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T
he two theories that revolutionized
physics in the twentieth century, rela-
tivity and quantum mechanics, are full
of predictions that defy common sense.
Recently, we used three such para-

doxical ideas to prove “The Free Will Theorem”
(strengthened here), which is the culmination of
a series of theorems about quantum mechanics
that began in the 1960s. It asserts, roughly, that if
indeed we humans have free will, then elementary
particles already have their own small share of
this valuable commodity. More precisely, if the
experimenter can freely choose the directions
in which to orient his apparatus in a certain
measurement, then the particle’s response (to
be pedantic—the universe’s response near the
particle) is not determined by the entire previous
history of the universe.

Our argument combines the well-known conse-
quence of relativity theory, that the time order of
space-like separated events is not absolute, with
the EPR paradox discovered by Einstein, Podolsky,
and Rosen in 1935, and the Kochen-Specker Para-
dox of 1967 (See [2].) We follow Bohm in using a
spin version of EPR and Peres in using his set of 33
directions, rather than the original configuration
used by Kochen and Specker. More contentiously,
the argument also involves the notion of free will,
but we postpone further discussion of this to the
last section of the article.

Note that our proof does not mention “probabil-
ities” or the “states” that determine them, which is
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fortunate because these theoretical notions have

led to much confusion. For instance, it is often said

that the probabilities of events at one location can

be instantaneously changed by happenings at an-

other space-like separated location, but whether

that is true or even meaningful is irrelevant to

our proof, which never refers to the notion of

probability.

For readers of the original version [1] of our

theorem, we note that we have strengthened it

by replacing the axiom FIN together with the as-

sumption of the experimenters’ free choice and

temporal causality by a single weaker axiom MIN.

The earlier axiom FIN of [1], that there is a finite

upper bound to the speed with which informa-

tion can be transmitted, has been objected to by

several authors. Bassi and Ghirardi asked in [3]:

what precisely is “information”, and do the “hits”

and “flashes” of GRW theories (discussed in the

Appendix) count as information? Why cannot hits

be transmitted instantaneously, but not count as

signals? These objections miss the point. The only

information to which we applied FIN is the choice

made by the experimenter and the response of

the particle, as signaled by the orientation of the

apparatus and the spot on the screen. The speed

of transmission of any other information is irrel-

evant to our argument. The replacement of FIN

by MIN has made this fact explicit. The theorem

has been further strengthened by allowing the

particles’ responses to depend on past half-spaces

rather than just the past light cones of [1].

The Axioms

We now present and discuss the three axioms on

which the theorem rests.
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Figure 1. The three colored cubes in Figure 1a are obtained by rotating the white cube through
45◦◦◦ about its coordinate axes. The 33 directions are the symmetry axes of the colored cubes and
pass through the spots in Figure 1a. Figure 1b shows where these directions meet the white cube.

(i) The SPIN Axiom and the Kochen-Specker Para-

dox

Richard Feynman once said that “If someone

tells you they understand quantum mechanics,

then all you’ve learned is that you’ve met a liar.”

Our first axiom initially seems easy to understand,

but beware—Feynman’s remark applies! The ax-

iom involves the operation called “measuring the

squared spin of a spin 1 particle”, which always

produces the result 0 or 1.

SPIN Axiom: Measurements of the squared (com-

ponents of) spin of a spin 1 particle in three orthog-

onal directions always give the answers 1,0,1 in

some order.

Quantum mechanics predicts this axiom since

for a spin 1 particle the squared spin operators

s2
x , s

2
y , s

2
z commute and have sum 2.

This “101 property” is paradoxical because it

already implies that the quantity that is suppos-

edly being measured cannot in fact exist before

its “measurement”. For otherwise there would be

a function defined on the sphere of possible di-

rections taking each orthogonal triple to 1,0,1 in

some order. It follows from this that it takes the

same value on pairs of opposite directions, and

never takes two orthogonal directions to 0.

We call a function defined on a set of direc-

tions that has all three of these properties a “101

function” for that set. But unfortunately we have:

The Kochen-Specker Paradox: There does not

exist a 101 function for the 33 pairs of directions of

Figure 1 (the Peres configuration).

Proof. We shall call a node even or odd according

as the putative 101 function is supposed to take
the value 0 or 1 at it, and we progressively assign

even or odd numbers to the nodes in Figure 1b as
we establish the contradiction.

We shall use some easily justified orthogonal-

ities—for instance the coordinate triple rotates to
the triple (2,3,−3) that starts our proof, which

in turn rotates (about −1) to the triples (8,−7,9)

and (−8,7,−9) that finish it.
Without loss of generality nodes 1 and −1 are

odd and node 2 even, forcing 3 and −3 to be odd.

Now nodes 4 and -x form a triple with 3, so one of
them (without loss of generality 4) is even. In view

of the reflection that interchanges −4 and x while

fixing 4 and -x, we can without loss of generality
suppose that −4 is also even.

There is a 90◦ rotation about 1 that moves 7, 5, 9

to 4, 6, x, showing that 5 is orthogonal to 4, while
1, 5, 6 is a triple, and also that 6 is orthogonal to

both 7 and 9. Thus 5 is odd, 6 even, and 7, 9 odd.

A similar argument applies to nodes −5, −6, −7,
−9.

Finally, 8 forms a triple with −7 and 9, as does

−8 with 7 and −9. So both these nodes must
be even, and since they are orthogonal, this is a

contradiction that completes the proof. �

Despite the Kochen-Specker paradox, no physi-
cist would question the truth of our SPIN axiom,

since it follows from quantum mechanics, which

is one of the most strongly substantiated scien-
tific theories of all time. However, it is important

to realize that we do not in fact suppose all of
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quantum mechanics, but only two of its testable

consequences, namely this axiom SPIN and the

axiom TWIN of the next section.

It is true that these two axioms deal only with

idealized forms of experimentally verifiable pre-

dictions, since they refer to exact orthogonal and

parallel directions in space. However, as we have

shown in [1], the theorem is robust, in that approx-

imate forms of these axioms still lead to a similar

conclusion. At the same time, this shows that any

more accurate modifications of special relativity

(such as general relativity) and of quantum theory

will not affect the conclusions of the theorem.

(ii) The TWIN Axiom and the EPR Paradox

One of the most curious facts about quantum

mechanics was pointed out by Einstein, Podolsky,

and Rosen in 1935. This says that even though the

results of certain remotely separated observations

cannot be individually predicted ahead of time,

they can be correlated.

In particular, it is possible to produce a pair of

“twinned” spin 1 particles (by putting them into

the “singleton state” of total spin zero) that will

give the same answers to the above squared spin

measurements in parallel directions. Our “TWIN”

axiom is part of this assertion.

The TWIN Axiom: For twinned spin 1 particles,

suppose experimenter A performs a triple exper-

iment of measuring the squared spin component

of particle a in three orthogonal directions x, y, z,

while experimenter B measures the twinned par-

ticle b in one direction, w . Then if w happens to

be in the same direction as one of x, y, z, experi-

menter B’s measurement will necessarily yield the

same answer as the corresponding measurement

by A.

In fact we will restrict w to be one of the 33 di-

rections in the Peres configuration of the previous

section, and x, y, z to be one of 40 particular or-

thogonal triples, namely the 16 such triples of that

configuration and the 24 further triples obtained

by completing its remaining orthogonal pairs.

(iii) The MIN Axiom, Relativity, and Free Will

One of the paradoxes introduced by relativity

was the fact that temporal order depends on the

choice of inertial frame. If two events are space-

like separated, then they will appear in one time

order with respect to some inertial frames, but

in the reverse order with respect to others. The

two events we use will be the above twinned spin

measurements.

It is usual tacitly to assume the temporal causal-

ity principle that the future cannot alter the past.

Its relativistic form is that an event cannot be influ-

enced by what happens later in any given inertial

frame. Another customarily tacit assumption is

that experimenters are free to choose between

possible experiments. To be precise, we mean that

the choice an experimenter makes is not a func-

tion of the past. We explicitly use only some very
special cases of these assumptions in justifying
our final axiom.

The MIN Axiom: Assume that the experiments
performed by A and B are space-like separated.

Then experimenter B can freely choose any one of
the 33 particular directions w , and a’s response
is independent of this choice. Similarly and inde-
pendently, A can freely choose any one of the 40
triples x, y, z, and b’s response is independent of

that choice.
It is the experimenters’ free will that allows the

free and independent choices of x, y, z, andw . But
in one inertial frame—call it the “A-first” frame—
B’s experiment will only happen some time later

than A’s, and so a’s response cannot, by temporal
causality, be affected by B’s later choice of w . In a
B-first frame, the situation is reversed, justifying
the final part of MIN. (We shall discuss the mean-

ing of the term “independent” more fully in the
Appendix.)

The (Strong) Free Will Theorem
Our theorem is a strengthened form of the original
version of [1]. Before stating it, we make our terms
more precise. We use the words “properties”,

“events”, and “information” almost interchange-
ably: whether an event has happened is a property,
and whether a property obtains can be coded by
an information-bit. The exact general meaning of
these terms, which may vary with some theory

that may be considered, is not important, since we
only use them in the specific context of our three
axioms.

To say that A’s choice of x, y, z is free means

more precisely that it is not determined by (i.e.,
is not a function of) what has happened at earlier
times (in any inertial frame). Our theorem is the
surprising consequence that particle a’s response
must be free in exactly the same sense, that it is

not a function of what has happened earlier (with
respect to any inertial frame).

The Free Will Theorem. The axioms SPIN, TWIN
and MIN imply that the response of a spin 1 parti-
cle to a triple experiment is free—that is to say, is
not a function of properties of that part of the uni-

verse that is earlier than this response with respect
to any given inertial frame.

Proof. We suppose to the contrary—this is the
“functional hypothesis” of [1]—that particle a’s
response (i, j, k) to the triple experiment with

directions x, y, z is given by a function of proper-
ties α, . . . that are earlier than this response with
respect to some inertial frame F . We write this as

θFa(α) = one of (0,1,1), (1,0,1), (1,1,0)

(in which only a typical one of the properties α is
indicated).
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Similarly we suppose that b’s response 0 or 1

for the direction w is given by a function

θGb (β) = one of 0 or 1

of properties β, . . . that are earlier with respect to

a possibly different inertial frame G.

(i) If either one of these functions, say θFa , is

influenced by some information that is free in the

above sense (i.e., not a function of A’s choice of

directions and events F-earlier than that choice),

then there must be an an earliest (“infimum”)

F-time t0 after which all such information is avail-

able to a. Since the non-free information is also

available at t0, all these information bits, free and

non-free, must have a value 0 or 1 to enter as

arguments in the function θFa . So we regard a’s

response as having started at t0.

If indeed, there is any free bit that influences

a, the universe has by definition taken a free

decision near a by time t0, and we remove the

pedantry by ascribing this decision to particle a.

(This is discussed more fully in the section “Free

Will Versus Determinism”.)

(ii) From now on we can suppose that no such

new information bits influence the particles’ re-

sponses, and therefore that α and β are functions

of the respective experimenters’ choices and of

events earlier than those choices.

Now an α can be expected to vary with x, y, z

and may or may not vary withw . However, whether

the function varies with them or not, we can intro-

duce all of x, y, z,w as new arguments and rewrite

θFa as a new function (which for convenience we

give the same name)

θFa(x, y, z,w ;α′) (⋆)

of x, y, z,w and properties α′ independent of

x, y, z,w .

To see this, replace any α that does depend

on x, y, z,w by the constant values α1, . . . , α1320 it

takes for the 40 × 33 = 1320 particular quadru-

ples x, y, z,w we shall use. Alternatively, if each

α is some function α(x, y, z,w) of x, y, z,w , we

may substitute these functions in (⋆) to obtain

information bits independent of x, y, z,w .
Similarly, we can rewrite θGb as a function

θGb (x, y, z,w ;β′)

of x, y, z,w and properties β′ independent of

x, y, z,w .

Now for the particular choice of w that B will

make, there is a value β0 for β′ for which

θGb (x, y, z,w ;β0)

is defined. By the above independence of β′ from
w , the function θGb (x, y, z,w ;β0) is defined with

the same value β0 for all 33 values of w . (The fact

that MIN allows B to freely vary his choice of w

makes this intuitively clear.)

We now define

θG0 (w) = θ
G
b (x, y, z,w ;β0) ,

noting that since by MIN the response of b cannot
vary with x, y, z, θG0 is a function just of w .

Similarly there is a value α0 of α′ for which the
function

θF1 (x, y, z) = θ
F
a(x, y, z,w ;α0)

is defined for all 40 triples x, y, z, and it is al-
so independent of w , which argument we have
therefore omitted.

But now by TWIN we have the equation

θF1 (x, y, z) = (θ
G
0 (x), θ

G
0 (y), θ

G
0 (z)) .

However, since by SPIN the value of the left-hand
side is one of (0,1,1), (1,0,1), (1,1,0), this shows
that θG0 is a 101 function, which the Kochen-
Specker paradox shows does not exist. This com-
pletes the proof.

Locating the Response
We nowprovide a fullerdiscussionofsome delicate
points.

(i) Since the observed spot on the screen is the
result of a cascade of slightly earlier events, it
is hard to define just when “the response” really
starts. We shall now explain why one can regard
a’s response (say) as having already started at any
time afterA’s choice when all the free information
bits that influence it have become available to a.

Let N(a) and N(b) be convex regions of space-
time that are just big enough to be “neighborhoods
of the respective experiments”, by which we mean
that they contain the chosen settings of the ap-
paratus and the appropriate particle’s responses.
Our proof has shown that if the backward half-
space t < tF determined by a given F-time tF is
disjoint from N(a), then the available informa-
tion it contains is not enough to determine a’s
response. On the other hand, if each of the two
such half-spaces contains the respective neigh-
borhood, then of course they already contain the
responses. By varying F and G, this suffices to lo-
cate the free decisions to the two neighborhoods,
which justifies our ascribing it to the particles
themselves.

(ii) We remark that not all the information in the
G-backward half-space (say) need be available to
b, because MIN prevents particle b’s function θGb
from using experimenter A’s choice of directions
x, y, z. The underlying reason is of course, that rel-
ativity allows us to view the situation from a B-first
frame, in which A’s choice is made only later than
b’s response, so that A is still free to choose an
arbitrary one of the 40 triples. However, this is our
only use of relativistic invariance—the argument
actually allows any information that does not re-
veal A’s choice to be transmitted superluminally,
or even backwards in time.
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(iii) Although we’ve precluded the possibility

that θGb can vary with A’s choice of directions, it is

conceivable that it might nevertheless vary with a’s
(future!) response. However, θGb cannot be affected

by a’s response to an unknown triple chosen by

A, since the same information is conveyed by the

responses (0,1,1), to (x, y, z), (1,0,1) to (z, x, y),

and (1,1,0) to (y, z, x). For a similar reason θFa
cannot use b’s response, since B’s experiment

might be to investigate some orthogonal triple

u, v,w and discard the responses corresponding

to u and v .

(iv) It might be objected that free will itself

might in some sense be frame-dependent. Howev-

er, the only instance used in our proof is the choice

of directions, which, since it becomes manifest in

the orientation of some macroscopic apparatus,

must be the same as seen from arbitrary frames.

(v) Finally, we note that the new proof involves

four inertial frames—A-first, B-first, F , and G.

This number cannot be reduced without weak-

ening our theorem, since we want it to apply to

arbitrary frames F and G, including for example

those in which the two experiments are nearly

simultaneous.

Free Will Versus Determinism

We conclude with brief comments on some of the

more philosophical consequences of the Free Will

Theorem (abbreviated to FWT).

Some readers may object to our use of the

term “free will” to describe the indeterminism of

particle responses. Our provocative ascription of

free will to elementary particles is deliberate, since

our theorem asserts that if experimenters have a

certain freedom, then particles have exactly the

same kind of freedom. Indeed, it is natural to

suppose that this latter freedom is the ultimate

explanation of our own.

The humans who choose x, y, z, and w may of

course be replaced by a computer program con-

taining a pseudo-random number generator. If we

dismiss as ridiculous the idea that the particles

might be privy to this program, our proof would

remain valid. However, as we remark in [1], free

will would still be needed to choose the random

number generator, since a determined determinist

could maintain that this choice was fixed from the

dawn of time.

We have supposed that the experimenters’

choices of directions from the Peres configuration

are totally free and independent. However, the

freedom we have deduced for particles is more

constrained, since it is restricted by the TWIN

axiom. We introduced the term “semi-free” in [1]

to indicate that it is really the pair of particles

that jointly makes a free decision.

Historically, this kind of correlation was a great

surprise, which many authors have tried to ex-

plain away by saying that one particle influences
the other. However, as we argue in detail in [1],

the correlation is relativistically invariant, unlike

any such explanation. Our attitude is different:
following Newton’s famous dictum “Hypotheses

non fingo”, we attempt no explanation, but accept

the correlation as a fact of life.
Some believe that the alternative to determin-

ism is randomness, and go on to say that “allowing

randomness into the world does not really help
in understanding free will.” However, this objec-

tion does not apply to the free responses of the

particles that we have described. It may well be
true that classically stochastic processes such as

tossing a (true) coin do not help in explaining free

will, but, as we show in the Appendix and in §10.1
of [1], adding randomness also does not explain

the quantum mechanical effects described in our

theorem. It is precisely the “semi-free” nature of
twinned particles, and more generally of entan-

glement, that shows that something very different

from classical stochasticism is at play here.
Although the FWT suggests to us that determin-

ism is not a viable option, it nevertheless enables

us to agree with Einstein that “God does not play
dice with the Universe.” In the present state of

knowledge, it is certainly beyond our capabilities

to understand the connection between the free
decisions of particles and humans, but the free

will of neither of these is accounted for by mere
randomness.

The tension between human free will and phys-

ical determinism has a long history. Long ago,
Lucretius made his otherwise deterministic parti-

cles “swerve” unpredictably to allow for free will.

It was largely the great success of deterministic
classical physics that led to the adoption of deter-

minism by so many philosophers and scientists,

particularly those in fields remote from current
physics. (This remark also applies to “compati-

balism”, a now unnecessary attempt to allow for

human free will in a deterministic world.)
Although, as we show in [1], determinism may

formally be shown to be consistent, there is no

longer any evidence that supports it, in view of the
fact that classical physics has been superseded by

quantum mechanics, a non-deterministic theory.

The import of the free will theorem is that it is not
only current quantum theory, but the world itself

that is non-deterministic, so that no future theory

can return us to a clockwork universe.

Appendix. Can There Be a Mechanism for
Wave Function Collapse?
Granted our three axioms, the FWT shows that
nature itself is non-deterministic. It follows that

there can be no correct relativistic deterministic
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theory of nature. In particular, no relativistic ver-

sion of a hidden variable theory such as Bohm’s

well-known theory [4] can exist.

Moreover, the FWT has the stronger impli-

cation that there can be no relativistic theory

that provides a mechanism for reduction. There

are nonlinear extensions of quantum mechanics,

which we shall call collectively GRW theories (after

Ghirardi, Rimini, and Weber, see [5]) that attempt

to give such a mechanism. The original theories

were not relativistic, but some newer versions

make that claim. We shall focus here on Tumul-

ka’s theory rGRWf (see [6]), but our argument

below applies, mutatis mutandis, to other rela-

tivistic GRW theories. We disagree with Tumulka’s

claim in [7] that the FWT does not apply to rGRWf,

for reasons we now examine.

(i) As it is presented in [6], rGRWf is not a de-

terministic theory. It includes stochastic “flashes”

that determine the particles’ responses. However,

in [1] we claim that adding randomness, or a

stochastic element, to a deterministic theory does

not help:

“To see why, let the stochastic element in a

putatively relativistic GRW theory be a sequence

of random numbers (not all of which need be

used by both particles). Although these might

only be generated as needed, it will plainly make

no difference to let them be given in advance.

But then the behavior of the particles in such a

theory would in fact be a function of the informa-

tion available to them (including this stochastic

element).”

Tumulka writes in [7] that this “recipe” does

not apply to rGRWf:

“Since the random element in rGRWf is the set

of flashes, nature should, according to this recipe,

make at the initial time the decision where-when

flashes will occur, make this decision ‘available’

to every space-time location, and have the flash-

es just carry out the pre-determined plan. The

problem is that the distribution of the flashes

depends on the external fields, and thus on the

free decision of the experimenters. In particular,

the correlation between the flashes in A and those

in B depends on both external fields. Thus, to

let the randomness ‘be given in advance’ would

make a big difference indeed, as it would require

nature to know in advance the decision of both

experimenters, and would thus require the theory

either to give up freedom or to allow influences to

the past.”

Thus, he denies that our “functional hypothe-

sis”, and so also the FWT, apply to rGRWf. However,

we can easily deal with the dependence of the

distribution of flashes on the external fields FA
and FB , which arise from the two experimenters’

choices of directions x, y, z, and w .1 There are

40 × 33 = 1320 possible fields in question. For

each such choice, we have a distribution X(FA, FB)

of flashes, i.e., we have different distributions

X1, X2, . . . , X1320. Let us be given “in advance”

all such random sequences, with their different

weightings as determined by the different fields.

Note that for this to be given, nature does not have

to know in advance the actual free choices FA (i.e.,

x, y, z) and FB (i.e., w ) of the experimenters. Once

the choices are made, nature need only refer to
the relevant random sequence Xk in order to emit

the flashes in accord with rGRWf.

If we refer to the proof of the FWT, we can see

that we are here simply treating the distributions

X(FA, FB) [= X(x, y, z,w)] in exactly the same way

we treated any other information-bit α that de-

pended on x, y, z,w . There we substituted all the

values α1, . . . , α1320 for α in the response function

θa(x, y, z,w ;α). Thus, the functional hypothesis

does apply to rGRWf, as modified in this way by

the recipe.

Tumulka [7] grants that if that is the case, then
rGRWf acquires some nasty properties: In some

frame Λ, “[the flash] fΛy will entail influences to

the past.” Actually, admitting that the function-
al hypothesis applies to rGRWf has more dire

consequences—it leads to a contradiction. For if,

as we just showed, the functional hypothesis ap-

plies to the flashes, and the first flashes determine

the particles’ responses, then it also applies to

these responses, which by the FWT leads to a

contradiction.

(ii) Another possible objection is that in our

statement of the MIN axiom, the assertion that a’s

response is independent of B’s choice was insuf-
ficiently precise. Our view is that the statement

must be true whatever precise definition is given

to the term “independent”, because in no inertial

frame can the past appearance of a macroscopic

spot on a screen depend on a future free decision.

It is possible to give a more precise form of MIN

by replacing the phrase “particle b’s response is

independent of A’s choice” by “if a’s response is

determined by B’s choice, then its value does not

vary with that choice.” However, we actually need

precision only in the presence of the functional

hypothesis, when it takes the mathematical form
that a’s putative response function θFa cannot in

fact vary with B’s choice. To accept relativity but

deny MIN is therefore to suppose that an exper-

imenter can freely make a choice that will alter

the past, by changing the location on a screen of

a spot that has already been observed.

1This unfortunately makes rGRWf non-predictive—it can

only find the flash distribution that “explains” either

particle’s behavior when both experimenters’ fields are

given.
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Tumulka claims in [7] that since in the twinning
experiment the question of which one of the first
flashes at A and B is earlier is frame-dependent, it
follows that the determination of which flash influ-
ences the other is also frame-dependent. However,
MIN does not deal with flashes or other occult
events, but only with the particles’ responses as
indicated by macroscopic spots on a screen, and
these are surely not frame-dependent.

In any case, we may avoid any such questions
about the term “independent” by modifying MIN
to prove a weaker version of the FWT, which nev-
ertheless still yields a contradiction for relativistic
GRW theories, as follows.

MIN′: In anA-first frame, B can freely choose any
one of the 33 directions w , and a’s prior response
is independent of B’s choice. Similarly, in a B-first
frame, A can independently freely choose any one
of the 40 triples x, y, z, and b’s prior response is
independent of A’s choice.

To justify MIN′ note that a’s response, signaled
by a spot on the screen, has already happened in
anA-first frame, and cannot be altered by the later
free choice of w by B; a similar remark applies to
b’s response. In [7], Tumulka apparently accepts
this justification for MIN′ in rGRWf: “. . . the first
flash fA does not depend on the field FB in a frame
in which the points of B are later than those of A.”

This weakening of MIN allows us to prove a
weaker form of the FWT:

FWT′: The axioms SPIN, TWIN, and MIN′ imply
that there exists an inertial frame such that the re-
sponse of a spin 1 particle to a triple experiment is
not a function of properties of that part of the uni-
verse that is earlier than the response with respect
to this frame.

This result follows without change from our
present proof of the FWT by taking F to be an
A-first frame and G a B-first frame, and applying
MIN′ in place of MIN to eliminate θFa ’s dependence

on w and θGb ’s dependence on x, y, z.
We can now apply FWT′ to show that rGRWf’s

first flash function (fΛy of [4]), which determines

a’s response, cannot exist, by choosing Λ to be the
frame named in FWT′.

The Free Will Theorem thus shows that any
such theory, even if it involves a stochastic ele-
ment, must walk the fine line of predicting that for
certain interactions the wave function collapses to
some eigenfunction of the Hamiltonian, without
being able to specify which eigenfunction this is.
If such a theory exists, the authors have no idea
what form it might take.
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Mathematicians rarely make it into 
the newspaper, much less into fashion 
spreads. But on September 21, 2008, the 
fashion section of the New York Times
Sunday magazine carried a picture of An-
nalisa Crannell, a professor of mathemat-
ics at Franklin & Marshall College (and a 
book reviewer in this issue of the Notices).
The magazine contacted Crannell saying 
that it was doing a photo portfolio about 
academics and had chosen her because 
she had received the Haimo Award from 
the Mathematical Association of America. 
“By phone, I learned that the ‘photo port-
folio’ was really about fashion, which was 
pretty funny because part of my Haimo 
Award speech included the price tags of 
the clothes I usually wear (US$1 or less),” 
she said. 

A crew of eight spent three hours 
dressing Crannell and doing her hair and 
makeup. One of them told Crannell he 
loves mathematics and asked her some 
questions about fractals. The picture of 
Crannell, which can be found on the Web, 
does not show the US$2,500 Gucci boots, 
which Crannell called “pretty darned un-
comfortable”. “I was wearing my blue AMS 
‘I love math’ bracelet that I’d picked up at 
MathFest, and the guy admired it so I gave 
it to him,” Crannell recalled. “I didn’t get 
to keep any of the clothes they brought, 
but he got to keep my bracelet!”

232 Notices of the AMS Volume 56, Number 2


