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DESIGNS EXIST!

[after Peter Keevash]

by Gil KALAI

INTRODUCTION

A set S of q-subsets of an n-set X is a design with parameters (n, q, r, λ) if every

r-subset of X belongs to exactly λ elements of S. There are some necessary divisibility

conditions for the existence of such a design, namely that

(1)

(
q − i
r − i

)
divides λ

(
n− i
r − i

)
, 0 ≤ i ≤ r − 1.

To see that the divisibility conditions are necessary, fix any i-subset I of X and

consider the sets in S that contain I.

The following result was conjectured in the 19th century and was recently proved by

Peter Keevash.

Theorem 0.1 ([Kee14]). — For fixed q, r, and λ, there exist n0(q, r, λ) such that if

n > n0(q, r, λ) satisfies the divisibility conditions (1) then a design with parameters

(n, q, r, λ) exists.

In other words, for fixed q, r, and λ, the divisibility conditions are sufficient apart

from a finite number of exceptional values of n.

A case of special interest is when λ = 1. A design of parameters (n, q, r, 1) is called a

Steiner system of parameters (n, q, r). The question if Steiner systems of given param-

eters exist goes back to works of Plücker, Kirkman, and Steiner. Until Keevash’s result

not a single Steiner system for r > 5 was known to exist.

The presentation of Keevash’s work in this paper is based on Keevash’s original paper

[Kee14], his Jerusalem videotaped lectures [KeeV], and his subsequent paper [Kee15].

It is also based on lecture notes and personal explanations by Jeff Kahn. (This version

is still a draft.)
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1. REGULARITY, SYMMETRY AND RANDOMNESS

1.1. Between regularity and symmetry

An object is “regular” if it looks locally the same (for a certain notion of “locality”),

and it is “symmetric” if it admits a transitive group action (on its “local” pieces). The

interplay between regularity and symmetry is of interest in several parts of mathematics.

For example, a regular graph is a graph where every vertex is adjacent to the same

number of neighbors, and every graph whose group of automorphisms act transitively

on its vertices is regular. Regular graphs need not be symmetric (most of them have

no non-trivial automorphisms), but there are still various connections between general

regular graphs and symmetry.

Designs are regular objects. (The local pieces can be regarded as the r-subsets of the

ground set.) You can get them from groups acting transitively on r-sets.

Proposition 1.1. — Let Γ be a t-transitive permutation group. Then the orbit of a

set of size k is a block design so that every set of size r belongs to the same number of

blocks.

However, it follows from the classification of finite simple groups that

Theorem 1.2. — Let Γ be a t-transitive permutation group, t > 5, then G is An or Sn.

1.2. The probabilistic method and quasi-randomness

The proof of the existence of designs is probabilistic. In order to prove the existence

of objects of some kind satisfying a property P, one proves that for a suitable probabil-

ity distribution on all objects of this kind there is a positive probability for property P

to hold. The probabilistic method is of central importance in combinatorics (and other

areas) [AS00]. Keevash defines a complicated combinatorial process with random in-

gredients for building a design, and shows that with positive probability it leads to the

desired construction.

Quasi-randomness refers to deterministic properties of mathematical structures which

allows them to behave (for certain restricted purposes) “as if they were random.” (1)

Quasi random properties of primes are, of course, of much importance. In graph theory,

a sequence of graphs Gn (where Gn has n vertices) is quasi-random if the number of

induced 4-cycles C4 is 1
64

(
n
4

)
(1 + o(1)). This important notion was introduced inde-

pendently by Thomasson [Tho85] and by Chung, Graham, and Wilson [CGW89] (with

extensions to hypergraphs by Chung and Graham [CG89]). A sequence of subsets

An ⊂ {1, 2, . . . , n} can be called quasi-random (for certain purposes), if the maximum

Fourier coefficients of 1An tends to zero with n.

1. There are even cases that quasi-randomness of some kind can be attributed to arbitrary structures

as is the case in Szemerédi regularity lemma which describes quasi-random structure on arbitrary

graphs.
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Quasi randomness is a central concept in modern combinatorics and two examples

are its usage in Szemerédi’s theorem and many of its extensions, and in the study of

expanders and Ramanujan graphs. The first move made by Keevash is to vastly extend

the situation in discussing very general decomposition of quasirandom hypergraphs.

2. KEEVASH’S RESULTS: EDGE-DECOMPOSITION OF QUASI-

RANDOM HYPERGRAPHS AND THE NUMBER OF DESIGNS

Keevash vastly extended theorem 0.1 to describe sufficient conditions for general

H-decompositions of quasirandom hypergraphs. We will describe in this section the

general results closely following [Kee14] Section 1.1.

A hypergraph G consists of a vertex set V (G) and an edge set E(G), of subsets of

V (G). If every edge has size r we say that G is an r-uniform hypergraph. For I ⊂ V (G),

the link G(I) of R is the (r|I|)-uniform hypergraph

G(I) = {S ⊂ V (G)\I : I ∪ S ∈ E(G)}.

For an r-uniform hypergraph H, an H-decomposition of G is a partition of E(G) into

sub-hypergraphs isomorphic to H. Let Kq
r be the complete r-uniform hypergraph on

q vertices, namely, an r-uniform hypergraph whose edges are all r-subsets of a set of

size q. A Steiner system with parameters (n, q, r) is equivalent to a Kq
r -decomposition

of Kn
r

The next definition generalizes the necessary divisibility conditions described above.

Suppose G is an r-uniform hypergraph. We say that G is Kr
q -divisible if

(
q−i
r−i

)
divides

|G(I)| for any i-set I ⊂ V (G), for all 1 ≤ i ≤ r.

We come now to a crucial notion of quasirandomness. Suppose G is an r-uniform

hypergraph on n vertices. We say that G is (c, h)-typical if there is some p > 0 such

that for any set A of (r1)-subsets of V (G) with |A| ≤ h we have

(2) (1− c)p|A|n ≤ | ∩S∈A G(S)| ≤ (1 + c)p|A|n.

Keevash’s main theorem (still in a somewhat simplified form) is

Theorem 2.1. — Let 1/n � c � d, 1/h � 1/q ≤ 1/r. Suppose that G is a Kr
q

divisible (c, h)-typical r-uniform hypergraph on n vertices with |G| > dnr. Then G has

a Kr
q -decomposition.

Theorem 0.1 follows by applying Theorem 2.1 with G = Kr
n. Thus for fixed values of

q and r and large values of n, the divisibility conditions are sufficient for the existence of

Steiner systems. The next theorem gives a good asymptotic estimate for the number of

Steiner systems. (It also follows from a more general result for counting decomposition

of (c, h)-typical hypergraphs.) For Steiner triple systems tighter asymptotic estimates

are known [Wil74]. For related results and conjectures see also [LL15+].
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Figure 1. Kirkman’s problem

Theorem 2.2. — The number S(n, q, r) of Steiner systems with parameters (n, q, r)

(where n satisfies the divisibility conditions) satisfies

(3) logS(n, q, r) = (1 + o(1))

(
q

r

)−1(
n

r

)
(q − r) log n.

3. SOME HISTORY, TWO LANDMARKS, AND A RELAXATION

We will give now a brief description of the history of designs based on [Wil03]. Our

discussion is centered around (and hence biased toward) general existence theorems.

It is perhaps right to start the history with Kirkman. The earliest general existence

result is given in Kirkman’s 1847 paper where he constructed a Steiner triple system

(as called today) for every n which is 1 or 3 modulo 6. The prehistory is even earlier.

Plücker encountered Steiner triple systems in 1830 while working on plane cubic curves.

Woolhouse asked about the number of Steiner triple systems in the “Lady’s and Gentle-

man’s Diary” edited by him in 1844 (and again in 1846). Combinatorial designs are

closely related to mathematical constructions that were studied since ancient times like

Latin squares and Greco-Latin squares. Steiner, unaware of Kirkman’s work, posed the

question on the existence of Steiner triple systems in 1853 (leading to a solution by

Reiss published in 1859.)

It is common to start the story of designs with Kirkman’s schoolgirl problem.

Kirkman proposed in 1850, again in the “Lady’s and Gentleman’s Diary,” his famous

problem on “fifteen young ladies,” with solutions by himself, Cayley, Anstice, Pierce,

and others. There are fifteen schoolgirls who take their daily walks in rows of threes.
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It is required to arrange them daily for a week so that no two schoolgirls will walk in

the same row more than once.

Kirkman’s question can be asked in greater generality for every n = 3(mod 6) and

a partial solution was offered in 1852 by Spottiswoode. The general question was

settled independently by Xi (a schoolteacher from Mongolia) in the mid ’60s and by

Ray-Chaudhuri and Wilson in 1972. Sylvester asked (as reported by a 1850 paper by

Cayley) if we can divide all
(

15
3

)
triples into 13 different solutions of Kirkman’s problem

and this was settled by Denniston in 1974. Sylvester’s question for general n is still

open.

In the first half of the 20th century combinatorial designs played an important role

in experimental designs in statistics, in group theory, and were closely related to error-

correcting codes which are among the most important real-life applications of math-

ematics. Many interesting examples of designs were discovered. We already men-

tioned that there are no t-transitive groups for t > 5 other than Sn and An. The only

4-transitive groups other than An and Sn are the Mathieu groups, M24 (5-transitive),

M23, M12 (5-transitive), and M11. The Mathieu groups were introduced in 1861 and

1873, and they are closely related to designs. Indeed M24 and M12 can be described as

the automorphism groups of Steiner systems. In 1938 Witt described the group M24 as

the automorphism group of the Witt design, which is a Steiner system of parameters

(24, 8, 5), thus giving a definite existence proof. Mathieu groups and Witt designs are

closely related to the Golay error-correcting codes, discovered in 1949, which have much

practical use. In the early 1960s Hanani solved the question on the existence of designs

for (q, r) = (4, 2), (4, 3) and (5, 3).

3.1. Wilson’s and Teirlink’s constructions

The existence conjecture for the case r = 2, namely when every pair of elements

belong to λ blocks, was solved by Wilson in 1972.

Theorem 3.1 (Wilson [Wil72a, Wil72b, Wil75]). — If n satisfies the divisibility con-

ditions and is large enough then designs of parameters (n, q, 2, λ) exist.

In 1987 Teirling showed that for a large λ depending on q and r (but not on n)

designs exist!

Theorem 3.2 (Teirlink [Tei87]). — For every q and r there is λ = λ(k, r) such that

designs of parameters (n, q, r, λ) exist.

3.2. The necessary conditions for designs are sufficient for something

We can regard the question of finding a design as an integer programming question.

We need to find 0-1 solutions to a system of equations: The variables αS are associated

to q-subsets S of [n] and for every r-set we have an equation
∑

R⊂S αS = 1. It is a
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common practice to look at a generalized notion of solution and Wilson [Wil74] and

Graver and Jurkat [GJ73] asked for integral solutions (2). They proved:

Theorem 3.3 (Wilson [Wil73]; Graver and Jurkat [GJ73])

For every n, q, r, λ, if n satisfies the divisibility conditions then integral designs exists.

The proof of this result is not difficult and the existence of integral designs plays an

important role in Keevash’s work.

4. THE GREEDY RANDOM METHOD

4.1. A probabilistic heuristic and a simple application of the probabilistic

method

Consider a q-hypergraph with n vertices and b =
(
n
r

)
/
(
q
r

)
edges. Write a =

(
n
q

)
. There

are altogether
(
a
b

)
such hypergraphs. Given a set R of r vertices what is the distribution

of the number of edges containing R? This is a Poisson distribution of parameter 1.

The probability that R is contained in a unique edge is 1/e. If these probabilities were

statistically independent we could conclude that Steiner triple systems of parameters

n, q, r exist and that their number is
(
a
b

)
e−b. We will refer to this argument and estimates

it gives as the probabilistic heuristic.

Of course, there is neither statistical independence nor good reasons to think that lack

of independence is not devastating. (3) Indeed the probabilistic heuristic is completely

blind to the divisibility conditions.

What we can do is to choose c edges at random for some c < b so that every r-set

is included in at most one of them. Doing so shows that we can find b/(1 + log
(
k
r

)
)

edges so that every set of size r is included in at most one edge. Here we do not need

randomness and we can just add edges in a greedy way. Erdős and Hanani conjectured

in 1963 that there are b(1− o(1)) edges so that every r-set is covered at most once, or,

equivalently, there are b(1 + o(1)) edges so that every r-set is covered at least once.

4.2. Rödl nibble and approximate designs

The greedy-random method (it is also called in the literature “incremental-random

method” and “semi-random method”) is based on the idea of adding to our desired

objects elements in small chunks (or even one at a time). The general idea can be

traced to works of Ajtai-Komlos-Szemerédi on Ramsey numbers. In [Rod85] Rödl used

2. Another generalized notion of solution, the linear programming relaxation, replaces the 0-1 vari-

ables by real numbers in the interval [0,1]. This is useful to several related combinatorial packing and

covering problems. I am not aware of it being used for our problem.
3. We note that an important theme in the “probabilistic method” is to prove (when statistical

independence does not apply) that certain rare events still have positive probability. There are various

methods that were developed for this purpose [AS00].
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a certain greedy-random process known as the Rödl nibble to prove the Erdős -Hanani

conjecture.

Theorem 4.1 (Rödl [Rod85]). — For every fixed q and r there exist a nearly Steiner

system of parameters (n, q, r), namely a system of (1 + o(1))
(
n
r

)(
q
r

)−1
q-subsets of [n]

such that every r set is included in at least one block in the system.

The idea is this. You choose at random εb blocks and show that (with high prob-

ability) they form a very efficient covering of the r-sets they cover. Then you show

that (again, with high probability) both the hypergraph of unused q-blocks and the

the hypergraph of uncovered r-sets are quasirandom. This allows you to proceed until

reaching (1− o(1))
(
n
r

)(
q
r

)−1
q-subsets of [n] such that every r set is included in at most

one block in the system. (At this point you can add arbitrary blocks to cover the re-

maining r-sets.) It was later discovered that a variant of this process where you add

one block at a time also works.

4.3. Pippinger-Spencer and beyond

The greedy random method and, in particular, variants of the Rödl nibble had im-

portant applications in combinatorics over the years. A general framework for the Rödl

nibble was laid by Frankl and Rodl [FR85] with the definite result given by Pippinger

and Spencer [PS89].

We consider an auxiliary hypergraph: the vertices correspond to r-sets and the edges

correspond to q-sets. For this hypergraph the task is to find a large matching – a

collection of pairwise disjoint edges, or a small covering a collection of edges covering

all vertices.

The result of Pippinger and Spencer asserts that it is enough that

(i) all vertices have the same degree d (or roughly the same degree) and

(ii) every pair of vertices are included in at most o(d) edges.

This level of abstraction is crucial for some further important applications of Rödl’s

method [Kah96, Spe95, KR97, Kah00, Vu00] and form a crucial ingredients of Keevash’s

proof.

5. KEEVASH’S PROOF: THE TEMPLATE, THE NIBBLE, THE

OCTAHEDRON, AND THE SHUFFLE

In this section we will present a very rough outline of Keevash proof for a very special

(but important) case. We will deal only with decompositions of graphs into edge-disjoint

triangles. Part of the proof consists of repeated reference (with complicated and subtle

details) to the greedy-random method. These parts are quite difficult and long, however

we will largely take them for granted.

The difficulty in applications of the greedy-random methods (and other probabilistic

arguments) for packing problems is in the last stages. Once we packed a large number of
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objects the probabilistic arguments do not apply and some backtracking is needed. In

some cases, a careful preprocessing of our combinatorial object can assist the required

backtracking. In our case, we need an auxiliary collection of triangles called the template

defined via a combination of algebra and probability. Both for the applications of the

greedy random method and for and the appellate and algebraic parts, the general case

is more difficult than the special case of triangles.

5.1. Edge-decomposition into triangles

When is it possible to decompose the edges of a graph G into edge-disjoint triangles?

We say that G is trivisible if (i). The number of edges in G is divisible by 3, and every

vertex has an even degree. Next we define the density d(G) of a graph as the number

of edges divided by
(
n
2

)
where n is the number of vertices. G is (c, t)-typical if for every

set X of at most k vertices

(1 + c)d(G)|X| ≤ | ∩x∈X Nx| ≤ (1 + c)d(G)|X|.

Here, Nx is the set of neighbors of a vertex v. We denote by V the set of vertices of G.

Theorem 5.1. — For every d > 0 there is c > 0 such that if G is trivisible,

(c, 16)-typical, and d(G) > d then G admits a triangle-decomposition.

Remark 5.2. — Bootstrapping this result Keevash proves that (c, 2)-typicality suffices.

(Our level of description is not detailed enough to show how typicality is actually used.)

5.2. The template

We choose a so that 2a−2 < n ≤ 2a−1. We consider a random map from V into

F ∗2a (the non-zero elements of a field with 2a element). We let T to be those triangles

{x, y, z} in G such that x+ y + z = 0. We let G∗ = ∪T , namely the union of all edges

in triangles in T .

Note that the number of triangles in the template is roughly K3d(G)3
(
n
3

)
where K is

some constant between 1/2 and 1/4.

5.3. The plan

Plan: Start with an approximate triangle decomposition and apply a sequence of

repairs.

5.4. Steps 1: nibble

We want to use the nibble (greedy random) method to find a collection N of edge-

disjoint triangles whose union is most of G\G∗. We will not modify N any further. In

order for the method to work we need to assume that G∗ and G\G∗ and (G,G∗) are

“nice” (namely, quasi-random in various ways), as well as various other conditions that

allow to implement the initial nibble and to allow the entire argument to go through.

All these conditions hold with high probability. We need also that G\G∗\(∪N) is sparse

(having only small degrees), this also holds with high probability.
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Figure 2. Step 2 (picture out of scale; the size of the right side is a small

fraction of the whole)

Figure 3. Step 3 (picture out of scale)

5.5. Step 2: cover

After packing most of G\G∗ with triangles of N , we cover the left over part L of

G\G∗ by a collection M c of edge-disjoint triangles each having two edges from G∗.

This defines a set S of edges from G∗. See Figure 2.

5.6. Step 3: hole

Now we create two sets Mout and M in of edge disjoint triangles in G∗, having the

property that ∪Mout = S ]M in (] denotes disjoint union). (When I say “we create”

this accounts for using the nibble method and at times further massaging our initial

steps.)

5.7. The octahedron

Here is a detail of the argument taken in separation which we will use in Step 4.

Suppose we start with the complete graph Kn (or with a smaller quasi random graph

containing G∗), with an edge disjoint collection of triangles, and we want to eliminate

an edge e = {v, w} not in G∗ which is contained in one triangle. We look at two



1100–10

Figure 4. The rombus

Figure 5. The octahedron

triangles containing e (Fig. 4) and embed them into an octahedron (Fig 5). We can

now use other triangles in the octahedron to move to a new set of edge-disjoint triangles,

covering all the edges except e.

5.8. How to proceed: dream and reality

Consider M1 = M c ∪M in, M2 = Mout and then ∪M1 = L ] ∪Mout.

Dream plan: suppose that Mout ⊂ T (in words, all triangles in Mout are in the tem-

plate). Then we are in good shape: We consider the decomposition N ∪ (T\Mout) ∪M1!

However, there is no reason to think that this can be achieved.

Reality plan: what eventually works is to find two sets of edge-disjoint triangles M3

and M4 with edges in G∗ with the following properties:

– ∪M3 = ∪M4,

– M3 ⊂ T

– M2 ⊂M4,

and use the decomposition

(4) N ∪ (T\M3) ∪ (M4\M2) ∪M1.

5.9. Two remarks

Remark 5.3. — A reason for having an elbow room to use the nibble probabilistic

method to get a perfect design is that our nibbling is taking place in a large hypergraph

and we need to have the required effect on a smaller hypergraph representing a tiny

(but bounded below with n) fraction of the vertices.
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Figure 6. The shuffle

Remark 5.4. — Some arguments about “canceling boundaries” are of importance in the

proof. Unlike with usual homology here the boundaries are not signed and the octa-

hedron is a “cycle” w.r.t. such an unsigned “boundary” operator. We note that these

type of boundaries and the important role of octahedra can be seen also in the hyper-

graph regularity theorems [RS04, Gow07], and in the early work [CG89] on quasirandom

hypergraphs.

5.10. Step 4: The shuffle

It is “left” to find M3 and M4. Here, we need to explain how to implement our plan,

and to indicate how the precise definition of the template triangles enters the picture.

Consider five elements x1, x2, x3, t1, t2 ∈ F ∗ with x1, x2, x3 linearly independent over

Z/2Z, t1 6= t2. Write t3 = t1+t2, and X = span < x1, x2, x3 > (over Z/2Z). (Reminder:

F was a field with 2a elements and F ∗ are its non-zero elements.)

The shuffle Sx,t is a complete tripartite 3-uniform hypergraph with 24 vertices. We

have three sets X + t1, X + t2, and X + t3 of eight vertices each, and consider all

83 triangles with one vertex taken from each set. (There is a positive probability that

all triangles of the shuffle are supported by our graph.)

We will consider two decompositions of the shuffle into edge-disjoint triangles.

Decomposition I: All triangles of the form x+ t1, y + t2, x+ y + t3.

Decomposition II: Translate of decomposition I by (x1, x2, x3).

Note that all triangles in decomposition I are in the template. But since x3 6= x1 +x2

no triangle in decomposition II is in the template.

Now we can describe the random greedy construction of M3,M4. We consider a ran-

dom available shuffle and add decomposition II to M4 and decomposition I to M3. Using

the nice quasirandom properties we are careful to maintain throughout our construction

(this requires also “massaging” M1 and M2 in the process), there are many avail-

able choices for the shuffle, and repeated use of it allows to achieve the desired M3

and M4. “�”
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5.11. Quoting Calegary’s reflection on Keevash’s proof

“Random construction which ‘nearly’ solves the combinatorial problem, and then ad-

justing the result around the margins by formally expressing the error as a linear com-

bination of formal ‘differences’ of designs of uniformly bounded size, and then treating

‘negative’ quantities of these small designs as ‘holes’ in the big uniform quantity.

Exactly the same idea (at this abstract level) is the key to the recent Kahn-Markovic

proof of the Ehrenpreis conjecture [KM11], where one first uses a probabilistic (i.e.

ergodic theoretic) argument to cover a hyperbolic surface with an almost equidistributed

collection of pairs of pants with an almost prescribed geometry, almost all of which can

be glued up, and then shows that the error can be formally glued up if one uses ‘negative’

pieces, which one then interprets as holes in big uniform collection (I like to think of

these ‘negative’ pants as ‘holes in the Dirac pants sea’...)

Exactly the same idea again was used by Alden Walker and I recently to show that

random groups contain fundamental groups of closed surfaces [CW13] ; we first build

‘most’ of the surface by a random matching argument, then glue up the error formally

using ‘negative’ pieces (of bounded size), which can then be pulled out of the collection

that was already matched.

No doubt the details of the constructions diverge considerably beyond this ‘family

resemblance’ (this is already true in the latter two examples, where I understand the

details of what is going on), but this resemblance at the abstract level seems to me to

be much more than a triviality.”

6. PACKING, COVERING, AND DESIGNS - A FEW OTHER

ADVANCES AND OPEN PROBLEMS

Keevash’s achievement is extraordinary in solving a major open problem in com-

binatorics, and in developing and implementing with great difficulty and ingenuity a

completely unexpected machinery. I will mention in this section other important ad-

vances regarding packing, covering, designs, and highly regular combinatorial objects,

and mention a few open problems.

Finite projective planes. — We mainly discussed the situation when q and r are fixed

and n goes to infinity. Understanding other regimes of parameters is also of great

interest. The famous problem on the existence of projective planes of non-prime power

order can be formulated as:

(1) Are there any designs of parameters (q + 1, 2, q2 + q + 1, 1) when q is not a

prime-power?

The central question regarding uniqueness of projective planes of prime order can be

formulated as:

(2) Are there any designs of parameters (q + 1, 2, q2 + q + 1, 1) when q is a prime,

except those coming from a finite field?
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There is an important result by Fischer and Erdős-deBruijn which asserts that the

number b of blocks in a design is at least n. A beautiful argument due to Ryser is that

if you consider the n× b incidence matrix of a design the rows v1, v2, . . . , vb are always

linearly independent. Indeed for some x > y,〈∑
αivi,

∑
αivi

〉
= x

∑
i

α2
i + y

∑
i 6=j

αiαj

= x
∑
i

α2
i + y

∑
i 6=j

αiαj

= (x− y)
∑
i

α2
i + y

(∑
i

αi

)2

,

which can vanish only when all αis vanish. This implies that a (q + 1, 2, n, 1) designs

do not exist if n < q2 + q + 1.

It is hard to point the finger on where and why the “probabilistic heuristic” will fail

for (q, 2, n) designs when both q and n tend to infinity. It will certainly be interesting

to understand this matter. It is also hard but of much interest to understand when

regularity implies symmetry.

Further decompositions and stronger regularity. — Can we find a design admitting a

decomposition into disjoint perfect matching and, more generally, into disjoint designs

with other parameters? We can seek structures with various recursive decompositions,

and, ask also if we can decompose the complete hypergraph into such designs? In

particular we can ask if “Kirkman systems” and “Sylvester systems” exist for constant

q and r and large n when the corresponding divisibility conditions hold?

This is a good time to mention the classical result by Baranyai [BAR75] asserting

that Kn
r can be decomposed into perfect matchings whenever r divides n. Baranyai’s

proof used ideas from linear programming.

We can also ask about stronger regularity conditions: Given a design S of parameters

(n, q, r, λ) when is there a design of parameters (n + 1, q + 1, r + 1, λ) all whose links

are isomorphic to S?

Pseudomanifolds, manifolds, and buildings. — Block designs with parameters

(n, q, q − 1, 2) are pseudomanifolds. Considered as topological spaces they repre-

sent spaces with singularities of codimension at least two. The Heawood Conjecture

proved by Ringel and Young asserts that for q = 3 such objects exist even if you

require them to represent a prescribed triangulated surface. In higher dimensions you

can impose various regularity conditions related to the conditions for block designs.

For example, Altshuler [Alt78] constructed pseudomanifolds with a common prescribed

vertex-link. Triangulations of 2d-dimensional manifolds can have the property that

every set of d vertices belongs to some face of dimension 2d. When d > 1 there are

only a handful of such triangulations known. A remarkable example is the 9-vertex

triangulation of CP 2 by Kuhnel and Lassman [KL81]. Like for designs we can expect

that infinite families for every d exist. Tits’ Buildings are, of course, very regular
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combinatorial structures. Buildings, like projective geometries of dimension greater

than two, represent a regime where regularity has strong algebraic consequences.

Designs, t-wise independent permutations, conjugacy tables, and local central limit theo-

rems. — Kuperberg, Lovett, and Peled [KLP12] used a novel probabilistic technique to

show the existence of regular combinatorial objects and to approximately count them.

They constructed and estimated the number of block designs of parameter (n, q, r, λ),

e.g., in a regime where the number of blocks and the values of q, r, and λ are nO(r). In

fact, the precise condition they need is that λ = (n/r)Ω(r).

They developed local central limit theorems which enabled them to analyze the

problem reformulated via a random walk on a lattice with a prescribed set of allowed

steps.

A family of permutations on n elements is t-wise uniform if it acts uniformly on tuples

of t elements. In another application of the method, Kuperberg, Lovett and Peled

showed that there exist families of t-wise independent permutations for all t, whose

size is nO(t). (Before their work constructions of small families of t-wise independent

permutations were known only for t = 1, 2, 3.)

An independent body of works with a related method of developing and using local

central limit theorems is by Barvinok and Hartigan [BH12] for approximately count-

ing matrices with prescribed rows and column sums (contingency tables), graphs with

prescribed degree sequences, and for approximately computing volumes of certain poly-

topes.

For related techniques for enumerating regular structures, see also [CM05, CGG+10].

When it comes to counting designs and regular structures, a good place to begin is in

counting regular graphs. This is a fascinating problem on which a lot is known [MW90]

and more is left to be explored.

Vertex-packing of small graphs in large random graphs. — An important problem in

probabilistic combinatorics is the problem of vertex packing small graphs H into large

random graphs G. The situation for perfect matching (when H is a single edge) is

classic but even when H is a triangle this posed a difficult challenge for some decades

until resolved by Johansson, Kahn and Vu [JKV08] again using a novel probabilistic

technique. The surprising idea is to start with a much larger random graph and incre-

mentally remove edges. I don’t know to what extent randomness can be replaced by

quasirandomness (of some kind) for packing problems of this kind.

Packing trees. — Consider n− 1 trees T1,T2 . . . , Tn where Ti has i vertices.

Conjecture (Gyárfás, 1963): There exists an edge-disjoint decomposition of Kn into

n− 1 parts so that the ith part is isomorphic to Ti.
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