
1 

 

ASTRONOMICAL MAGNITUDES 

Why Can We See the Moon and Planets in Daylight? 

          Mike Luciuk 

Several different types of “magnitude” are used in astronomy. Most commonly, apparent 

magnitudes are used to describe the brightness of stellar and solar system objects while 

absolute magnitudes are required to assess intrinsic brightness. A method is described to 

evaluate extended object versus sky brightness to calculate contrast, which explains why we 

can see Venus in daylight sky. There are specific procedures for calculating absolute magnitudes 

of asteroids, comets, and meteors. Factors such as color, albedo, and phase angles must, at 

times, be considered in their evaluation. The article will cover this topic with example 

calculations that can provide a firmer understanding of astronomical magnitudes. 

1. SOME HISTORY 

Greek astronomers were thought to be the first to classify stars by their brightness. Around 129 

B. C. Hipparchus ranked the 1,080 stars in his catalogue in a simple way; the brightest were 

termed “first magnitude,” the next brightest were “second magnitude” through to the “sixth 

magnitude.” It was a rough estimation of star brightness.  Our knowledge of Hipparchus is via 

Ptolemy, who, in the 2
nd

 century A. D., utilized a similar stellar brightness scheme in his 

Almagest. Of the 1, 028 stars in his catalogue, 156 were given the descriptions of a little more 

or a little less than the integer values, but his precision was off by ± 0.6 magnitudes. The Persian 

astronomer Abu’l-Husayn al-Sufi re-estimated the Almagest’s magnitude values in the tenth 

century. Tycho Brahe (1546-1601) added to the list of magnitudes, but with no precision 

improvement. 

 The introduction of the telescope allowed astronomers to see fainter stars. Galileo 

(1564-1642) estimated he could see magnitude +12 stars. However, it wasn’t until William 

Herschel (1738-1822) that magnitude accuracy reached ± 0.2 magnitudes. He felt that 

brightness was solely based on stellar distance, and (unsuccessfully) attempted to delineate the 

Milky Way based on the distribution of stars of different magnitudes. To standardize 

magnitudes, Norman Pogson (1829-1891) proposed that a brightness ratio of 100:1 be 

equivalent to five magnitudes. In other words, a difference of one magnitude implied a 

brightness difference of 2.512. This Pogson ratio is now the accepted magnitude standard. 

Today, the eyeball has been supplanted by CCD photometry for very accurate magnitude 

estimation. 

2. BASIC RADIATION PHYSICS 

As a body gets hotter, its peak radiated wavelength gets smaller. Wien’s Displacement Law 

illustrates this as follows: 

                                                                  0.002898
peak Tλ =                                                              (1) 
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Where peakλ  is in meters and T is in degrees Kelvin. 

Note the visible range in Figure 1. The Sun’s intensity peaks in the visible range while hotter 

stars peak in the ultraviolet, versus cooler stars in the infrared. The eyeball judges brightness 

via radiation in the visible spectrum, but total radiation is the area under each temperature 

curve in the diagram, most of which cannot be seen. 

 

An important radiation 

energy/temperature relationship is the 

Stefan-Boltzmann Law:  

                                                                                             
4F Tσ=           (2) 

Where F = flux, watts/m
2
, σ  = Stefan-

Boltzmann constant, 5.67 x 10
-8

 

watts/m
2
/T

4
, T in Kelvin. 

The total luminosity from an object would 

be:                                                                                                                           
2 44L R Tπ σ=     (3) 

Where L is luminosity in watts, and R is the 

object’s radius. Radiation output depends 

on a body’s temperature and size. The 

perceived radiation also varies inversely as 

the square of the distance from the object. 

2.1 STAR COLOR 

Since the radiation spectrum of stars depends on temperature, astronomers have devised a 

method of determining their temperature via filters. Figure 2 illustrates the wavelength 

response of standard U (ultraviolet), B (blue) and V (visual) filters. Magnitude measurements 

through such filters are used to create a color index (CI) for a star. Examples are U-B or B-V 

color indices with B-V the most used. The Sun’s B-V index is 0.63. The color index is positive for 

stars redder than a white star (A0 V stars on the HD diagram) and negative for stars bluer than a 

white star. Equation 4 is an approximate equation to calculate temperature of stars similar to 

the Sun. 
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Figure 1. Wein’s Displacement Law  
http://feps.as.arizona.edu/outreach/bbwein.html  
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FIGURE 2. UBV Bandpass, Angstroms 

http://web.njit.edu/~gary/321/Lecture2.html  

3. ASTRONOMICAL MAGNITUDES 

Astronomical magnitudes are dimensionless values. They are the ratio of a star’s radiation, to 

that of some standard star. The standard star used is Vega. Thus, Vega has U = V = B = 0 values 

by definition so Vega has zero color indices. Bolometric magnitudes take into account all the 

radiation of a star, not just those in the visible range. Since the atmosphere blocks some 

wavelengths, bolometric magnitudes can only be easily obtained from space-borne 

instruments, like the Hipparcos device and will not be discussed in this article. 

3.1. APPARENT MAGNITUDE 

We define apparent magnitude as a logarithmic luminosity ratio of a body to some standard: 

                 
0

2.5log( )Lm L= −                                                                 (5) 

Where m is the apparent magnitude, L is the luminosity of a body as determined through a V 

filter, and L0 is the standard’s luminosity, the luminosity of Vega. Vega has been assigned an m = 

0 although its actual magnitude is 0.03. It follows that  

                                                         1
1` 2

2
2.5log( )Lm m L− = −                                                         (6) 

Equation 5 can be rewritten as: 
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Figure 3 illustrates the apparent magnitude relationship to luminosity. 

 

FIGURE 3. Luminosity versus Apparent Magnitude  

http://www.coseti.org/9006-023.htm 

EXAMPLE 1. The Sun is about 480,000 times more luminous than the full Moon. What is the 

difference in their apparent magnitude? 

      Lmoon =1, LSun = 480,000   
480,000

2.5log( ) 2.5log( ) 14.2
1

Sun

moon

L
m

L
∆ = − = − = − magnitude.  

The Sun’s apparent magnitude is -26.8, while the full moon’s is -12.6. 

EXAMPLE 2. The individual apparent magnitudes of two binary stars are +2 and +4. What is the 

combined apparent magnitude of the binary system? 

It’s obvious we cannot simply add or subtract the two magnitudes. We must revert to their 

original luminosities using equation 7, which are additive, then convert the sum to magnitude 

using Equation 5. 
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L L L
− −+ += + = + =  from Equation 7 

                         
0

2.5log( ) 2.5log(0.1836) 1.840binary
binary

L
m L= − = − =  magnitude 

EXAMPLE 3. Sirius is 8.6 light years distant, with an apparent magnitude of -1.5. What would 

the apparent magnitude of the Sun be at Sirius’ distance? 

There are 63,241 AU in a ly so Sirius is 543,873 AU distant. The Sun would be 1/(543,873)
2
 

fainter at Sirius’ distance. At 8.6 ly, the Sun’s magnitude would change by  

                            2
12.5log( ) 28.7
(543,873)Sunm∆ = − = magnitudes fainter 

So the Sun’s apparent magnitude would be -26.8 + 28.7 = +1.9 at Sirius’ distance, a star slightly 

brighter than Polaris. 

EXAMPLE 4. At opposition, Mars apparent magnitude m1 was -1.6 and solar distance r1 was1.55 

AU. At opposition seven years later, r2 was 1.64 AU. Find Mars apparent magnitude, m2.  

At opposition, the Mars-Earth distance  d  =  r – 1. Also, perceived luminosity varies inversely as 

r
2
 and d

2
. Using equation 6: 

                             
2 2

1 2 2 2 2
1 2 2 2

2 1 1 1 1

( 1)
2.5log( ) 2.5log( ) 5log(

( 1)

L d r r r
m m

L d r r r

−− = − = − = −
−

 

                                            
2

2 2

1.64 1.64
1.6 5log( ) 1.15

1.55 1.55
m

−= − + = −
−

 

The apparent magnitude at Mars’ second opposition was -1.15. 

3.1.1. MAGNITUDE per ARCSECOND 2
  

Astronomers sometimes find use for magnitudes based on an object’s arcseconds
2
 area, rather 

than its entire area. This is especially appropriate for extended objects like the Sun, Moon, 

nearby solar system objects, nebula, galaxies and even the sky itself. The Observer’s Handbook 

has a chapter (Magnification and Contrast in Deep Sky Observing) stating:  

… the visibility of an object is a function of its apparent size and contrast, where contrast 

is the ratio of an object’s surface brightness (neglecting the contribution of the 

background sky) to that of the background sky (p. 50). 

 Determining an object’s contrast requires evaluations of magnitude per arcsecond
2
 for the 

object and the sky background. 

EXAMPLE 5. At opposition, Jupiter has an apparent visual magnitude of -2.5, with a diameter of 

49.8 arcseconds. Find Jupiter’s magnitude/arcsecond
2
. 
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Jupiter’s area = π/4(49.8)2 = 1,948 arcseconds
2
.  

        
2.5( )2.5

0
10 10JupiterL

L
−−= =   and   2sec

0

102.5log( ) 2.5log( ) 5.721948
Jupiter

a

L
m L= − = − =

 

The Observer’s Handbook has a useful approximation to calculate S, magnitude/arcsecond
2
: 

                                                          S = m + 2.5log(2827 + ab)                                                      (8) 

Where a and b are the dimensions of an elliptical object in arcminutes. Using equation (8) yields 

a Jupiter magnitude/arcsecond
2
 of 6.13, about 7% over the exact value.  

  

 

FIGURE 4. Star Visibility versus Sky Brightness 

Clark, R. N., 1990, Visual Astronomy of the Deep Sky, Sky Publishing Corp. p 16 
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Figure 4 illustrates the visibility of stars on sky background brightness based on 

magnitude/arcsecond
2
, for a trained observer with dark adapted vision. It shows why bright 

planets may be naked-eye visible during daylight, especially if one knows where to look. Normal 

daylight skies have magnitude/arcsecond
2
 of about 4.0. When the Sun is 5

0
 above the horizon, 

the zenith sky has a magnitude/arcsecond
2
 of about 6.5. Jupiter’s 5.72 magnitude/arcsecond

2
 

versus daylight sky’s 6.5 magnitude/arcsecond
2
 has sufficient contrast to be visible just before 

sunset or just after sunrise. The full Moon’s size and 3.6 magnitude/arcsecond
2
 makes for an 

easy daylight sighting. At greatest elongation, Venus’ magnitude/arcsecond
2
 is 1.9. The large 

contrast with the daylight sky makes Venus a relatively easy naked-eye object if one is aware of 

its location.  

3.2 ABSOLUTE MAGNITUDE 

Since stellar brightness depends on distance, astronomers utilize magnitudes at a standard 

distance, 10 parsecs (32.62 ly), to compare stellar intrinsic luminosity. We already determined 

in Example 3 that if the Sun was at Sirius’s distance, it would appear 28.7 magnitudes fainter. 

Absolute magnitudes are used in the Hertzsprung-Russell diagram as illustrated in Figure 5. The 

curved diagonal area on the diagram contains main sequence stars, those that are “burning” 

hydrogen. The absolute magnitude of the Sun is +4.8.  The right ordinate illustrates luminosity 

versus that of the Sun. 

 

FIGURE 5. Hertzsprung-Russell Diagram 

http://hyperphysics.phy-astr.gsu.edu/Hbase/Astro/he rrus.html  

 We’ll relate three quantities: apparent magnitude, m; absolute magnitude, M; and 

stellar distance in parsecs, d. (1 parsec = 3.26 light years.) 

                                                           m - M = 5 log (d) – 5                                                            (9)  
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Equation 9 can be rewritten as follows: 

                                                                 
5

510
m M

d
− +

=                                                                   (10) 

The expression (m – M) is called the distance modulus. The distance modulus is negative if a 

star is closer than 10 parsecs. 

EXAMPLE 6. Find the absolute magnitude of the Sun with m = -26.8. 

We need the Sun’s distance to be in parsecs. There are 206,265 AU in a parsec, so d = 

1/206,265. Using Equation 9, 

                               M = m – 5 log (d) + 5 = -26.8 – 5 log (1/206,265) + 5 = 4.77 

EXAMPLE 7. A star’s m = 8 and M = -2. Find the star’s distance. 

Notice that the distance modulus is 8 – (-2) = 10. This indicates the star is more distant than 10 

parsecs. Using Equation 10, 

                                    

5 8 ( 2) 5
35 510 10 10 1,000

m M

d
− + − − +

= = = =  parsecs. 

3.3. ASTEROID ABSOLUTE MAGNITUDES 

An asteroid's absolute magnitude, H is the visual magnitude an observer would record if the 

asteroid was located 1 astronomical unit (AU) away and 1 AU from the Sun at a zero phase 

angle. Of course, this definition would place the observer at the center of the Sun, so H has to 

be calculated. At zero phase angle, the Sun-asteroid-Earth angle, an asteroid’s apparent 

magnitude m, and absolute magnitude H are related as follows: 

                                                             5log 5logm H r= + ∆ +                                                  (11) 

Where ∆  and r are distances in AU from the Earth and Sun, respectively. 

 The IAU has defined a plutoid as a “dwarf planet” with a semi-major axis greater than 

Neptune. It is usually impossible to optically determine if distant KBOs are in hydrostatic 

equilibrium (round). The IAU assumes an object is a plutoid if its absolute magnitude, H, is +1 or 

brighter. Using equation 11, a body at 40 AU must have an apparent magnitude of at least +17 

to be considered a “dwarf planet” and a plutoid. The plutoid, Makemake, has an H of -0.48 and 

at opposition, an m of +16.7. 

 A sun-lit body’s magnitude depends on its albedo, the ratio of reflected to incoming 

luminosity. In addition, its phase angle can have a major effect on magnitude due to what is 

called the opposition effect. This is evident in comparing lunar magnitudes during phase 
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changes. We’ll not cover the complex semi-empirical formula relating an asteroid’s apparent 

magnitude m, and its absolute magnitude H, at varying phase angles. 

Astronomers determine asteroid sizes based on H magnitudes and assumptions of albedo. 

Table 1 shows asteroid sizes (km) with different magnitude and albedo assumptions: 

H Albedo  
0.50 

Albedo  
0.25 

Albedo  
0.05 

-2.0 4,700 6,700 14,900 

0 1,900 2,600 5,900 

+2.0 750 1,050 2,400 

+4.0 300 420 940 

+6.0 120 170 370 

+8.0 45 65 150 

+10.0 19 25 60 

+12.0 7 11 24 

+14.0 3 4 9 

TABLE 1. Asteroid Sizes (km) 

http://cfa-www.harvard.edu/iau/lists/Sizes.html  

 

3.4. COMET MAGNITUDES 

Comet brightness varies inversely as 2∆ (Earth distance) and inversely as r
n
 (r = heliocentric 

distance). The photometric exponent n typically has a value of about 4. The relationship 

between a comet’s apparent magnitude m, and absolute magnitude H10 would be: 

                                                        10 5log 10 logm H r= + ∆ +                                                      (12) 

 As we all know, predicting cometary brightness is not for the faint-hearted. It is difficult 

to forecast magnitude changes for a new comet approaching the Sun.  Comet Kohoutek (1973) 

was unusually bright when discovered near Jupiter’s orbital distance and there was speculation 

that it could be “the comet of the century.” However, it was only a disappointing magnitude +4 

in the night sky after perihelion. 

3.5. METEOR MAGNITUDES 
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Apparent meteor magnitudes are usually assessed by comparison to nearby stars. Absolute 

magnitude for meteors is defined as the magnitude of a meteor if it was at the zenith at a 

height of 100 km. Figure 6 Is an illustration of how a meteor’s distance d is affected by 

increasing zenith angle z: 

 

FIGURE 6. Meteor Distance (d) Relationship to Zenit h Angle (z) 

http://www.amsmeteors.org/richardson/distance.html 

 

Assuming a meteor height of h and a zenith angle z, the distance d to the meteor is: 

                                  
7 2 4 2 34.07 10 cos ( ) 1.28 10 6.38 10 cos( )d x z x h h x z= + + −                           (13) 

Where d and h are in km.  

A relatively accurate “flat earth” solution for d is 

                                                                  cos( )
hd z=                                                                (14) 

EXAMPLE 8. A magnitude +2 meteor is sighted with a zenith angle of 60
0
. Assume we already 

know its height h, is 120 km. Find the absolute magnitude of the meteor. 

Using Equation 13, with z = 60
0
 and h = 120 km yields distance d = 234 km. It’s obvious that if 

the meteor were at the zenith and a height of 100 km, it would be brighter. The luminosity 

increase would be 

                                                         
2 2

2234 120
[ ] 6.92

100

+ =  

So the absolute magnitude of the meteor would be 



11 

 

                                                   M = +2 – 2.5 log 6.92 = -0.1 

An additional factor that should be considered is that of atmospheric extinction. At a zenith 

angle of 60
0
, atmospheric extinction is about 0.28 magnitudes more than at the zenith (see AAI 

Tutorials “Atmospheric Extinction and Refraction”), so the actual absolute magnitude of the 

meteor would be -0.10 – 0.28 = -0.38. 
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