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NORMAL NUMBERS ARE NORMAL

DAVAR KHOSHNEVISAN

Abstract. A number is normal in base b if every sequence of k symbols in the letters 0, 1, . . . , b− 1
occurs in the base-b expansion of the given number with the expected frequency b−k. From an informal
point of view, we can think of numbers normal in base 2 as those produced by flipping a fair coin,
recording 1 for heads and 0 for tails. Normal numbers are those which are normal in every base.
In this expository article, we recall Borel’s result that almost all numbers are normal. Despite the
abundance of such numbers, it is exceedingly difficult to find specific exemplars. While it is known
that the Champernowne number 0.123456789101112131415 · · · is normal in base 10, it is (for example)
unknown whether

√
2 is normal in any base. We sketch a bit of what is known and what is not known

of this peculiar class of numbers, and we discuss connections with areas such as computability theory.

1. Introduction

Let x be a real number between zero and one. We can write it, in binary form, as x = 0.x1x2 · · · ,
where each xj takes the values zero and one. We are interested first of all in “balanced” numbers—
numbers x such that half of their binary digits are zeros and the remaining half are ones. More
precisely, we wish to know about numbers x that satisfy

lim
n→∞

# {1 ≤ j ≤ n : xj = 1}
n

=
1
2
, (1)

where # denotes cardinality.
Equation (1) characterizes some, but not all, numbers between zero and one. For example, x = 0

and x = 1 do not satisfy (1), whereas the following do: 0.10, 0.01, 0.001011. The last three examples
are eventually periodic. It is therefore natural to ask whether there are numbers that satisfy (1) whose
digits are not periodic. Borel’s normal number theorem gives an affirmative answer to this question. In
fact, Borel’s theorem implies, among other things, that the collection of non-normal numbers has zero
length. Surprisingly, this fact is intimately connected to diverse areas in mathematics (probability,
ergodic theory, b-adic analysis, analytic number theory, and logic) and theoretical computer science
(source coding, random number generation, and complexity theory).
In this article, we describe briefly a general form of Borel’s normal-number theorem and some of its

consequences in other areas of mathematics and computer science. Our discussion complements some
related papers by Berkes, Philipp, and Tichy [3], Harman [15], and Queffélec [21].

2. Borel’s theorem

Given an integer b ≥ 2 and a number x between zero and one, we can always write x =
∞

j=1 xjb
−j ,

where the xj ’s take values in {0 , . . . , b− 1}. This representation is unique for all but b-adic rationals;
for those we opt for the representation for all but a finite number of digits xj are zero.
We may think of {0 , . . . , b − 1} as our “alphabet,” in which case a “word” of length m is nothing

but the sequence σ1 . . . σm, where each σj can take any of the values 0 , . . . , b− 1.

	             continued on page 27
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Let w be a fixed word of finite length m, and choose and fix integers n ≥ m, as well as a real number
x ∈ [0 , 1]. We can then define N b

n(x ;w) to be the number of times the word w appears continguously
among (x1 , . . . , xn). The reader is invited to verify that N10

n (0.5 , {5}) = N2
n(0.5 , {1}) = 1 for all

n ≥ 1.
A number x is said to be simply normal in base b if

lim
n→∞

N b
n(x ; {j})

n
=
1
b

for all letters j ∈ {0 , . . . , b− 1}. (2)

That is, x is simply normal in base b when, and only when, all possible letters in the alphabet
{0 , . . . , b − 1} are distributed equally in the b-ary representation of x. Balanced numbers are simply
normal in base 2.
More generally, a number x is said to be normal in base b if given any finite word w with letters

from the alphabet {0 , . . . , b− 1},

lim
n→∞

N b
n(x ;w)
n

=
1
b|w| , (3)

where |w| denotes the length of the word m. The number a = 0.101010 · · · is simply normal, but
not normal, in base 2. This can be seen, for example, by inspecting the two-letter word “11.” Still
more generally, we say that x ∈ [0 , 1] is simply normal if it is simply normal in all bases b ≥ 2, and
[absolutely] normal if it is normal in all bases b ≥ 2. These definitions are all due to Borel [4].
The first nonperiodic numbers which are normal in some base b were constructed by Champer-

nowne [9] in 1933. These were the numbers C2 = 0.1011011001010011100101110111 . . . , C10 =
0.1234567891011121314 . . . . etc., obtained by concatenating the base b numerals in their natural
order. Champernowne also conjectured that 0.13571113171923 . . . , obtained by concatenating all
primes, is simply normal in base 10. His conjecture was verified in 1946 by Copeland and Erdős [10].
It is possible to construct numbers that are simply normal in one base, but not in another. For

example, the simply normal binary number a = 0.101010 · · · is not normal in base 10, since a = 2/3 =
0.6̄ in decimal notation.
The Champernowne numbers are admittedly artificial. Are there “natural” normal numbers? Al-

though nothing is known, there are several conjectures. The first of these [5], due to Borel in 1950,
states that all irrational algebraic numbers are normal; see also Mahler’s 1976 lectures [19] wherein
he proved, among other things, that Champernowne’s number is transendental. Unfortunately, not
much further progress has been made in this direction. For example, it is not known whether house-
hold numbers such as e, π, ln 2, or

√
2 are simply normal in any given base. (x > b is said to be

[simply] normal in base b when x/b is [simply] normal in base b.) We do not even know if
√
2 has

infinitely-many 5’s [say] in its decimal expansion!

I hasten to add that there are compelling arguments that support the conjecture that e, π,
√
2, and

a host of other nice algebraic irrationals, are indeed normal; see Bailey and Crandall [1].
The preceding examples, and others, were introduced in order to better understand the remarkable

normal number theorem of Borel [4] from 1909:

Theorem 2.1 (Borel). Almost every number in [0 , 1] is normal.

The veracity of this result is now beyond question. However, to paraphrase Doob [11, p. 591],
Borel’s original derivation contains an “unmendably faulty” error. Borel himself was aware of the gap
in his proof, and asked for a complete argument. His plea was answered a year later by Faber [14, p.
400], and also later by Hausdorff [16].
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Theorem 2.1 suggests that it should be easy to find normal numbers. But I am not aware of any
easy-to-describe numbers that are even simply normal. Recently, Becker and Figueira [2] have built
on a constructive proof of Theorem 2.1, due to Sierpiński [25], to prove the existence of computable
normal numbers. Their arguments suggest possible ways for successively listing out the digits of some
normal numbers. But a direct implementation of this program appears to be at best arduous.
Borel’s theorem is generally considered to be one of the first contributions to the modern theory

of mathematical probability; a fact of which Borel himself was aware [4]. In order to describe this
connection to probability, let us select a number X uniformly at random from the interval [0 , 1]. The
key feature of this random selection process is that for all Borel sets A ⊆ [0 , 1],

P{X ∈ A} = Lebesgue measure of A, (4)

where P denotes probability.
We can write X in b-ary form as

∞
j=1 Xjb

−j . Borel’s central observation was that {Xj}∞j=1 is a
collection of independent random variables, each taking the values 0, 1, . . . , b−1 with equal probability.
Then he proceeded to [somewhat erroneously] prove his strong law of large numbers, which was the
first of its kind. Borel’s law of large numbers states that for all letters j ∈ {0 , . . . , b− 1},

P

lim
n→∞

1{X1=j} + · · ·+ 1{Xn=j}

n
=
1
b


= 1, (5)

where 1A denotes the characteristic function of A. It follows readily from (5) that with probability
one X is simply normal in base b. Because there are only a countable number of integers b ≥ 2, this
proves that X is simply normal. Normality of X is proved similarly, but one analyses blocks of digits
in place of single digits at a time.
Let Nb denote the collection of all numbers normal in base b. The preceding argument implies that

P{X ∈ ∩∞b=2 Nb} = 1. This and (4) together imply Theorem 2.1.
We conclude this section by making a few more comments:
(1) In 1916 Weyl [27] described a tantalizing generalization of Theorem 2.1 that is nowadays called

Weyl’s equidistribution theorem. In this connection, we mention also the thesis of Wall [26]. (2)
Riesz [22] devised a slightly more direct proof of Theorem 2.1. His derivation appeals to Birkhoff’s
ergodic theorem in place of Borel’s (or more generally, Kolmogorov’s) strong law of large numbers.
But the general idea is not dissimilar to the proof outlined above. (3) The probabilistic interpretation
of Theorem 2.1 has the following striking implication:

Finite-state, finite-time random number generators do not exist. (6)

Of course, this does not preclude the possibility of generating a random number one digit at a time.
But it justifies our present day use of psuedo random-number generators; see Knuth [17] for more
on this topic. Remarkably, a complexity theory analogue to (6) completely characterizes all normal
numbers; see Schnorr and Stimm [24] and Bourke, Hitchcock, and Vinochandran [6]. In this general
direction, see also the interesting works of Chaitin [8] and Lutz [18].
(4) The proof of Borel’s theorem is more interesting than the theorem itself, because it identifies

the digits of a uniform random variable as independent and identically distributed. Such sequences
have interesting properties that are not described by Theorem 2.1. Next we mention one of the many
possible examples that support our claim.
Let Rn(x) denote the length of the largest run of ones in the first n binary digits of x. [A run of

ones is a continguous sequences of ones.] Then, according to a theorem of Erdős and Rényi [13] from
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1970,

lim
n→∞

Rn(x)
log2(n)

= 1 for almost every x ∈ [0 , 1]. (7)

Because this involves words of arbitrarily large length, it is not a statement about normal number per
se. There are variants of (7) that are valid in all bases, as well.

3. Unbiased sampling

As was implied earlier, one of the perplexing features of normal numbers is that they are abundant
(Theorem 2.1), and yet we do not know of a single concrete number that is normal. This has puzzled
many researchers, but appears to be a fact that goes beyond normal numbers, or even the usual
structure of the real line.
Next we present an example that examines an analogous problem in a similar setting. This example

suggests the following general principle: Quite often, schemes that involve taking “unbiased samples
from large sets” lead to notions of normality that are hard to pinpoint concretely. I believe that this
principle explains our inability in deciding whether or not a given number is normal. But I have no
proof [nor disproof].
Let us consider the ternary Cantor set C, which we can think of as all numbers x ∈ [0 , 1] whose

ternary expansion
∞

j=1 xj3−j consists only of digits xj ∈ {0 , 2}.
In order to take an “unbiased sample” from C, it is necessary and sufficient to find a probability

measure on C that is as “flat” as possible. [We are deliberately being vague here.] There are many
senses in which the most flat probability measure on C can be identified with the restriction mC of
the usual log3(2)-dimensional Hausdorff measure to C. That is, mC is the Cantor–Lebesgue measure.
Now it is not difficult to show that mC can be defined directly as follows:

mC(A) := P




∞
j=1

Xj

3j
∈ A


 for all Borel sets A ⊆ [0 , 1], (8)

where X1, X2, . . . are independent random variables, taking the values zero and two with probability
1/2 each. A ready application of the strong law of large numbers then reveals that the following holds
for mC-almost every x ∈ C:

lim
n→∞

N3
n(x ;w)

n
=

1
2|w|

for all words w ∈
∞

k=1

{0 , 2}k. (9)

We say that a number x ∈ C is normal in the Cantor set C if it satisfies (9). Although mC-
almost every number in C is normal in C, I am not aware of any concrete examples. On the other
hand, I point out that we do not know very many concrete numbers in C at all—be they normal or
otherwise. By analogy, this suggests the sightly uncomfortable fact that we do not know very many
numbers—normal as well as non-normal—in [0 , 1].

4. Non-normal numbers

At first glance, one might imagine that because normal numbers are so complicated, non-normal
numbers are not. Unfortunately, this is not the case. We conclude this article by mentioning two
striking results that showcase some of the complex beauty of non-normal numbers.
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4.1. Eggleston’s theorem. Let us choose and fix a base b ≥ 2 and a probability vector p :=
(p0 , . . . , pb−1); that is, 0 ≤ pj ≤ 1 and p0 + · · ·+ pb−1 = 1. Consider the set

E (p) :=


x ∈ [0 , 1] : lim
n→∞

N b
n(x ; {j})

n
= pj for all j = 0 , . . . , b− 1


. (10)

Note that if any one of the pj ’s is different from 1/b, then all elements of E (p) are non-normal. In
1949, Eggleston [12] confirmed a conjecture of I. J. Good by deriving the following result.

Theorem 4.1 (Eggleston). The Hausdorff dimension of E (p) is precisely the thermodynamic entropy

H(p) := −
b−1
j=0

pj logb(pj), (11)

where 0× logb(0) := 0.

This theorem is true even if p0 = · · · = pb−1 = 1/b, but yields a weaker result than Borel’s theorem
in that case. Ziv and Lempel [29] developed related ideas in the context of source coding.

4.2. Cassels’s theorem. For the second, and final, example of this article we turn to a striking
theorem of Cassels [7] from 1959:

Theorem 4.2 (Cassels). Define the function f : [0 , 1]→ R by

f(x) :=
∞

j=1

xj

3j
, (12)

where x1, x2, . . . denote the binary digits of x. Then, for almost every x ∈ [0 , 1], f(x) is simply normal
with respect to every base b that is not a power of 3.

It is manifestly true that Cassels’s f(x) is not normal in bases 3, 9, etc. Hence, non-normal numbers
too have complicated structure. We end our discussion by making two further remarks:
(1) Cassels’s theorem answered a question of Hugo Steinhaus, and was later extended by Schmidt

[23]. See Pollington [20] for further developments.
(2) Because 2f is a bijection between [0 , 1] and the Cantor set C, Cassels’s theorem constructs an

uncountable number of points in 1
2C that are simply normal with respect to every base b that is not

a power of 3. Not surprisingly, we do not have any concrete examples of such numbers.
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[13] Erdős, P. and A. Rényi (1970). On a new law of large numbers, J. Analyse Math. 23, 103–111.
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et détermination effective d’un tel nombre, Bull. Soc. Math. France 45, 127–132
[26] Wall, Donald Dines (1949). Normal numbers, Ph.D. Thesis, University of California, Berkeley, Berkeley, Cali-

fornia.
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