Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or direct commercial advantage and that copies show this notice
on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works,
requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1

(212) 869-0481, or permissions@acm.org,.

Weight Biased Leftist Trees and Modified Skip Lists

Seonghun Cho

and

Sartaj Sahni

Department of Computer and Information Science and Engineering, University of Florida,

Gainesville, FL 32611, U.S.A.

This research was supported, in part, by the Army Research Office under grant DAA

H04-95-1-0111, and by the National Science Foundation under grant MIP91-03379.

We propose the weight biased leftist tree as an alternative to traditional leftist trees [CRAN72] for
the representation of mergeable priority queues. A modified version of skip lists [PUGH90] that
uses fixed size nodes is also proposed. Experimental results show our modified skip list structure
is faster than the original skip list structure for the representation of dictionaries. Experimental
results comparing weight biased leftist trees and competing priority queue structures are presented.

Categories and Subject Descriptors: E.1 [Data Structures]: trees
General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Leftist trees, skip lists, dictionary, priority queue

1. INTRODUCTION

Several data structures (e.g., heaps, leftist trees [CRANT2], Fibonacci heaps [FRED8T7],
binomial heaps [BROW78], skew heaps [SLEA86], and pairing heaps [FREDS&6])
have been proposed for the representation of a (single ended) priority queue. Al-
though find min, insert, and delete min are the primary operations that a priority
queue supports, many authors consider additional operations such as delete an ar-

bitrary element (assuming we have a pointer to the element), decrease the key of

an arbitrary element (again assuming we have a pointer to this element), meld two
priority queues, and initialize a priority queue with a nonzero number of elements.
In this paper, we are concerned primarily with the insert and delete min operations.

The different data structures that have been proposed for the representation of
a priority queue differ in terms of the performance guarantees they provide. Some
guarantee good performance on a per operation basis while others do this only in
the amortized sense. Heaps permit one to delete the min element and insert an
arbitrary element into an n element priority queue in O(logn) time per operation;
a find min takes O(1) time. Additionally, a heap is an implicit data structure that
has no storage overhead associated with it. All other priority queue structures are
pointer-based and so require additional storage for the pointers. Leftist trees also
support the insert and delete min operations in O(logn) time per operation and
the find min operation in O(1) time. Additionally, they permit us to meld pairs of
priority queues in logarithmic time.

The remaining structures do not guarantee good complexity on a per operation
basis. They do, however, have good amortized complexity. Using Fibonacci heaps,
binomial queues, or skew heaps, find min, inserts and melds take O(1) time (actual
and amortized) and a delete-min takes O(logn) amortized time. When a pairing
heap is used, the amortized complexity is O(1) for find min and insert (provided
no decrease key operations are performed) and O(log n) for delete min operations
[STAS87].

In this paper, we begin in Section 2, by developing the weight biased leftist tree
(WBLT). This is similar to a leftist tree. However biasing of left and right subtrees

is done by number of nodes rather than by length of paths. Like the leftist tree, a
3

WBLT permits one to do a find min in O(1) time and each insert, delete min, and
meld operation takes O(logn) time.

Experimental results presented in Section 5 show that WBLTSs provide better
performance than provided by leftist trees. In fact, of the priority queue data
structures that provide good per operation performance guarantee, weighted leftist
trees have best measured performance. When the WBLT is compared against the
structures that provide good amortized complexity (but do not provide good com-
plexity on a per operation basis), our experiments indicate that the WBLT provides
superior performance than binomial queues. It is better than skew heaps except
when the keys are inserted in ascending order. However, the pairing heap is the
best of the priority queue structures tested. Surprisingly, the splay tree [SLEA85]
which supports the more general dictionary operations with good amortized com-
plexity outperforms all priority queue structures when the operations are limited to
insert and delete min! This conclusion is consistent with that obtained by Jones in
his expermental evaluation of priority queue representations [JONE86]. Note that
neither the experimental work of Jones nor our work includes measurements for
operation mixes that include operations such as decrease key, arbitrary delete, and
meld.

The experimental comparisons of Section 5 also include a comparison with un-
balanced binary search trees and the probabilistic structures treap [ARAGS89] and
skip lists [PUGH90].

In Section 3, we propose a fixed node size representation for skip lists. The
new structure is called modified skip lists and is experimentally compared with the

variable node size structure skip lists. Our experiments indicate that modified skip
4

lists are faster than skip lists when used to represent dictionaries.
Modified skip lists are augmented by a thread in Section 4 to obtain a structure

suitable for use as a priority queue.

2. WEIGHT BIASED LEFTIST TREES

Let T be an extended binary tree. For any internal node x of T, let LeftChild(x)
and RightChild(z), respectively, denote the left and right children of z. The weight,
w(z), of any node z is the number of internal nodes in the subtree with root z.
The length, shortest(z), of a shortest path from z to an external node satisfies the

recurrence

0 if z is an external node

shortest(z) = { 1 + min{shortest(Le ftChild(z)), shortest(RightChild(z))} otherwise.

Definition [CRAN72] A leftist tree (LT) is a binary tree such that if it is not

empty, then
shortest(Le ftChild(z)) > shortest(RightChild(x))

for every internal node z.

A weight biased leftist tree (WBLT) is defined by using the weight measure in
place of the measure shortest.
Definition A weight biased leftist tree (WBLT) is a binary tree such that if it is

not empty, then
weight(Le ftChild(z)) > weight(RightChild(z))

for every internal node z.

It is known [CRANT2] that the length, rightmost(x), of the rightmost root to
)

external node path of any subtree, x, of a leftist tree satisfies
rightmost(z) < log,(w(z) + 1).
The same is true for weight biased leftist trees.

THEOREM 1. Let x be any internal node of a weight biased leftist tree. rightmost(z) <

log, (w(z) + 1).

ProOOF. The proof is by induction on w(z). When w(x) = 1, rightmost(z) = 1
and log,(w(z) + 1) = logy,2 = 1. For the induction hypothesis, assume that
rightmost(z) < log,(w(z)+1) whenever w(z) < n. When w(z) = n, w(RightChild(z)) <
(n—1)/2 and rightmost(z) = 1+ rightmost(RightChild(z)) < 1+log,((n—1)/2+

1) =1+1logy(n+1)—1=logy(n+1). O

Definition A min (max)-WBLT is a WBLT that is also a min (max) tree.

Each node of a min-WBLT has the fields: Isize (number of internal nodes in
left subtree), rsize, left (pointer to left subtree), right, and data. While the
number of size fields in a node may be reduced to one, two fields result in a faster
implementation. We assume a head node head with lsize = oo and lchild =
head. In addition, a bottom node bottom with data.key = oo. All pointers that
would normally be nil are replaced by a pointer to bottom. Figure 1(a) shows
the representation of an empty min-WBLT and Figure 1(b) shows an example non
empty min-WBLT. Notice that all elements are in the right subtree of the head
node.

Min (max)-WBLTSs can be used as priority queues in the same way as min (max)-
LTs. For instance, a min-WBLT supports the standard priority queue operations

of insert and delete-min in logarithmic time. In addition, the melding operation
6

(a) Empty min-WBLT (b) Nonempty min-WBLT

Fig. 1. Example min-WBLT's

(i.e., join two priority queues together) can also be done in logarithmic time. The
algorithms for these operations have the same flavor as the corresponding ones
for min-LTs. A high level description of the insert and delete-min algorithm for
min-WBLT is given in Figures 2 and 3, respectively. The algorithm to meld two
min-WBLTs is similar to the delete-min algorithm. The time required to perform
each of the operations on a min-WBLT T is O(rightmost(T)).

Notice that while the insert and delete-min operations for min-LTs require a top-
down pass followed by a bottom-up pass, these operations can be performed by a
single top-down pass in min-WBLTs. Hence, we expect min-WBLT's to outperform

min-LTs.

3. MODIFIED SKIP LISTS

Skip lists were proposed in [PUGH90] as a probabilistic solution for the dictionary
problem (i.e., represent a set of keys and support the operations of search, insert,
and delete). The essential idea in skip lists is to maintain upto Imax ordered chains

designated as level 1 chain, level 2 chain, etc. If we currently have lcurrent number
7

procedure Insert(d) ;
{insert d into a min-WBLT'}
begin
create a node r with z.data = d ;
t = head ; {head node}
while (t.right.data.key < d.key) do
begin
t.rsize = t.rsize + 1
if (t.lsize < t.rsize) then
begin swap t’s children ; t = t.left ; end
else t = t.right ;
end ;
xz.left = t.right ; z.right = bottom ;
x.lsize = t.rsize ; x.rsize =0 ;
if (t.lsize = t.rsize) then {swap children}
begin
t.right = t.left ;
tleft =x ; t.lsize = x.lsize+ 1 ;
end
else
begin t.right = ¢ ; t.rsize = t.rsize+ 1 ; end ;
end ;

Fig. 2. min-WBLT Insert

of chains, then all n elements of the dictionary are in the level 1 chain and for each
I, 2 <1 < lcurrent, approximately a fraction p of the elements on the level [— 1
chain are also on the level | chain. Ideally, if the level [— 1 chain has m elements
then the approximately m X p elements on the level | chain are about 1/p apart in
the level [— 1 chain. Figure 4 shows an ideal situation for the case lcurrent = 4
and p=1/2.

While the search, insert, and delete algorithms for skip lists are simple and have
probabilistic complexity O(logn) when the level 1 chain has n elements, skip lists

suffer from the following implementational drawbacks:

(1) In programming languages such as Pascal, it isn’t possible to have variable size
nodes. As a result, each node has one data field, and Imax pointer fields. So,
the n element nodes have a total of n x Imax pointer fields even though only

about n/(1 — p) pointers are necessary. Since Imazx is generally much larger
8

procedure Delete-min ;
begin

r = head.right ;
if (x = bottom) then return ; {empty tree}
head.right = x.left ; head.rsize = x.lsize ;

a = head;

b = z.right ; bsize = z.rsize ;
delete z ;

if (b = bottom) then return ;
r = a.right ;

while (r # bottom) do

begin

s = bsize + a.rsize ; t = a.rsize ;
if (a.lsize < s) then {work on a.left}

begin

a.right = a.left ; a.rsize = a.lsize ; a.lsize = s ;
if (r.data.key > b.data.key) then
begin a.left =b;a=b;b=r;bsize=1; end

else

begin a.left =r ;a =r ; end

end
else

do symmetric operations on a.right ;

r = a.right ;
end ;

if (a.lsize < bsize) then

begin

a.right = a.left ; a.left =10 ;
a.rsize = a.lsize ; a.lsize = bsize ;

24

end
else
begin a.right = b ; a.rsize = bsize ; end ;
end ;
Fig. 3. min-WBLT Delete-min
level
4 -
3 - 21— NIL,
2 9
1

13 - {19

Fig. 4.

Skip Lists

than 3 (the recommended value is log; ;, nMaz where nMaz is the largest
number of elements expected in the dictionary), skip lists require more space

than WBLTSs.

(2) While languages such as C and C++ support variable size nodes and we can
construct variable size nodes using simulated pointers [SAHN93] in languages
such as Pascal that do not support variable size nodes, the use of variable size
nodes requires more complex storage management techniques than required
by the use of fixed size nodes. So, greater efficiency can be achieved using

simulated pointers and fixed size nodes.

With these two observations in mind, we propose a modified skip list (MSL)
structure in which each node has one data field and three pointer fields: left,
right, and down. Notice that this means MSLs use four fields per node while
WBLTS use five (as indicated earlier this can be reduced to four at the expense of
increased run time). The left and right fields are used to maintain each level [
chain as a doubly linked list and the down field of a level I node z points to the
leftmost node in the level [— 1 chain that has key value larger than the key in z.
Figure 5 shows the modified skip list that corresponds to the skip list of Figure 4.
Notice that each element is in exactly one doubly linked list. We can reduce the
number of pointers in each node to two by eliminating the field left and having
down point one node the left of where it currently points (except for head nodes
whose down fields still point to the head node of the next chain). However, this
results in a less time efficient implementation. H and T, respectively, point to the

head and tail of the level lcurrent chain.
10

level H T
—00 21 0
4 ‘l‘ [= ‘i‘
3 —00 9 [ee)
‘l‘ [\i\
—00 6 17 26 00
2 \l\ N N [0 \i\
—00 3 7 12 19 25 00
1T [] [] [] [] [] []

Fig. 5. Modified Skip Lists

procedure Search(key) ;
begin
p=4H;
while (p # nil) do
begin
while (p.data.key < key) do
p = p.right ;
if (p.data.key = key) then report and stop
else p = p.left.down ; {1 level down}
end ;
end ;

Fig. 6. MSL Search

A high level description of the algorithms to search, insert, and delete are given

in Figures 6, 7, and 8. The next theorem shows that their probabilistic complexity

is O(logn) where n is the total number of elements in the dictionary.

THEOREM 2. The probabilistic complezity of the MSL operations is O(logn).

PRrROOF. We establish this by showing that our algorithms do at most a logarith-

mic amount of additional work than do those of [PUGH90]. Since the algorithms of

[PUGH90] has probabilistic O(logn) complexity, so also do ours. During a search,

the extra work results from moving back one node on each level and then moving

down one level. When this is done from any level other than lcurrent, we expect

to examine upto ¢ = 1/p — 1 additional nodes on the next lower level. Hence, upto

11

procedure Insert(d) ;
begin
randomly generate the level k at which d is to be inserted ;
search the MSL H for d.key saving information useful for insertion ;
if d.key is found then fail ; {duplicate}
get a new node z and set z.data = d ;
if ((k > lcurrent) and (lcurrent # lmaz)) then
begin
lcurrent = lcurrent + 1 ;
create a new chain with a head node, node z, and a tail and
connect this chain to H ;
update H ;
set z.down to the appropriate node in the level lcurrent — 1 chain (to nil if k = 1) ;
end
else
begin
insert x into the level k£ chain ;
set z.down to the appropriate node in the level £ — 1 chain (to nil if k = 1) ;
update the down field of nodes on the level k 4+ 1 chain (if any) as needed ;
end ;
end ;

Fig. 7. MSL Insert

procedure Delete(z) ;

begin

search the MSL H for a node z with data.key = z saving information useful for deletion;

if not found then fail ;

let k& be the level at which z is found ;

for each node p on level k + 1 that has p.down = x, set p.down = x.right ;

delete x from the level k list ;

if the list at level lcurrent becomes empty then
delete this and succeeding empty lists until we reach the first non empty list,
update lcurrent ;

end ;

Fig. 8. MSL Delete

12

c(leurrent — 2) additional nodes get examined. During an insert, we also need to
verify that the element being inserted isn’t one of the elements already in the MSL.
This requires an additional comparison at each level. So, MSLs may make upto
c(leurrent — 2) + lcurrent additional compares during an insert. The number of
down pointers that need to be changed during an insert or delete is expected to be
Z?; ipt = ﬁ. Since ¢ and p are constants and Imax = log; /, n, the expected

additional work is O(logn). O

The relative performance of skip lists and modified skip lists as a data structure
for dictionaries was determined by programming the two in C. Both were imple-
mented using simulated pointers. The simulated pointer implementation of skip
lists used fixed size nodes. This avoided the use of complex storage management
methods and biased the run time measurements in favor of skip lists. For the case
of skip lists, we used p = 1/4 and for MSLs, p = 1/5. These values of p were
found, experimentally, to work best for each structure. Imaz was set to 16 for both
structures. In determining the level assigned to a new element upon insertion, we
used the “fix-the-dice” approach suggested in [PUGH90].

We experimented with n = 10,000, 50,000, 100,000, and 200,000. For each n, the
following five part experiment was conducted:

(a) start with an empty structure and perform n inserts;

(b) search for each item in the resulting structure once; items are searched for in
the order they were inserted

(c) perform an alternating sequence of n inserts and n deletes; in this, the n elements

inserted in (a) are deleted in the order they were inserted and n new elements are
13

random inputs | ordered inputs
n operation || SKIP [MSL | SKIP | MSL
insert 225 322 247 319
search 255 363 257 339
10,000 ins/del 519 734 355 560
search 256 350 251 339
delete 232 321 84 185
insert 1357 1951 1422 1912
search 1537 1966 1467 1837
50,000 ins/del 2997 4142 1973 3204
search 1502 2039 1450 1990
delete 1374 1854 486 9320
insert 2919 4146 2926 4276
search 3189 4316 2971 4082
100,000 ins/del 6399 9103 4406 6896
search 3225 4428 3277 4346
delete 2981 4162 961 2053
insert 6179 8928 6403 9023
search 6697 9274 6448 8946
200,000 ins/del 13378 | 19371 | 9054 9062
search 6681 9662 6458 9198
delete 6149 9102 1995 4838

Table 1. Average number of key comparisons (in thousands)

inserted
(d) search for each of the remaining n elements in the order they were inserted
(e) delete the n elements in the order they were inserted.

For each n, the above five part experiment was repeated ten times using different
random permutations of distinct elements. For each sequence, we measured the
total number of element comparisons performed and then averaged these over the
ten sequences. The average number of comparisons (in thousands) for each of the
five parts of the experiment are given in Table 1.

Also given in this table is the number of comparisons using ordered data. For
this data set, elements were inserted and deleted in the order 1,2,3,.... For the
case of random data, MSLs make 40% to 50% more comparisons on each of the

five parts of the experiment. On ordered inputs, the disparity is even greater with
14

random inputs | ordered inputs
n SKIP | MSL | SKIP | MSL
10,000 8,8 7,7 8,8 7,7
50,000 9,9 7,7 9,9 7,7
100,000 9,9 7,8 9,9 7,8
200,000 9,9 8,9 9,9 8,9

Table 2. Average number of levels

MSLs making 30% to 140% more comparison. Table 2 gives the number of levels
in SKIP and MSL. The first number of each entry is the number of levels following
part (a) of the experiment and the second the number of levels following part (b).
As can be seen, the number of levels is very comparable for both structures. MSLs
generally had one or two levels fewer than SKIPs had.

Despite the large disparity in number of comparisons, MSLs generally required
less time than required by SKIPs (see Table 3). Integer keys were used for our
run time measurements. In many practical situations the observed time difference
will be noticeably greater as one would need to code skip lists using more complex
storage management techniques to allow for variable size nodes. Note that while
MSLs require less storage than ordinary skip lists when used in languages that do
not support the dynamic construction of variable size arrays, they require more
storage when used in programming languages such as C, C++, and Java that do

permit dynamic allocation of variable size arrays.
4. MSLS AS PRIORITY QUEUES

At first glance, it might appear that skip lists are clearly a better choice than
modified skip lists for use as a priority queue. The min element in a skip list is the
first element in the level one chain. So, it can be identified in O(1) time and then

deleted in O(logn) probabilistic time. In the case of MSLs, the min element is the
15

random inputs | ordered inputs

n operation SKIP | MSL SKIP | MSL
insert 0.24 0.18 0.20 0.17

search 0.18 0.12 0.12 0.07

10,000 ins/del 0.45 0.35 0.20 0.20
search 0.18 0.12 0.13 0.07

delete 0.16 0.12 0.07 0.05

insert 1.36 1.22 0.92 0.80

search 1.25 0.98 0.62 0.38

50,000 ins/del 2.73 2.53 1.07 1.08
search 1.16 1.00 0.62 0.42

delete 1.10 0.83 0.27 0.23

insert 2.84 2.86 1.72 1.60

search 2.63 2.39 1.23 0.85

100,000 ins/del 6.13 5.80 2.43 2.28
search 2.61 2.33 1.35 0.92

delete 2.41 2.02 0.55 0.52

insert 6.25 6.49 3.52 3.47

search 5.85 5.34 2.70 1.87

200,000 ins/del 13.29 13.02 5.13 4.75
search 5.81 5.51 2.72 1.92

delete 5.35 4.85 1.12 1.18

Table 3. Average run time

first one in one of the lcurrent chains. This can be identified in logarithmic time
using a loser tree whose elements are the first element from each MSL chain. By
using an additional pointer field in each node, we can thread the elements in an
MSL into a chain. The elements appear in non-decending order on this chain. The
resulting threaded structure is referred to as TMSL (threaded modified skip lists).
A delete min operation can be done in O(1) expected time when a TMSL is used.
The expected time for an insert remains O(logn). The algorithms for the insert
and delete min operations for TMSLs are given in Figures 9 and 10, respectively.
The last step of Figure 9 is implemented by first finding the largest element on
level 1 with key < d.key (for this, start at level lcurrent — 1) and then follow the

threaded chain.

THEOREM 3. The expected complexity of an insert and delete-min operation in
16

procedure Insert(d) ;
begin
randomly generate the level k at which d is to be inserted ;
get a new node z and set z.data = d ;
if ((k > lcurrent) and (lcurrent # lmaz)) then
begin
lcurrent = lcurrent + 1 ;
create a new chain with a head node, node x, and a ta¢l and
connect this chain to H ;
update H ;
set z.down to the appropriate node in the level lcurrent — 1 chain (to nil if k = 1) ;
end
else
begin
insert = into the level k chain ;
set z.down to the appropriate node in the level £ — 1 chain (to nil if k = 1) ;
update the down field of nodes on the level k£ + 1 chain (if any) as needed ;
end ;
find node with largest key < d.key and insert x into threaded list ;
end ;

Fig. 9. TMSL Insert

procedure Delete-min ;

begin

delete the first node x from the thread list ;

let k£ be the level x is on ;

delete = from the level k list (note there are no down fields on level k + 1

that need to be updated) ;

if the list at level lcurrent becomes empty then
delete this and succeeding empty lists until we reach the first non empty list,
update lcurrent ;

end ;

Fig. 10. TMSL Delete-min

17

procedure Delete-max ;

begin

delete the last node x from the thread list ;

let k be the level z is on ;

delete x from the level k list updating p.down for nodes on level k + 1 as necessary ;

if the list at level lcurrent becomes empty then
delete this and succeeding empty lists until we reach the first non empty list,
update lcurrent ;

end ;

Fig. 11. TMSL Delete-max

a TMSL is O(logn) and O(1), respectively.

PRrOOF. Follows from the notion of a thread, Theorem 2, and [PUGH90]. O

TMSLs may be further extended by making the threaded chain a doubly linked
list. This permits both delete-min and delete-max to be done in ©(1) expected
time and insert in O(logn) expected time. With this extension, TMSLs may be

used to represent double ended priority queues.

5. EXPERIMENTAL RESULTS FOR PRIORITY QUEUES

The single-ended priority queue structures min heap (Heap), binomial queue (BQueue),
leftist trees (LT), weight biased leftist trees (WBLT), pairing heap (Pair), skew
heaps (Skew), and TMSLs (MSL) were programmed in C. In addition, priority
queue versions of unbalanced binary search trees (BST), AVL trees (AVL), splay
trees (Splay), treaps (TRP), and skip lists (SKIP) were also programmed. The
priority queue version of these structures differed from their normal dictionary ver-
sions in that the delete operation was customized to support only a delete min.
(Note: for pairing heaps, skew heaps, and splay trees, we used the codes developed
by Jones [JONES86]). For skip lists and TMSLs, the level allocation probability p
was set to 1/4. While BSTs are normally defined only for the case when the keys

are distinct, they are easily extended to handle multiple elements with the same
18

key. In our extension, if a node has key z, then its left subtree has values < x and
its right values > z. To minimize the effects of system call overheads, all structures
(other than Heap) were programmed using simulated pointers. The min heap was
programmed using a one-dimensional array.

For our experiments, we began with structures initialized with n = 100, 1,000,
and 10,000 elements and then performed random sequences of 100,000, 500,000,
and 1,000,000 operations. This random sequence consists of approximately 50%
insert and 50% delete min operations. The results are given in Tables 4-19. In
the data sets ‘random1’ and ‘random?2’, the elements to be inserted were randomly
generated while in the data set ‘increasing’ an ascending sequence of elements was
inserted and in the data set ‘decreasing’, a descending sequence of elements was
used. Since BSTs have very poor performance on the last two data sets, we excluded
it from this part of the experiment. In the case of both randoml and random2, ten
random sequences were used and the average of these ten is reported. The random1
and random2 sequences differed in that for randoml, the keys were integers in the
range 0..(10% — 1) while for random2, they were in the range 0..999. So, random?2
is expected to have many more duplicates. Also, random?2 is expected to have a
more uniform distribution as the random numbers used by us were obtained by
extracting bits § through 15 of the number generated by the C random number
generating function rand.

Tables 4 and 5 give the total number of comparisons (in thousands) made by
each of the methods. On the two random data tests as well as on the decreasing
order data set, leftist trees, weight biased leftist trees, pairing heaps, and splay

trees required the fewest number of comparisons. With ascending data, splay trees
19

did best.

The structure height initially and following the randon sequences of operations
is given in Tables 6 and 7. For BQueues, the height of the tallest tree is given.
For SKIPs and TMSLs, table 7 gives the number of levels. In the case of LT and
WBLT, table 6 gives the length of the rightmost path following initialization and
the average of its length following each of the operations in the sequence. The two
leftist structures are able to maintain their rightmost paths so as to have a length

much less than log,(n + 1).

The measured run times on a Sun Sparc 5 are given in Tables 8 and 9 for integer
keys and in Tables 10 and 11 for double precision keys. The codes were compiled
using the cc compiler in optimized mode. Of the tested structures that provide
a good performance guarantee on a per operation basis, the WBLT generally per-
formed best on the random1, random2, and decreasing data sets while the min heap
did best on the increasing data set. When considered along with data structures
that provide a good amortized performance guarantee, the splay tree did best when
integer keys were used. However, with double precision keys, the WBLT remained
best for the random1 and random?2 data sets when n was 100 and 1000, and the
splay tree was better when n was 10,000. For the increasing data set, splay trees
performed better and for the decreasing data set, splay trees and WBLTs have

almost the same performance.

The standard deviations in the data reported in Tables 4-11 is given in Tables 12-
19. These standard deviations are relatively small, rarely exceeding 10%. Therefore,

we have confidence in the measured results and our conclusions.
20

6. CONCLUSION

We have developed two new data structures: weight biased leftist trees and modified
skip lists. Experiments indicate that WBLTs have better performance (i.e., run
time characteristic and number of comparisons) than LTs as a data structure for
single ended priority queues and MSLs have a better performance than skip lists
as a data structure for dictionaries.

Of the tested data structures that provide good performance guarantee on a per
operation basis, WBLTs have best performance except when keys are inserted in
ascending order. In this latter case, heaps have best performance. When amortized
performance guarantees are sufficient, the splay tree is the best data structure to
use. Note, however, that the splay tree does not support amortized log time melds
and so in priority queue applications that perform frequent meld operations, the
WBLT would outperform the splay tree.

Our experimental results for single ended priority queues are in marked contrast
to those reported in [GONNO1, p183] where leftist trees are reported to take ap-
proximately four times as much time as heaps. We suspect this difference in results
is because of different programming techniques (recursion vs. iteration, dynamic vs.
static memory allocation, etc.) used in [GONN91] for the different structures. In
our experiments, all structures were coded using similar programming techniques.

On the other hand, our results are in agreement with those of Jones [JONES6].
The relative performance we observed for the three codes developed by Jones—splay
trees, skew heaps, and pairing heaps—was the same as reported in [JONES86]; splay

trees are better than pairing heaps, which in turn are better than skew heaps.

21

inputs | mm | n | Heap | BQueue | LT | WBLT | Pair | Skew |

100 1092 256 63 63 62 391

100K | 1,000 1504 284 119 118 114 497

10,000 1751 642 454 446 417 730

100 5491 1258 267 267 266 1942

randl | 500K | 1,000 7687 1305 348 346 340 2392
10,000 9547 2633 987 973 906 3179

100 10990 2509 519 518 517 3871

1M 1,000 15427 2518 610 608 601 4751

10,000 || 19456 4949 1384 1367 1284 | 6139

100 744 254 62 62 62 372

100K | 1,000 1318 288 115 114 114 476

10,000 1388 677 424 414 417 681

100 3010 1260 264 264 265 1652

rand2 | 500K | 1,000 4727 1288 335 333 338 2109
10,000 5356 2626 891 866 897 2830

100 5492 2509 514 514 514 3229

1M 1,000 8883 2568 591 588 596 3956

10,000 9976 4994 1243 1211 1271 | 5268

100 822 574 704 701 306 651

100K | 1,000 1063 735 937 930 314 806
10,000 1386 1073 1238 1229 316 983

100 4111 2870 3521 3502 1528 | 3258

inc 500K | 1,000 5319 3673 4682 4649 1567 | 4041
10,000 6936 5327 6196 6145 1583 | 5034

100 8223 5741 7041 7002 3055 | 6517

1M 1,000 10638 7346 9365 9299 3134 | 8085

10,000 || 13877 10645 12396 | 12290 | 3166 | 10098

100 1100 150 50 50 50 150

100K | 1,000 1550 201 50 50 50 150
10,000 1999 410 50 50 50 150

100 5500 750 250 250 250 750

dec 500K | 1,000 7750 1001 250 250 250 750
10,000 9999 2010 250 250 250 7500

100 11000 1500 500 500 500 1500

1M 1,000 15500 2001 500 500 500 1500

10,000 || 19999 4010 500 500 500 1500

m = the number of operations performed

n = the number of elements in initial data structures

Table 4: The number of key comparisons (in thousands)

22

inputs | m | n || BST | TRP | Skip | MSL | AVL | Splay | WBLT |

100 350 | 422 243 513 388 66 63

100K | 1,000 490 | 527 350 681 499 124 118
10,000 || 643 | 752 712 1163 | 664 423 446

100 1711 | 2213 | 1149 | 2469 | 1928 | 271 267

randl | 500K | 1,000 || 2181 | 2487 | 1590 | 3283 | 2464 | 358 346
10,000 || 2933 | 3316 | 2439 | 4463 | 3204 | 973 973

100 3363 | 4331 | 2360 | 5072 | 3840 | 523 518

1M 1,000 || 4339 | 5054 | 3086 | 6451 | 4921 | 623 608

10,000 || 5583 | 6335 | 4472 | 8636 | 6352 | 1382 1367

100 254 | 349 242 511 374 66 62

100K | 1,000 363 | 447 360 711 491 120 114
10,000 || 961 762 674 1053 | 666 376 414

100 876 | 1305 | 1170 | 2512 | 1832 | 270 264

rand2 | 500K | 1,000 || 1516 | 2016 | 1543 | 3192 | 2354 | 346 333
10,000 || 4531 | 3128 | 2392 | 4389 | 3123 | 845 866

100 1425 | 2209 | 2345 | 5045 | 3646 | 523 514

1M 1,000 || 2607 | 3610 | 2930 | 6147 | 4604 | 606 588

10,000 || 8128 | 5639 | 4452 | 8500 | 6142 | 1206 1211

100 - 415 786 1026 | 456 50 701

100K | 1,000 - 502 1031 | 1353 | 583 50 929
10,000 - 646 1315 | 1688 | 749 50 1229

100 - 2102 | 3910 | 5141 | 2278 | 250 3502

inc 500K | 1,000 - 2539 | 5104 | 6678 | 2912 | 250 4649
10,000 - 3097 | 6636 | 8484 | 3742 | 250 6145

100 - 4197 | 7816 | 10302 | 4555 | 500 7002

1M 1,000 - 5069 | 10215 | 13363 | 5824 | 500 9299
10,000 - 6202 | 13246 | 17252 | 7484 | 500 12290

100 - 570 250 537 400 50 50

100K | 1,000 - 326 300 637 551 50 50

10,000 - 452 400 838 701 50 50

100 - 2850 | 1250 | 2684 | 2000 | 250 250

dec 500K | 1,000 - 1625 | 1500 | 3184 | 2751 | 250 250
10,000 - 2256 | 2000 | 4184 | 3501 | 250 250

100 - 5699 | 2500 | 5367 | 4000 | 500 500

1M 1,000 - 3248 | 3000 | 6367 | 5501 | 500 500

10,000 - 4512 | 4000 | 8368 | 7000 | 500 500

m = the number of operations performed

n = the number of elements in initial data structures

Table 5: The number of key comparisons (in thousands)

23

inputs | m | n || Heap [BQueue | LT [WBLT | Pair | Skew |
100 || 78 18 | 41 | 41 33.1 A1

100K | 1,000 || 10,11 | 1,11 | 51 | 52 | 1742 5,2
10,000 || 14,14 | 1,14 | 55 | 95 | 758111 | 65

100 || 7.8 18 | 41] 51 85.1 6.1

randl | 500K | 1,000 | 1011 | 111 | 61 | 51 | 8341 8,1
10,000 || 14,14 | 1,14 | 81 | 6,1 | 2380,1 9,1

100 | 78 | 18 | 41 | 41 | 881 6,1

M | 1,000 || 10,01 1,11 | 81| 81 | 5351 | 13,1
10,000 || 14,14 | 1,4 | 91 | 81 | 7957,0 | 11,1

100 || 78 18 | 51 | 41 9.1 71

100K | 1,000 || 10,01 | 111 | 7,01 | 71 | 159,1 9,1
10,000 || 1414 | 114 | 62 | 62 | 5303 9.2

100 || 7.8 18 | 51| 41 35.1 6.1

rand2 | 500K | 1,000 || 1011 | 111 | 61 | 61 | 2591 71
10,000 || 14,14 | 1,14 | 41 | 41 | 7191 5,1

100 || 7.8 18 | 51| 51 43,1 71

M | 1,000 || 10,11] 1,11 | 51 | 41 93,1 7.1
10,000 | 14,04 | 1,14 | 81 | 71 | 5921 9,1

100 || 7.8 18 | 65 | 67 99.7 100.6

100K | 1,000 10,11 1,11 9,6 9,7 999,5 1000,11
10,000 || 14,14 1,14 13,9 13,9 9999,6 | 10000,11

100 || 7.8 18 | 65| 66 99.5 100,6

inc | 500K | 1,000 | 1011 | 111 | 97 | 9.6 | 9994 | 1000,6
10,000 || 14,14 1,14 13,7 13,8 9999,5 10000,9

100 || 7.8 18 | 65 | 66 | 99,199 | 1006

IM | 1,000 || 10,01 | 1,11 | 98 | 96 | 9994 | 1000,8
10,000 || 14,14 1,14 13,9 13,8 9999,5 | 10000,11

100 || 7.8 18 | L1] 11 11 11

100K | 1,000 || 10,11 | 1,11 | 1,1 | 1,1 1,1 1,1
10,000 || 14,14 | 1,14 | 1,1 | 1,1 1,1 1,1

100 || 7.8 18 | 1,1] 11 11 11

dec | 500K | 1,000 || 10,11 | 1,11 | 1,0 | 1,1 1,1 1,1
10,000 | 14,14 | 1,14 | 1,1 | 1,1 1,1 1,1

100 || 7.8 18 | 1,1 | 11 11 11

™ | 1,000 |[1001 1,11 | 11| 1.1 1,1 11
10,000 | 14,04 | 1,14 | 1,1 | 1,1 1,1 1,1

m = the number of operations performed

n = the number of elements in initial data structures

Table 6: Height/level of the structures

24

inputs| m | n || BST | TRP |Skip | MSL| AVL | Splay |WBLT|
100 13,16 | 13,17 | 34 4,5 8,9 14,19 4,1

100K | 1,000 23,23 | 24,22 | 5,5 6,6 | 12,12 22,26 5,2
10,000 || 31,29 | 31,31 7,7 8,8 | 16,16 33,36 9,5

100 11,15 | 12,15 | 34 4,5 8,9 12,19 5,1

randl | 500K | 1,000 26,24 | 21,23 | 5,5 6,6 | 12,12 27,27 5,1
10,000 || 30,30 | 31,31 77 8,8 | 16,16 31,37 6,1

100 13,16 | 16,16 | 34 4,5 8,9 14,21 4,1

1M 1,000 23,22 | 19,22 | 5,5 6,6 | 12,12 2227 8,1
10,000 || 32,31 | 28,31 7,7 8,8 | 16,16 31,36 8,1

100 13,60 | 13,54 | 34 4,5 8,9 15,33 4.1

100K | 1,000 20,71 | 19,64 | 5,5 6,6 | 12,12 24,43 7,1
10,000 || 35,92 | 36,85 | 7,6 8,7 | 16,15 39,56 6,2

100 14,199 | 12,199 | 3,4 4,5 8,8 13,27 4,1

rand2 | 500K | 1,000 || 20,271 | 23,250 | 5,5 6,6 | 12,11 26,122 6,1
10,000 || 35,303 | 36,273 | 7,7 8,8 | 16,15 38,137 41

100 11,199 | 21,199 | 3,4 4,5 8,8 20,44 5,1

1M 1,000 || 26,513 | 22,508 | 5,5 6,6 | 12,11 22,221 4,1
10,000 || 40,560 | 35,520 | 7,7 8,8 | 16,15 35,242 7,1

100 - 11,16 | 3,4 4,5 7,8 100,57 6,7

100K | 1,000 - 2424 | 5,5 6,6 | 10,11 1000,543 9,7
10,000 - 33,34 | 7,7 8,8 | 14,14 | 10000,9561 13,9

100 - 11,15 | 34 4,5 7,8 100,77 6,6

inc 500K | 1,000 - 24,18 | 5,4 6,5 | 10,11 1000,707 9,6
10,000 - 33,31 7,7 8,8 | 14,14 | 10000,7601 13,8

100 - 11,14 | 3,3 44 7.8 100,200 6,6

1M 1,000 - 24,19 | 5,5 6,6 | 10,11 1000,363 9,6
10,000 - 33,32 | 7,6 8,7 | 14,14 | 10000,5151 13,8

100 - 11,15 | 34 4,5 7,8 100,200 1,1

100K | 1,000 - 2425 | 5,5 6,6 | 10,11 | 1000,1100 1,1
10,000 - 33,33 | 7,7 8,8 | 14,14 | 10000,10100 1,1

100 - 11,14 | 34 4,5 7,8 100,200 1,1

dec 500K | 1,000 - 2425 | 5,5 6,6 | 10,11 | 1000,1100 1,1
10,000 - 33,33 | 7,7 8,8 | 14,14 | 10000,10100 1,1

100 - 11,14 | 34 4,5 7,8 100,200 1,1

1M 1,000 - 2425 | 5,5 6,6 | 10,11 | 1000,1100 1,1
10,000 - 33,33 | 7,7 8,8 | 14,14 | 10000,10100 1,1

n = the number of elements in initial data structures

m = the number of operations performed

Table 7: Height/level of the structures

25

inputs | m | n | Heap | BQueue | LT | WBLT | Pair | Skew |
100 0.16 0.21 0.09 0.09 0.09 | 0.14
100K | 1,000 0.21 0.23 0.11 0.11 0.10 | 0.19
10,000 0.27 0.47 0.33 0.27 0.23 | 0.34
100 0.81 1.01 0.43 0.41 0.42 | 0.70
randl | 500K | 1,000 1.05 1.11 0.47 0.45 0.45 | 0.95
10,000 1.40 1.78 0.88 0.76 0.69 | 1.47
100 1.63 2.03 0.85 0.83 0.84 | 1.38
1M 1,000 2.11 2.10 0.90 0.87 0.88 | 1.87
10,000 2.80 3.27 1.40 1.25 1.17 | 2.83
100 0.13 0.20 0.09 0.09 0.09 | 0.13
100K | 1,000 0.19 0.23 0.12 0.10 0.10 | 0.19
10,000 0.24 0.47 0.32 0.26 0.23 | 0.32
100 0.59 1.01 0.42 0.41 0.42 | 0.62
rand2 | 500K | 1,000 0.78 1.08 0.46 0.44 0.45 | 0.83
10,000 0.95 1.73 0.82 0.71 0.69 | 1.30
100 1.13 2.01 0.84 0.83 0.85 | 1.24
1M 1,000 1.49 2.11 0.89 0.86 0.87 | 1.56
10,000 1.78 3.18 1.30 1.17 1.16 | 2.37
100 0.13 0.37 0.25 0.23 0.13 | 0.18
100K | 1,000 0.18 0.55 0.45 0.38 0.15 | 0.27
10,000 | 0.22 0.80 0.72 0.58 0.17 | 0.40
100 0.62 1.77 1.32 1.13 0.65 | 0.88
inc 500K | 1,000 0.88 2.60 2.27 1.85 0.75 | 1.40
10,000 1.12 4.02 3.60 2.87 0.83 | 2.10
100 1.25 3.40 2.48 2.12 1.30 | 1.83
1M 1,000 1.75 4.98 4.38 3.72 1.58 | 2.78
10,000 2.25 8.03 7.20 5.73 1.70 | 4.15
100 0.18 0.15 0.08 0.07 0.10 | 0.08
100K | 1,000 0.22 0.17 0.08 0.08 0.07 | 0.08
10,000 | 0.28 0.35 0.08 0.08 0.08 | 0.10
100 0.82 0.82 0.42 0.42 0.42 | 0.45
dec 500K | 1,000 1.05 0.88 0.40 0.42 0.38 | 0.40
10,000 1.40 1.72 0.38 0.40 0.43 | 0.43
100 1.62 1.63 0.82 0.83 0.83 | 0.87
1M 1,000 2.12 1.78 0.82 0.82 0.77 | 0.78
10,000 2.78 3.43 0.80 0.80 0.83 | 0.87

Time Unit : sec

m = the number of operations performed

n = the number of elements in initial data structures

Table 8: Run time using integer keys

26

inputs | m | n || BST | TRP [Skip | MSL | AVL | Splay | WBLT |

100 0.13 | 0.20 | 0.13 | 0.16 | 0.26 | 0.09 0.09
100K | 1,000 (| 0.15 | 0.24 | 0.15 | 0.18 | 0.28 | 0.10 0.11
10,000 || 0.21 | 032 | 0.32 | 0.36 | 0.39 | 0.21 0.27

100 0.59 | 1.00 | 0.64 | 0.74 | 1.34 | 040 0.41
randl | 500K | 1,000 | 0.70 | 1.11 | 0.71 | 0.87 | 1.42 | 0.41 0.45
10,000 || 0.91 | 1.36 | 1.05 | 1.23 | 1.70 | 0.63 0.76

100 1.19 | 1.99 | 1.28 | 1.51 | 2.68 | 0.78 0.83
1M 1,000 || 1.40 | 2.21 | 1.39 | 1.68 | 2.86 | 0.80 0.87
10,000 || 1.77 | 2.54 | 1.88 | 2.25 | 3.29 | 1.06 1.25

100 0.10 | 0.18 | 0.13 | 0.15 | 0.25 | 0.08 0.09
100K | 1,000 | 0.13 | 0.21 | 0.15 | 0.18 | 0.28 | 0.09 0.10
10,000 || 0.33 | 0.36 | 0.31 | 0.35 | 0.40 | 0.18 0.26

100 043 | 0.84 | 063 | 0.75 | 1.28 | 0.38 0.41
rand2 | 500K | 1,000 | 0.59 | 1.03 | 0.70 | 0.85 | 1.40 | 0.41 0.44
10,000 || 1.55 | 1.43 | 1.04 | 1.22 | 1.70 | 0.56 0.71

100 0.84 | 1.61 | 1.28 | 1.51 | 2.54 | 0.79 0.83
1M 1,000 || 1.11 | 1.95 | 1.37 | 1.67 | 2.76 | 0.79 0.86
10,000 || 2.88 | 2.64 | 1.87 | 2.22 | 3.23 | 0.97 1.17

100 — [020]020]020]032] 010 | 0.23
100K | 1,000 | — | 0.25 | 0.27 | 0.27 | 0.42 | 0.13 | 0.38
10,000 | - | 027 | 032 | 0.28 | 0.50 | 0.12 | 0.58

100 — [1.02 [1.05 | 097 | 1.62 | 0.52 | 1.13

inc | 500K | 1,000 || - | 1.15 | 1.30 | 1.23 | 2.03 | 0.58 | 1.85
10,000 | — | 1.33 | 1.60 | 1.47 | 2.47 | 0.63 | 2.87

100 — [200 [212 [1.92 | 335 | 1.07 | 2.12

IM | 1,000 || - | 232 | 260 | 245 | 407 | 1.22 | 3.72
10,000 || — | 2.63 | 317 | 2.95 | 493 | 1.30 | 5.73

100 — [023]012] 0.15 | 040 | 0.08 | 0.07

100K | 1,000 | — | 0.18 | 0.18 | 0.17 | 0.40 | 0.08 | 0.08
10,000 | — | 0.22 | 0.15 | 0.17 | 0.48 | 0.08 | 0.08

100 — [123063 | 1.00 | 1.85 | 0.42 | 0.42

dec | 500K | 1,000 || ~ | 0.85 | 0.67 | 0.92 | 2.05 | 0.35 | 0.42
10,000 | ~ | 0.95 | 0.73 | 0.88 | 2.43 | 0.42 | 0.40

100 — [215 | 147 | 1.50 | 408 | 0.82 | 0.83

IM | 1,000 | - | 177 | 1.35| 1.90 | 408 | 0.70 | 0.82
10,000 || — | 1.65 | 1.48 | 2.00 | 4.83 | 0.80 | 0.80

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures

Table 9: Run time using integer keys

27

inputs | m n_ || Heap | BQueue | LT | WBLT | Pair | Skew

100 0.29 0.24 0.11 0.10 0.10 | 0.18
100K 1,000 0.39 0.28 0.15 0.12 0.13 | 0.24
10,000 0.54 0.57 0.41 0.32 0.29 | 0.43

100 1.46 1.20 0.52 0.47 0.50 | 0.88

randl | 500K 1,000 1.96 1.27 0.58 0.52 0.55 1.17
10,000 2.75 2.11 1.09 0.90 0.86 1.87
100 2.93 2.42 1.04 0.93 1.03 1.75

1M 1,000 3.93 2.49 1.10 0.99 1.06 | 2.33
10,000 5.53 3.89 1.73 1.45 1.45 | 3.59

100 0.23 0.24 0.11 0.10 0.11 0.17
100K 1,000 0.35 0.27 0.14 0.13 0.13 0.24
10,000 0.46 0.57 0.39 0.31 0.29 0.42

100 1.01 1.19 0.53 0.48 0.51 0.80

rand2 | 500K 1,000 1.39 1.26 0.57 0.51 0.54 1.02
10,000 1.79 2.05 1.01 0.85 0.86 1.64

100 1.92 2.39 1.02 0.93 1.01 1.56

1M 1,000 2.66 2.50 1.08 0.98 1.06 1.93
10,000 3.37 3.77 1.61 1.37 1.44 | 2.98

100 0.23 0.42 0.33 0.37 0.17 | 0.25
100K 1,000 0.33 0.52 0.57 0.50 0.20 | 0.38
10,000 0.43 0.95 0.88 0.70 0.23 | 0.53

100 1.13 2.02 1.70 1.83 0.85 1.28
inc 500K 1,000 1.65 2.57 2.75 2.48 1.02 1.88
10,000 2.07 4.18 4.43 3.50 1.10 | 2.73

100 2.28 4.12 3.40 3.48 1.62 | 2.30
1M 1,000 3.32 5.12 5.45 5.02 2.05 | 3.73
10,000 4.15 8.47 8.83 7.00 2.32 | 5.57

100 0.30 0.27 0.13 0.10 0.12 | 0.10
100K 1,000 0.38 0.22 0.10 0.10 0.10 | 0.10
10,000 0.55 0.43 0.10 0.08 0.10 | 0.12

100 1.45 0.97 0.48 0.45 0.50 | 0.55

dec 500K 1,000 1.97 1.07 0.52 0.47 0.53 | 0.55
10,000 2.80 1.63 0.50 0.47 0.47 | 0.52

100 2.93 1.98 1.02 0.93 1.03 1.08

1M 1,000 3.93 2.25 1.02 0.90 0.93 1.02
10,000 5.58 3.28 1.00 0.95 0.92 1.02

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures
Table 10: Run time using real (double) keys

28

inputs [m n [BST | TRP [Skip | MSL [AVL | Splay | WBLT
100 0.16 [0.22 [0.16 | 0.21 | 0.30 | 0.11 0.10

100K | 1,000 | 0.21 | 0.27 | 0.19 | 0.25 | 0.34 | 0.12 | 0.12
10,000 || 0.29 | 0.41 | 0.40 | 0.47 | 0.46 | 0.28 | 0.32

100 0.81 | 1.14 | 0.78 | 1.00 | 1.53 | 0.51 0.47

randl | 500K | 1,000 | 0.96 | 1.25 | 0.90 | 1.18 | 1.68 | 0.54 | 0.52
10,000 || 1.26 | 1.64 | 1.32 | 1.67 | 2.04 | 0.84 | 0.90

100 1.66 | 2.24 | 1.58 | 2.08 | 3.08 | 1.04 | 0.93

IM | 1,000 | 1.95 | 2.51 | 1.76 | 2.36 | 3.38 | 1.05 | 0.9
10,000 || 2.39 | 3.08 | 2.35 | 3.06 | 3.94 | 1.42 1.45

100 0.14 [0.21 [0.16 | 0.21 | 0.29 | 0.11 0.10

100K | 1,000 | 0.8 | 0.24 | 0.19 | 0.26 | 0.34 | 0.12 | 0.13
10,000 || 0.46 | 0.43 | 0.39 | 0.46 | 0.48 | 0.24 | 0.31

100 0.61 | 0.90 | 0.79 | 1.04 | 1.47 | 0.52 | 0.48

rand2 | 500K | 1,000 | 0.81 | 1.13 | 0.88 | 1.18 | 1.63 | 0.53 | 0.51
10,000 || 2.16 | 1.74 | 1.30 | 1.66 | 2.02 | 0.75 | 0.85

100 114 | 169 | 1.58 | 2.05 | 293 | 1.03 | 0.93

IM | 1,000 || 1.52 | 2.17 | 1.71 | 2.33 | 327 | 1.05 | 0.98
10,000 || 4.02 | 3.10 | 2.34 | 3.04 | 3.87 | 1.29 1.37

100 - [o023]030] 028 03] 013 | 037

100K | 1,000 - | 028 | 035 | 038 | 042 | 0.15 | 0.50
10,000 - | 032 | 045 | 043 | 053 | 0.15 | 0.70

100 - 1.15 | 1.48 | 1.42 | 1.90 | 0.68 1.83

inc | 500K | 1,000 - 132 | 177 | 1.78 | 213 | 0.75 | 2.48
10,000 - 1.52 | 2.18 | 2.17 | 2.65 | 0.78 | 3.50

100 - | 225 [298 | 2.82 | 385 [1.28 | 3.48

IM | 1,000 - | 263 | 350 | 3.57 | 422 | 153 | 5.02
10,000 - | 308 | 428 | 440 | 537 | 1.65 | 7.00

100 - [030 017 [020 | 0.40 | 0.10 | 0.10

100K | 1,000 - | 022 | 017 | 0.22 | 040 | 0.10 | 0.10
10,000 - | 022|022 025 | 057 | 0.10 | 0.08

100 - 1.42 | 0.80 | 1.00 | 2.03 | 0.53 | 0.45

dec | 500K | 1,000 - 1.05 | 0.83 | 1.50 | 2.05 | 0.55 | 0.47
10,000 - 1.10 | 1.03 | 1.27 | 2.62 | 047 | 047

100 - | 248 | 178 | 2.07 | 408 | 1.07 | 0.93

IM | 1,000 - | 213 | 1.65 | 2.20 | 430 | 1.10 | 0.90
10,000 - | 220 | 203 | 298 | 527 | 093 | 0.95

Time Unit : sec

m = the number of operations performed

n = the number of elements in initial data structures

Table 11: Run time using real (double) keys

29

inputs m n || Heap | BQueue | LT | WBLT | Pair | Skew

100 231 1507 410 407 400 3245
100K 1,000 337 5160 467 527 543 1591
10,000 1200 7601 1648 1591 1574 910
100 243 560 481 477 409 19286
randl | 500K 1,000 1574 804 830 713 748 6698
10,000 1789 13858 2967 2572 2410 2164
100 219 1616 453 457 390 30894

1M 1,000 691 46054 889 859 961 14056
10,000 1970 33915 3012 2745 2386 4143

100 9060 6517 199 201 170 3795
100K 1,000 33050 415 670 573 648 1258
10,000 7282 675 1062 1213 1159 786
100 39099 231 206 214 212 50846
rand2 | 500K 1,000 48193 736 972 824 1254 9104
10,000 13193 1456 2697 2652 2271 5513
100 27007 352 194 170 185 | 232797
1M 1,000 62067 662 983 1072 894 31907

10,000 || 22050 1889 2902 2459 2917 12523

m = the number of operations performed
n = the number of elements in initial data structures
Table 12: Standard deviation of the number of key comparisons

inputs | m n || BST | TRP [Skip | MSL [AVL [Splay | WBLT |

100 36762 36288 18586 37161 3489 469 407
100K 1,000 5373 32736 36943 76955 7180 599 527
10,000 1675 29307 14277 28758 1277 1720 1591

100 169243 | 201371 | 122009 | 243296 | 27912 547 477

randl | 500K 1,000 50562 84867 198150 | 402161 | 15179 958 713
10,000 8714 87236 75259 172594 | 33256 | 2580 2572

100 241816 | 266066 | 232022 | 463443 | 49374 454 457

1M 1,000 207562 | 270670 | 327040 | 657720 | 46798 | 1111 859
10,000 24862 | 258054 | 151337 | 317804 | 18710 | 2595 2745

100 20492 18310 13423 27287 3146 271 201

100K 1,000 1844 19903 15212 31057 2132 892 573
10,000 2577 27004 14445 33077 1914 1030 1213

100 44415 28946 94090 187855 7195 291 214

rand2 | 500K 1,000 15861 130893 | 94076 190376 | 31954 | 1307 824
10,000 15713 114530 | 102129 | 217412 7398 2312 2652

100 42520 28828 313077 | 625333 | 11095 330 170
1M 1,000 15137 | 189764 | 151862 | 303610 | 34972 | 1146 1072
10,000 35855 | 232912 | 271014 | 549434 | 29618 | 2767 2459

m = the number of operations performed
n = the number of elements in initial data structures
Table 13: Standard deviation of the number of key comparisons

30

inputs m n || Heap | BQueue | LT | WBLT | Pair | Skew
100 0.0,0.0 | 0.0,0.0 | 0.92,0.0 | 1.11,0.0 | 23.30,0.0 | 1.34,0.0
100K | 1,000 0.0,0.0 | 0.0,0.0 | 0.0,1.20 | 0.0,1.50 | 0.0,3.00 | 0.0,3.00
10,000 (| 0.0,0.0 | 0.0,0.0 | 0.0,4.02 | 0.0,4.07 | 0.0,10.71 | 0.0,3.92
100 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
randl | 500K | 1,000 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
10,000 || 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
100 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
1M 1,000 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
10,000 || 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
100 0.0,0.0 | 0.0,0.0 1.11,0.0 | 0.78,0.0 | 30.56,0.0 | 2.79,0.0
100K | 1,000 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
10,000 || 0.0,0.0 | 0.0,0.0 | 0.0,1.50 | 0.0,2.40 | 0.0,4.50 | 0.0,2.40
100 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
rand2 | 500K | 1,000 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
10,000 || 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
100 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
1M 1,000 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
10,000 || 0.0,0.0 | 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
m = the number of operations performed
n = the number of elements in initial data structures
Table 14: Standard deviation of height/level of the structures
inputs | m n [BST | TRP | Skip | MSL | AVL Splay [WBLT |
100 1.40,1.02 | 1.84,2.97 | 0.0,0.64 | 0.0,0.64 | 0.0,0.0 | 1.42,1.67 | 1.11,0.0
100K | 1,000 0.0,1.11 0.0,1.45 | 0.0,1.17 | 0.0,1.17 | 0.0,0.30 | 0.0,2.00 | 0.0,1.50
10,000 0.0,1.02 0.0,1.68 | 0.0,0.30 | 0.0,0.30 | 0.0,0.0 0.0,1.62 | 0.0,4.07
100 0.0,1.67 0.0,1.11 | 0.0,0.67 | 0.0,0.67 | 0.0,0.0 0.0,1.67 0.0,0.0
randl | 500K | 1,000 0.0,1.62 0.0,2.33 | 0.0,0.89 | 0.0,0.89 | 0.0,0.0 0.0,2.50 0.0,0.0
10,000 0.0,0.49 0.0,1.49 | 0.0,0.40 | 0.0,0.40 | 0.0,0.0 0.0,3.75 0.0,0.0
100 0.0,1.60 0.0,1.37 0.0,0.83 | 0.0,0.83 0.0,0.0 0.0,2.76 0.0,0.0
1M 1,000 0.0,1.30 0.0,1.14 | 0.0,0.94 | 0.0,0.94 | 0.0,0.30 | 0.0,3.69 0.0,0.0
10,000 0.0,1.27 0.0,1.60 | 0.0,0.66 | 0.0,0.66 | 0.0,0.0 0.0,1.90 0.0,0.0
100 1.10,5.06 | 1.11,5.78 | 0.0,0.67 | 0.0,0.67 | 0.0,0.46 | 2.04,2.96 | 0.78,0.0
100K | 1,000 0.0,4.59 0.0,3.29 | 0.0,0.40 | 0.0,0.40 | 0.0,0.50 | 0.0,2.14 0.0,0.0
10,000 0.0,2.57 0.0,4.72 | 0.0,0.63 | 0.0,0.63 | 0.0,0.0 0.0,3.88 | 0.0,2.40
100 0.0,0.0 0.0,0.0 0.0,0.90 | 0.0,0.90 | 0.0,0.46 | 0.0,6.59 0.0,0.0
rand2 | 500K | 1,000 0.0,12.76 | 0.0,15.34 | 0.0,0.54 | 0.0,0.54 | 0.0,0.0 | 0.0,11.76 | 0.0,0.0
10,000 || 0.0,12.37 | 0.0,7.57 | 0.0,0.81 | 0.0,0.81 | 0.0,0.0 0.0,3.74 0.0,0.0
100 0.0,0.0 0.0,0.0 0.0,0.90 | 0.0,0.90 | 0.0,0.30 | 0.0,10.73 | 0.0,0.0
1M 1,000 0.0,16.14 | 0.0,19.31 | 0.0,0.66 | 0.0,0.66 | 0.0,0.0 0.0,8.46 0.0,0.0
10,000 || 0.0,14.73 | 0.0,17.74 | 0.0,0.49 | 0.0,0.49 | 0.0,0.0 | 0.0,5.26 | 0.0,0.0

m = the number of operations performed
n = the number of elements in initial data structures
Table 15: Standard deviation of height/level of the structures

31

inputs | m n_ || Heap | BQueue [LT | WBLT | Pair [Skew]
100]| 0.008 [0.011 [0.008 | 0.010 [0.007 | 0.010
100K | 1,000 || 0.008 | 0.005 | 0.005 | 0.008 | 0.007 | 0.008
10,000 || 0.011 | 0.008 | 0.007 | 0.008 | 0.008 | 0.008
100 [[0.011 [0.017 | 0.008 | 0.011 | 0.017 | 0.036
randl | 200K | 1,000 || 0.007 | 0.049 | 0.007 | 0.007 | 0.005 | 0.010
10,000 || 0.000 | 0.014 | 0.009 | 0.008 | 0.008 | 0.008
100 || 0.008 [0.025 | 0.012 | 0.019 | 0.031 | 0.046
IM | 1,000 || 0.008 | 0.031 | 0.012 | 0.013 | 0.005 | 0.017
10,000 || 0.009 | 0.045 | 0.014 | 0.007 | 0.000 | 0.008

100 0.007 0.007 0.011 0.007 0.011 | 0.007
100K 1,000 0.008 0.009 0.011 0.008 0.007 | 0.008
10,000 || 0.007 0.008 0.012 0.008 0.007 | 0.008

100 0.008 0.064 0.012 0.008 0.020 | 0.039
rand2 | 200K 1,000 0.011 0.034 0.008 0.013 0.009 | 0.011
10,000 || 0.000 0.022 0.009 0.008 0.008 | 0.012

100 0.012 0.130 0.020 0.042 0.026 | 0.076
1M 1,000 0.008 0.057 0.011 0.008 0.013 | 0.017
10,000 || 0.011 0.049 0.012 0.011 0.011 | 0.013

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures
Table 16: Standard deviation of run time using integer keys

inputs | m n [BST | TRP | Skip [MSL | AVL [Splay | WBLT

100 0.008 | 0.011 | 0.008 | 0.017 | 0.008 | 0.008 0.010
100K 1,000 0.008 | 0.010 | 0.009 | 0.013 | 0.005 | 0.009 0.008
10,000 || 0.008 | 0.015 | 0.007 | 0.017 | 0.008 | 0.008 0.008

100 0.030 | 0.052 | 0.024 | 0.035 | 0.033 | 0.015 0.011
randl | 200K 1,000 0.018 | 0.015 | 0.024 | 0.057 | 0.027 | 0.008 0.007
10,000 || 0.012 | 0.057 | 0.018 | 0.025 | 0.024 | 0.010 0.008

100 0.038 | 0.053 | 0.062 | 0.034 | 0.064 | 0.037 0.019
1M 1,000 0.039 | 0.055 | 0.052 | 0.089 | 0.040 | 0.012 0.013
10,000 || 0.042 | 0.140 | 0.022 | 0.102 | 0.065 | 0.009 0.007

100 0.009 | 0.011 | 0.007 | 0.015 | 0.007 | 0.008 0.007
100K 1,000 0.000 | 0.008 | 0.007 | 0.007 | 0.007 | 0.008 0.008
10,000 || 0.008 | 0.011 | 0.011 | 0.007 | 0.007 | 0.007 0.008

100 0.012 | 0.013 | 0.018 | 0.045 | 0.026 | 0.020 0.008
rand2 | 200K 1,000 0.011 | 0.042 | 0.019 | 0.037 | 0.045 | 0.008 0.013
10,000 || 0.013 | 0.059 | 0.023 | 0.046 | 0.022 | 0.005 0.008

100 0.023 | 0.028 | 0.092 | 0.093 | 0.056 | 0.032 0.042
1M 1,000 0.015 | 0.041 | 0.019 | 0.041 | 0.050 | 0.008 0.008
10,000 || 0.024 | 0.088 | 0.068 | 0.089 | 0.085 | 0.008 0.011

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures
Table 17: Standard deviation of run time using integer keys

32

inputs | m n_ || Heap | BQueue [LT | WBLT | Pair [Skew]
100]| 0.008 [0.008 [0.008 | 0.000 | 0.012 | 0.008
100K | 1,000 || 0.008 | 0.010 | 0.007 | 0.008 | 0.005 | 0.008
10,000 || 0.011 | 0.012 | 0.008 | 0.008 | 0.008 | 0.005
100 [[0.012 [0.016 | 0.014 | 0.013 | 0.015 | 0.022
randl | 200K | 1,000 || 0.013 | 0.034 | 0.007 | 0.009 | 0.005 | 0.011
10,000 || 0.005 | 0.015 | 0.011 | 0.015 | 0.008 | 0.012
100 || 0.013 [0.059 [0.021 | 0.017 | 0.036 | 0.038
IM | 1,000 || 0.010 | 0.038 | 0.014 | 0.015 | 0.017 | 0.015
10,000 || 0.007 | 0.074 | 0.019 | 0.005 | 0.008 | 0.013

100 0.007 0.011 0.008 0.005 0.008 | 0.009
100K 1,000 0.010 0.008 0.008 0.008 0.007 | 0.008
10,000 || 0.008 0.021 0.008 0.008 0.008 | 0.011

100 0.008 0.020 0.011 0.011 0.017 | 0.027
rand2 | 200K 1,000 0.012 0.050 0.011 0.011 0.008 | 0.011
10,000 || 0.008 0.018 0.011 0.010 0.010 | 0.011

100 0.012 0.126 0.021 0.013 0.032 | 0.083
1M 1,000 0.017 0.089 0.011 0.008 0.015 | 0.018
10,000 || 0.010 0.027 0.011 0.012 0.013 | 0.023

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures
Table 18: Standard deviation of run time using real keys

inputs | m n [BST | TRP | Skip [MSL | AVL [Splay | WBLT

100 0.016 | 0.017 | 0.011 | 0.013 | 0.008 | 0.008 0.000
100K 1,000 0.008 | 0.012 | 0.013 | 0.012 | 0.008 | 0.008 0.008
10,000 || 0.008 | 0.011 | 0.014 | 0.008 | 0.011 | 0.010 0.008

100 0.047 | 0.060 | 0.030 | 0.043 | 0.043 | 0.015 0.013
randl | 200K 1,000 0.017 | 0.037 | 0.040 | 0.077 | 0.018 | 0.008 0.009
10,000 || 0.008 | 0.030 | 0.015 | 0.045 | 0.031 | 0.008 0.015

100 0.115 | 0.073 | 0.046 | 0.114 | 0.094 | 0.053 0.017
1M 1,000 0.072 | 0.092 | 0.067 | 0.136 | 0.033 | 0.032 0.015
10,000 || 0.035 | 0.076 | 0.045 | 0.092 | 0.035 | 0.018 0.005

100 0.013 | 0.008 | 0.010 | 0.011 | 0.008 | 0.008 0.005
100K 1,000 0.007 | 0.008 | 0.008 | 0.008 | 0.008 | 0.011 0.008
10,000 || 0.009 | 0.012 | 0.011 | 0.013 | 0.008 | 0.008 0.008

100 0.014 | 0.019 | 0.020 | 0.060 | 0.031 | 0.028 0.011
rand2 | 200K 1,000 0.011 | 0.043 | 0.026 | 0.046 | 0.026 | 0.013 0.011
10,000 || 0.020 | 0.041 | 0.025 | 0.049 | 0.025 | 0.010 0.010

100 0.022 | 0.020 | 0.119 | 0.189 | 0.053 | 0.053 0.013
1M 1,000 0.014 | 0.060 | 0.033 | 0.166 | 0.030 | 0.029 0.008
10,000 || 0.023 | 0.077 | 0.064 | 0.111 | 0.040 | 0.024 0.012

Time Unit : sec
m = the number of operations performed
n = the number of elements in initial data structures
Table 19: Standard deviation of run time using real keys

33

REFERENCES

C. R. Aragon and R. G. Seidel, Randomized Search Trees, Proc. 30th Ann. IEEE Symposium
on Foundations of Computer Science, pp. 540-545, October 1989.

M. Atkinson, J. Sack, N. Santoro, and T. Strothotte, Min-max Heaps and Generalized Pri-
ority Queues, Communications of the ACM, vol. 29, no. 10, pp. 996-1000, 1986.

M. Brown, Implementation and analysis of binomial queue algorithms, SIAM Jr. on Com-
puting, 7, 3, 1978, 298-319.

S. Carlsson, The Deap: a Double-Ended Heap to Implement Double-Ended Priority Queues,
Information processing letters, vol. 26, pp.33-36, 1987.

C. Crane, Linear Lists and Priority Queues as Balanced Binary Trees, Tech. Rep. CS-72-259,
Dept. of Comp. Sci., Stanford University, 1972.

M. Fredman, R. Sedgewick, D. Sleator, and R.Tarjan, The pairing heap: A new form of
self-adjusting heap. Algorithmica 1, pp. 111-129, 1986.

M. Fredman and R. Tarjan, Fibonacci Heaps and Their Uses in Improved Network Opti-
mization Algorithms, JACM, vol. 34, no. 3, pp. 596-615, 1987.

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2nd Edi-
tion, Md.: Addison-Wesley Publishing Company, 1991.

E. Horowitz and S. Sahni, Fundatamentals of Data Structures in Pascal, 4th Edition, New
York: W. H. Freeman and Company, 1994.

D. Jones, An empirical comparison of priority-queue and event-set implementations, Com-
munications of the ACM, 29, 4, pp. 300-311, 1986.

W. Pugh, Skip Lists: a Probabilistic Alternative to Balanced Trees, Communications of the
ACM, vol. 33, no. 6, pp.668-676, 1990.

S. Sahni, Software Development in Pascal, Florida: NSPAN Printing and Publishing Co.,
1993.

D. Sleator and R. Tarjan, Self-adjusting binary search trees, JACM, 32, 3, pp. 652-686, 1985.

D. Sleator and R. Tarjan, Self-adjusting heaps, SIAM Jr. on Computing, 15, 1, pp. 52-69,
1986.

J. Stasko and J. Vitter, Pairing heaps: Experiments and analysis, Communications of the
ACM, 30, 3, pp. 234-249, 1987.

34

