorem 1.2 and the manipulations are far from trivial. The proof and necessary background
material are developed in [1].

3 Lecture Hall Partitions

Thus far, there has been a common theme among the generalizations of Theorem 1.2: all these
identities have been concerned with the difference between parts in partitions. For example, the
distinctness condition in Theorem 1.2 is equivalent to requiring that all parts differ by at least
1, whereas one of the conditions of the Rogers-Ramanujan identities is that all parts differ by at
least 2. However, one could just as easily interpret the distinctness condition in Theorem 1.2 to
require that the quotient of successive parts be greater than 1. This is exactly the approach that
Bousquet-Mélou and Eriksson have taken, and they have developed the theory of “Lecture Hall
Partitions” as a very different generalization of Theorem 1.2.
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Definition 3.1. A lecture hall partition of length n is a partition λ = (λ1, λ2, . . . , λn) satisfying

0 ≤ λ1

1
≤ λ2

2
≤ · · · ≤ λn

n
Such partitions are called lecture hall partition because they correspond to all the possible ways

in which an n-row lecture hall can be constructed such that every seat has a clear view of the lecturer
(assuming that all rows are at integer heights). If a person in row j is to have an unobstructed
view of the lecturer (at height 0), then h(j)/j must be greater than or equal to h(i)/i for all i < j
where h(i) denotes the height of the i-th row. However, we will see that the applications of lecture
hall partitions are far more interesting than simply enumerating possible lecture hall designs.

The first result is the so-called Lecture Hall Theorem, first presented by Bousquet-Mélou and
Eriksson in [2].

Theorem 3.2 (Lecture Hall Theorem). Let Ln be the set of lecture hall partitions of length n.
Then ∑

λ∈Ln

q|λ| =
n−1∏
i=0

1
1− q2i+1

The left-hand side of this expression is simply the weight generating function of lecture hall
partitions. That is, the coefficient of qN is the number of lecture hall partitions of length n and
weight N . The right-hand side should look familiar from Theorem 1.2; for the same reason that∏∞

i=0
1

1−q2i+1 was the weight generating function for partitions with odd parts,
∏n−1

i=0
1

1−q2i+1 is
the weight generating function for partitions with small odd parts: 1, 3, 5, . . . , 2n − 1. Therefore,
Theorem 3.2 can be interpreted as saying: “The number of lecture hall partitions of length n and
weight N is equal to the number of partitions of N into small odd parts: 1, 3, 5, . . . , 2n− 1.”

Example 3.3. There are 4 lecture hall partitions of length 3 and weight 7:

(0, 0, 7), (0, 1, 6), (0, 2, 5), (1, 2, 4)

There are also exactly 4 partitions of 7 into odd parts no greater than 5 = 2 · 3− 1:

(1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 3), (1, 1, 5), (1, 3, 3)

In fact, Bousquet-Mélou and Eriksson prove the following more general result.

Theorem 3.4 (Refined Lecture Hall Theorem). Given a lecture hall partition λ, define its
even weight, |λ|e and its odd weight, |λ|o, by

|λ|e =
bn−1

2
c∑

k=0

λn−2k |λ|o =
bn

2
c−1∑

k=0

λn−2k−1

Then ∑
λ∈Ln

x|λ|ey|λ|o =
n−1∏
i=0

1
1− xi+1yi

The usefulness of this bivariate generating function identity will become clearer when we exam-
ine the theory of a-lecture hall partitions. For the moment, we will simply note that the substitution
of q = x = y yields Theorem 3.2.

Now, with this background in the basic ideas of lecture hall partitions, we will study the most
general and most powerful aspect of Bousquet-Mélou and Eriksson’s work in [3]: a-lecture hall
partitions.
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4 a-Lecture Hall Partitions

Thus far, we have looked at lecture hall partitions as defined in Definition 3.1. However, since
we are not very interested in using lecture hall partitions to enumerate lecture hall designs, the
choice of the values 1, 2, 3, . . . as the denominators in the definition seems somewhat arbitrary. To
generalize this definition of lecture hall partitions, we introduce the a-lecture hall partitions:

Definition 4.1. Let a be a non-decreasing sequence of positive integers, a = (a1, a2, . . . , an). An
a-lecture hall partition of length n is a partition λ = (λ1, λ2, . . . , λn) satisfying

0 ≤ λ1

a1
≤ λ2

a2
≤ · · · ≤ λn

an

So the lecture hall partitions of Definition 3.1 are simply the (1, 2, 3, . . . , n)-lecture hall partitions
according to this new definition. We will denote the weight generating function of a-lecture hall
partitions by Sa(q), so for example, S(1,2,3,...,n)(q) = 1

(1−q)(1−q3)···(1−q2n−1)
, by Theorem 3.2.

The main objective of this generalization will be to find other sequences a = (a1, a2, . . . , an),
such that Sa(q) has the form

Sa(q) =
1

(1− qe1)(1− qe2) · · · (1− qen)
ei 6= ej (1)

for if Sa(q) is of this form, then we may conclude that the number of a-lecture hall partitions
of length n and weight N equals the number of partitions of N into elements of {e1, e2, . . . , en}.

We will now study the major aspects of Bousquet-Mélou and Eriksson’s results concerning
a-lecture hall partitions. Since our main objective is to understand the novel aspects of Bousquet-
Mélou and Eriksson’s approach, the proofs of several results will be omitted in order to avoid
obfuscating the overall structure of their work. Any omitted details are available in [3].

Ultimately we wish to understand the weight generating function, Sa(q), of a-lecture hall par-
titions. For this pursuit to be fruitful, however, it is better to consider the bivariate case, as in
Theorem 3.4. In particular, we will study

Sa(x, y) =
∑
λ∈L

x|λ|ey|λ|o

Definition 4.2. Given a sequence a = (a1, a2, . . . , an), the standard a-lecture hall partitions, λ(i),
are defined by:

λ(i) = (0, . . . , 0, ai, ai+1, . . . , an)

Definition 4.3. An a-lecture hall partition λ = (λ1, λ2, . . . , λn) is said to be reduced if, for all i,
λ − λ(i) (as elements of Zn) is not an a-lecture-hall partition. We will denote the (finite) set of
reduced a-lecture hall partitions by R.

It can be shown that any a-lecture hall partition of length n can be uniquely decomposed as
λ = µ +

∑n
i=1 kiλ

(i), where the µ are reduced lecture hall partitions, where the λ(i) are standard
lecture hall partitions and where the ki are positive integers. The proof of this fact is routine and
available in either [2] or [3].

Furthermore, each µ +
∑n

i=1 kiλ
(i) will constitute an a-lecture hall partition, since a sum of

a-lecture hall partitions is clearly also an a-lecture hall partition. Therefore, there is a natural
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bijection between a-lecture hall partitions of length n and (n + 1)-tuples, (µ, k1, k2, . . . , kn) where
µ is a reduced partition and where the ki’s are non-negative integers.

Since we will be working in the bivariate case, let us first note that |λ|o = |µ|o+
∑n

i=1 ki|λ(i)|o and
similarly |λ|e = |µ|e +

∑n
i=1 ki|λ(i)|e, whenever λ = µ +

∑n
i=1 kiλ

(i). Now we are ready to consider
the following sum and product (where R denotes the set of reduced a-lecture hall partitions):

∑
µ∈R

x|µ|ey|µ|o (2)

n∏
i=1

1
1− x|λ

(i)|ey|λ
(i)|o

=
n∏

i=1

(1 + x|λ
(i)|ey|λ

(i)|o + x2|λ(i)|ey2|λ(i)|o + x3|λ(i)|ey3|λ(i)|o + · · · ) (3)

When the product in (3) is expanded, for every linear combination
∑n

i=1 kiλ(i) there will be
a term of the form x

∑n
i=1 ki|λ(i)|o · y

∑n
i=1 ki|λ(i)|e , and furthermore, each such term will arise exactly

once. So if we expand the product of equations (2) and (3), every term will be constructed by
choosing a term x|µ|ey|µ|o from (2) and by choosing a term x

∑n
i=1 ki|λ(i)|o · y

∑n
i=1 ki|λ(i)|e from (3).

Therefore, by the uniqueness of the decomposition λ = µ+
∑n

i=1 kiλ
(i), every a-lecture hall partition

λ is accounted for exactly once in the product of equations (2) and (3). So we may write:

Sa(x, y) =

∑
µ∈R

x|µ|ey|µ|o

 ·

(
n∏

i=1

1
1− x|λ

(i)|ey|λ
(i)|o

)
Now, since we would like to compute Sa(x, y), we need to find a way to compute the two

factors of the above expression. Unfortunately, it is not clear how to compute both these factors
for arbitrary sequences a = (a1, a2, . . . , an). Therefore, from this point onwards, Bousquet-Mélou
and Eriksson restrict their study to a specific type of sequence for which both these factors can be
computed more easily.

Definition 4.4. A sequence a = (a1, a2, . . . , an) is called a (k, `)-sequence if it satisfies the following
recursion relation:

{
a2n = `a2n−1 − a2n−2

a2n+1 = ka2n − a2n−1
(4)

Example 4.5. An interesting example of a (k, `)-sequence is the sequence of every other Fibonacci
number. If we choose a1 = 1, k = 3 and ` = 3 then (a1, a2, a3, . . .) = (1, 3, 8, . . .) and in general
ai = F2i−1 where Fi denotes the i-th Fibonacci number. We will see this sequence again shortly
when we examine a limit theorem concerning a-lecture hall partitions.

Under the assumption that a is a (k, `)-sequence, the following theorem is proved in [3].

Theorem 4.6. Fix k, ` ≥ 2. Let a be a finite (k, `)-sequence of length n and let a∗ be the (k, `)-
sequence defined by a∗1 = 0, a∗2 = 1. If n is even, then

Sa(x, y) =
n∏

i=1

1
1− xaiya∗i
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and if n is odd then

Sa(x, y) =
n∏

i=1

1
1− xa∗i+1yai−1

Now, we have an equation of the same form as (1), and there is an interpretation of this equation
in terms of a-lecture hall partitions. If we set q = x = y, then we have

Sa(q) =
n∏

i=1

1
1− qai+a∗i

if n is even

and

Sa(q) =
n∏

i=1

1
1− qa∗i+1+ai−1

if n is odd

which can be interpreted as saying: “If n is even, then the number of a-lecture hall partitions of
weight N is equal to the number of partitions of N into parts belonging to the set {s|s = ai + a∗i }.
And if n is odd, then the number of a-lecture hall partitions of weight N is equal to the number of
partitions of N into parts belonging to the set {s|s = a∗i+1 + ai−1}.”

This identity is still a little cumbersome, however. For the next result we will set ` = k to
obtain a clearer, albeit less general, result.

The last major result we will consider arises from taking a limit (n →∞) in Theorem 4.6. This
will allow the set of parts to be infinite. That is, we will obtain a result which says “The number of
partitions of N satisfying condition A is equal to the number of partitions of N into parts belonging
to the set S,” where the set S is infinite.

Set k = ` and let a1 = 1. Now, the sequences a and a∗ from Theorem 4.6 are related by:
a∗i+1 = ai. Substituting for all occurrences of a∗i in Theorem 4.6, we obtain:

Sa(x, y) =
n−1∏
i=1

1
1− xai+1yai

To glean a combinatorial interpretation from this formula, we can again substitute q = x = y
to obtain:

Sa(q) =
n−1∏
i=1

1
1− qai+ai+1

(5)

This can be interpreted as saying that the number of a-lecture hall partitions of weight N is equal
to the number of partitions of n into elements of S = {s|s = ai + ai+1}. Now, we will use (5) to
show the following generalization of Theorem 1.2:

Proposition 4.7. The number of partitions of n where the quotient of successive parts is greater
than k+

√
k2−4
2 is the same as the number of partitions of n into elements of S = {s|s = ai + ai+1},

where a is an infinite (k, k)-sequence (i.e. a1 = 1 and ai+1 = kai − ai−1).

Proof. Let us consider the ratio ai+1

ai
as i goes to infinity. Denote this limit by θ:

θ = lim
i→∞

ai+1

ai
= lim

i→∞

kai − ai−1

ai
= k − 1

θ
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θ = k − 1
θ
⇒ θ2 − θk + 1 = 0

and so

θ =
k ±

√
k2 − 4
2

But ai+1

ai
≥ 1 for all i, since (k, `)-sequences are non-decreasing. Therefore,

θ =
k +

√
k2 − 4
2

The reason we are interested in this limit is because of the following observation: Given any
partition λ = (λ1, λ2, . . . , λs) where the quotient of successive terms, λi+1

λi
, is greater than (or equal

to1) θ, there exists a sufficiently large n such that λ′ = (0, 0, . . . , 0, λ1, λ2, . . . , λs) is an a-lecture
hall partitions of length n. Conversely, if λ has two parts, ai and ai+1, whose quotient, ai+1/ai is
not greater than θ, then there exists a sufficiently large n such that λ′ = (0, 0, . . . , 0, λ1, λ2, . . . , λs)
is not an a-lecture hall partitions of length n. Therefore, we may take the limit of equation (5) as
n →∞ and we will obtain exactly the weight generating function for partitions λ = (λ1, λ2, . . . , λs)
where the quotient of successive terms, λi+1

λi
is greater than θ. This may be interpreted as saying

that the number of partitions of n where the quotient of successive parts is greater than θ is the
same as the number of partitions of n into elements of S = {s|s = ai + ai+1}, where a is an infinite
(k, k)-sequence. This is exactly the generalization of Theorem 1.2 that we wanted.

Example 4.8. Let a be the (4, 4)-sequence defined by a1 = 1 and ai+1 = 4ai − ai−1; so a =
(1, 4, 15, 56, 209, 780, 2911, . . .). Now let S = {s|s = a2i−1 + a2i+1} = {1, 16, 224, 3120, . . .}. By
Proposition 4.7, the number of partitions of an integer n into parts belonging to S is equal to the
number of partitions of n such that the ratio of consecutive terms is greater than 4+

√
42−4
2 = 2+

√
3.

Example 4.9. Let Fi denote the i-th Fibonacci number (i.e. F0 = 1, F1,= 1, F2 = 2, . . .), and let
F denote the set {f |f = F2i−1 + F2i+1, i ≥ 0} = {1, 4, 11, 29, 76, . . .}. The odd-indexed Fibonacci
numbers, F2i−1, are exactly the elements of the (3, 3)-sequence a = (1, 3, 8, 21, 55, . . .). Therefore,
the number of partitions of n into elements of F is equal to the number of partitions of n such that
the ratio of consecutive terms is greater than 3+

√
32−4
2 = 3+

√
5

2 .

5 Conclusions

By this point, we have seen a wealth of material motivated by Theorem 1.2: The Rogers-Ramanujan
identities, Gordon’s Generalization of the Rogers-Ramanujan identities, and several of Bousquet-
Mélou and Eriksson’s results concerning lecture hall partitions and the more general a-lecture hall
partitions. In some ways, these results are all very similar. Not only are all these results motivated
by Theorem 1.2, but they all employ the proof technique introduced by Euler in Theorem 1.2,
namely the use of generating functions as a powerful tool for working with partition identities.
On the other hand, these results have taken different directions in generalizing Euler’s result. The

1Note: Equality is only possible when k = 2, since θ is irrational for k > 2.
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most striking such difference is Bousquet-Mélou and Eriksson’s reinterpretation of the “distinctness”
condition of Theorem 1.2 as a multiplicative property, rather than an additive property. What is
more, these results span a period of nearly 250 years, demonstrating that the study of partition
identities is a fruitful subject with a wide variety of known results, and undoubtedly many more to
be discovered.
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