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Abstract

We present a new algorithm for a robust family of Earth
Mover’s Distances - EMDs with thresholded ground dis-
tances. The algorithm transforms the flow-network of the %
EMD so that the number of edges is reduced by an order
of magnitude. As a result, we compute the EMD by an or-
der of magnitude faster than the original algorithm, which = =
makes it possible to compute the EMD on large histograms M
and databases. In addition, we show that EMDs with
thresholded ground distances have many desirable proper- @ ®)
ties. First, they correspond to the way humans perceive dis-Figure 1. An eﬁrﬁ)le of the transformation on a flow network
tances. Second, they are robust to outlier noise and quanti-°f @1 EMD or EMD with a ground distance ofd(a,b) =
zation effects. Third, they are metrics. Finally, experitag (2, la — bl). (@) is the original flow network withV= +
results on image retrieval show that thresholding the gebun edges. Note thaN(N — 3) of these edges have cost 2. The bot-

dist fthe EMD i both d d tom cyan vertex on the left is the sink that handles the difiee
istance ot the Improves both accuracy and Speed. oy yeen the total mass of the two histograms (ingoing edosts ¢

is 0 for EMD anda max;; d;; for E/J\ﬂ)). (b) is the transformed
flow network. The striped yellow square is the new transhipime
1. Introduction vertex. Ingoing edge cost is the threshotdg( 2) and outgoing
edge cost 9.
Histograms are ubiquitous tools in numerous computer

vision tasks. It is common practice to use distances such as
L or x2 for comparing histograms. This practice assumes
that the histogram domains are aligned. However this as-
sumption is violated through quantization, shape deforma- eyieya) for example). In other cases we would like the
tion, light changes, etc. ) ) ) distance to fit the distribution of the noise (keypoint match

~ The Earth Mover's Distance (EMDY] is a cross-bin - jng for example). Practical considerations include spsed
distance that addresses this alignment problem. EMD is de'computation and the metric property that enables fast algo-

fined as the minimal cost that must be paid to transform iy ms for nearest neighbor searchés, [7], fast clustering
one histograrinto the other, where there is a “ground dis- [10] and large margin classifier&§, 36].

tance” between the basic features that are aggregated into
the histogram. The EMD as defined by Rubner is a met-
ric only for normalized histograms. However, recently Pele
and Werman 6] suggestem and showed thatitis a
metric for all histograms.

considerations. In many cases we would like the distance
to correspond to the way humans perceive distances (image

We propose using thresholded ground distancesdis-
tances that saturate to a constant value. These distances
have many desirable properties. First, saturated dissance
correspond to the way humans perceive distan¢gs Hec-
S ) ) _ . ond, many natural noise distributions have a heavyitail;

A major issue that arises when using EMD is which o ier noise. Thresholded distances assign different out
ground distance to use fgr the basic features. This, _Ofliers the same large distance. Finally, we present an algo-
course, depends on the histograms, the task and praCt'carlithm that computes EMD with a thresholded ground dis-

1Rubner’s noted that EMD can be used with sparse histogranhwh tam.:e faster by an .Order of magnltUde than the orlglnal al-
he coinedsignatures Our algorithm is applicable to both histograms and 90rithm. The algorithm transforms the flow-network of the

signatures. EMD so that the number of edges is reduced by an order of




magnitude (see Fid.).

rithm [25] both have a time complexity @b(/N3logV) and

The Earth Mover’s Distance has been used successfullycan also be used.

in many applications such as image retrievi, [23], edge
and corner detectior3[], keypoint matching 76, 8, 2(],
near duplicate image identificatiori(]], classification of
texture and object categorie$q] 19, NMF [31] and con-
tour matching { 7. Many of these works used saturated dis-
tances, usually the negative exponent function. The major
contribution of this paper is a fast algorithm for the com-
putation of the EMD with thresholded ground distance. We
argue that thresholded distances have all the benefits of th
negative exponent function that is typically used as a satu-
rated distance; its big advantage is its much shorter compu-
tation time.

This paper is organized as follows. Secti@gns an
overview of previous work. Sectiod describes the Earth
Mover’s Distance. Sectiod discusses thresholded dis-
tances and proves that they are metrics. Seé&idascribes
the fast algorithm. Sectiofi presents the results. Finally,
conclusions are drawn in Secti@n

2. Previous Work

This section first describes EMD algorithms. Second, it
describes the use of saturated ground distances in the EM
framework.

2.1. EMD Algorithms

Early work using cross-bin distances for histogram com-
parison can be found ir8B, 39, 38, 28]. Shen and Wong
[33] suggested unfolding two integer histograms, sorting
them and then computing thie, distance between the un-
folded histograms. To compute the modulo matching dis-
tance between cyclic histograms they took the minimum
from all cyclic permutations. This distance is equivalent t
the EMD between two normalized histograms. Werraain
al. [39] showed that this distance is equal to thedistance

Ling and Okada proposed EMD;[2(); i.e. EMD with

L, as the ground distance. They showed that if the points
lie on a Manhattan networle(g an image), the number of
variables in the LP problem can be reduced frofiv?)
to O(N). To execute the EMD->; computation, they em-
ployed a tree-based algorithm, Tree-EMD. Tree-EMD ex-
ploits the fact that a basic feasible solution of the sim-

lex algorithm-based solver forms a spanning tree when the

MD-L; is modeled as a network flow optimization prob-
lem. The worst case time complexity is exponential. Empir-
ically, they showed that this algorithm has an average time
complexity of O(N?). Gudmundssoet al. [14] also put
forward this simplification of the LP problem. They sug-
gested arD(N log?~! V) algorithm that creates a Manhat-
tan network for a set oV points inR?. The Manhattan
network hasO(N log?~! N) vertices and edges. Thus, us-
ing Orlin’s algorithm P5] the EMD-L; can be computed
with a time complexity ofO(N21og?~! N). Indyk and
Thaper [L7] proposed approximating EMD~ by embed-
ding it into the L; norm. Embedding time complexity is
O(Ndlog A), whereN s the feature set sizd,is the fea-

gure space dimension amdl is the diameter of the union

of the two feature sets. Grauman and Darrél] [substi-
tuted L; with histogram intersection in order to approxi-
mate partial matching. Shirdhonkar and Jacckig pre-
sented a linear-time algorithm for approximating EMDB-
for low dimensional histograms using the sum of absolute
values of the weighted wavelet coefficients of the diffeeenc
histogram. Lwet al. [23] proposed embedding an EMD with
thresholded ground distance into the norm. Khot and
Naor [18] showed that any embedding of the EMD over the
d-dimensional Hamming cube intb; must incur a distor-
tion of (d), thus losing practically all distance informa-
tion. Andoniet al. [5] showed that for sets with cardinali-
ties upper bounded by a parameigthe distortion reduces

between the cumulative histograms. They also proved thatto O(log slogd). A practical reduction in accuracy due to

matching two cyclic histograms by only examining cyclic
permutations is optimal. Wermaet al. [3¢] proposed an
O(M log M) algorithm for finding a minimal matching be-
tween two sets ol points on a circle. The algorithm was
adapted by Pele and Wermait] to compute the EMD be-
tween two N-bin, normalized histograms with time com-
plexity O(N). Peleget al. [28] suggested using the EMD
for grayscale images and using linear programming to com-
pute it. Rubnerret al. [29) suggested using the EMD for
color and texture images and generalized the definition of
the EMD to non-normalized histograms. They computed
the EMD using a specific linear programming algorithm -
the transportation simplex. The algorithm’s worst casestim
complexity is exponential. Practical run time was shown
to be super-cubic. Interior-point algorithms or Orlin'gad

the approximation was reported by 23, 35. In order to
increase precision, Grauman and Darréli][and Lv et al.

[23] used the approximation as a filter that returns a set of
similar objects, and then used the exact EMD computation
to rerank these objects. Khanh Do Baal. [6] presented
optimal algorithms for estimating EMD~ or EMD with a
tree-metric as the ground distance.

Pele and WermanZ2[] proposedE/m) a new defi-
nition of the EMD for non-normalized hlstograms They
showed that unlike Rubner’s definition, tieV D is also
a metric for non-normalized histograms. In addition, they
proposed a linear-time algorithm that computesEMD
with a ground distance of 0 for corresponding bins, 1 for
adjacent bins and 2 for farther bins and for the extra mass.



2.2. Saturated Ground Distances with the EMD

Rubneret al. [29) and Ruzon and TomasiB{] used a
negative exponent function to saturate their ground digtan

for the tasks of image retrieval and edge detection, respec-

tively. The negative exponent function practically satesa
large distances to a fixed threshold (see Big. The neg-
ative exponent function is used for saturating a metric, be-

cause it does not break the triangle inequality. We show that

this is true as well for a thresholding function. Note that sa

urating with a negative exponent might have the drawback

of changing the behavior of small distances (see Big.
Lv et al [23] conducted image retrieval experiments

from a database of 10000 images. They showed that thresh-

olding the ground distance improves precision.

Pele and Wermar?[j] compared several distances for the
task of SIFT matching. They proposed AW D variant.
The ground distance of thiEMD is 0 for corresponding
bins, 1 for adjacent bins and 2 for farther bins and for the
extra massj.e. a thresholded distance. They showed that
this distance improves SIFT matching, Whil\/ D with
non-thresholded distances negatively affects performanc

3. The Earth Mover’s Distance

The Earth Mover’s Distance (EMD2] is defined as the
minimal cost that must be paid to transform one histogram
into the other, where there is a “ground distance” between
the basic features that are aggregated into the histogram.

Given two histogram#, Q the EMD as defined by Rub-
neret al. [29] is:

EMD(P, Q) = ({r}l_in

k¥

D> fisdig) /O fi) st fi; 20
0]
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D <P Y fi;<Q > fiy=min(d_ P> Qj)
J i 2% i J

where{f;;} denotes the flows. Eaci; represents the
amount transported from thiéh supply to thejth demand.
We calld;; theground distancéetween bini and binj in

the histograms. Pele and Wermm][suggestem:

EMDa(P,Q) = ({nj}in}z.fijdij) +1D>_ Pi- ZQﬂan}%Xdij
it i ] v

s.t EMD constraints

Pele and Werman proved th&M D is a metric for
any two histograms if the ground distance is a metric and
a > 0.5 [26]. The metric property enables fast algorithms
for nearest neighbor searches [ 7]), fast clustering 10]
and large margin classifiers, 36]. Because of these ad-
vantages we will use the Pele and Werman definition in the
remainder of this paper (with = 1).
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Figure 2. This figure should be viewed in color, preferablyaon
computer screen. The x-axes are colors, sorted by thearuistto
the blue color. The distances are the ciede2000 distaigeid
three monotonic saturating transformations applied twit: neg-
ative exponent functions and a thresholding functios;a mini-
mum function. There are several observations we can daove f
these graphs. First, although ciede2000 is considerechtes aft
the art, it is still far from perfect, especially in the meditio large
distance range. Second, color distances should be satufade
example, although red and yellow are both simply differeoirf
blue, the ciede2000 distance between blue and red is 56 sl
ciede2000 distance between blue and yellow is 102. This Was a
ready noted by Rubnet al. [29] and Ruzon and Tomasi{] who
suggested using a negative exponent function because ihét-a
ric, if the distance that is raised to the power is a metricthis
paper we show that the thresholding function is also a mi¢ttie
thresholded distance is a metric. Finally, for most of thegm
the negative exponent and thresholded functions are vanjasi
They mostly differ for small distances, where the negatixeoe
nent changes the original distance, while the thresholéling-
tion does not. Since the ciede2000 was designed and peatigptu
tested on this range’?], changing the distances on this range can
negatively affect performance as was noted by Rulete. for
the Euclidean distance on L*a*b* space].

4. Thresholded Distances

Thresholded distances are distances that saturate to a
thresholdj.e. letd(a, b) be a distance measure between two
features «, b. The thresholded distance with a threshold of
t > 0is defined asd; (a, b) = min(d(a, b),t).

We now prove that ifl is a metric theni, is also a met-
ric. Non-negativity and symmetry hold trivially, so we only
need to prove that the triangle inequality holds.

d¢(a,b) + di(b, ¢) > di(a,c) if dis ametric.

We consider three cases:



K is a constant the number of edge$)igV) as opposed to
the original®(N?). Note that the new flow network is no
longer a transportation problem, but a transhipment prob-
(dt(w b) = d(a, b)) A (dt(l% c) = d(b, C)>/\ lem [2]. However, both are special cases of the min-cost-
flow problem. Thus any algorithm that solves min-cost-flow

can be used for both problems.
2. (dela,b) =) v (dilb,0) = t) = Let K = O(1); the min-cost-flow optimization problem
can be solved with a worst case time complexity of:

1. (dt(a, b) < t) A (dt(b, ¢) < t) A (dt(a, o) < t) =
(dt(a, ¢) = d(a, c)) = dy(a,b) + di (b, c) > di(a, c)

dt(a’ b) + dt(b7 C) >t>d (CL, C)

3. di(a,c) =t = O(min((N? loglog U log(NC)), (N?log U+/log C),
(N?logUlog N), (N?1og? N)))

Assume for contradiction that:
The algorithms are taken from: Ahuga al. [1], Edmonds
and Karp P], used with Ahujaet al’s shortest path algo-
(dt(“v b) < t) A (dt(bv ¢) < t) = rithm [3], Edmonds and Karpd], used with Fredman and
(dt(a, b) = d(a, b)) A (dt(b, o) = d(b, C)) - Tarjan’s shortest path algorithm ] and Orlin [25]. Algo-

rithms with aC' term assume integral cost coefficients that
are bounded by'. Algorithms with aU term assume inte-
gral supply and demands that are bounded’by

The last statement contradicts the triangle inequalityef t We now prove that the original and the transformed flow
metric d. The union of cases 2 and 3 is complement of networks have the same minimum-cost solution. Qete

case 1. Thus, cases 1-3 constitute the entire event spacdhe original flow network and IeT” be the transformed flow
Therefore we proved tha is a metric ifd is a metric. Itis ~ network. We first show how to create a feasible flowZin

noteworthy thatl, can be a metric even ifis not a metric.  given a feasible flow ir©0. Both flows will have the same
cost. This will prove that the min-cost-flow solution f@r

5. Fast Computation of the EMD with a is smaller or equal to the min-cost-flow solution for
) . Given a feasible flow ir0, all flows on edges that were
Thresholded Ground Distance not removed are copied to the new flow for For flows
This section describes an algorithm that computeson edges with the cost of the threshold, we transfer the flow

EMD or EMD with a thresholded ground distance an order through the transhipment vertex. This gives us a feasible

of magnitude faster than the original algoritfm flow in 7" with the same cost. _ _
EM D can be solved by a min-cost-flow algorithm. Our fwe.E?V\;IShO.\:Vﬂ,ho_l\_Ar'] toﬂcregteé)a f?ﬁ? ible flowih g|veiln
algorithm makes a simple transformation of the flow net- ateasible flow in7. The flow In© will have a cost smaller

work that reduces the number of edgesVlis the number or equal to the cost of the flow i@@. This will prove that
o . — the min-cost-fl lution foff i t [ to th
of bins in the histogram, the flow network @M D has © min-cost-tiow solufion 10 1S greater or equat to the

exactly N2 + N edges (see (a) in Fig). N? edges con- min-cost-flow solution for®. Together with the previous
nect a)I/I sources fo g” sinks. The exﬂg&éédges C(?nnect all proof, this shows that the two flow networks have the same

. . min-cost solution.
sources to the sink that handles the difference between the = ~. -t - cibie flow i7", all flows on edges not con-

of generalty that the source nstogran toal mass fs greate <01 10 the ranshipment vrtex are copiedcSecond
. . each unit of mass that flows from vertéxo the tranship-
orequal to the S|nk.h|stogram.totall mass). ment vertex and then from the transhipment vertex to vertex
.The transformatpn (see Fid) first removes all edges . j is transferred directly from vertexto vertex;j. We note
WItIT costt. Seconclil, it adds a nt;vy transhlpmr?n:jverte?. FI- that this is possible sina@ is fully bi-partite. We also note
?Zn)(ljvztérfgg:tizteavesr?;;iisaﬁ?stiAi:;/(\jvritt?\xevéléeg O?%i; COStthat the cost of t_he new flow will t_Je smaller or equal to the
: cost of the flow in7" as all edges i© have a cost smaller
. Let K be the average number of edges going out of eaChor equal to the threshold. This completes the proof.
bin that have a cost different than the thresholfThe new Itis noteworthy that the algorithmic technique presented
flow network hasN K + N edges from the original net- in this paper can be applied not only with thresholded

Wof[k' N ed(j\gesdconnectlng ?” Sf[)r:”ctes toh'Fhe tratnSh'E’metmground distance, but in any case where a group of vertexes
vertex andiv edges connecting the transhipment VErexto o, e connected to another group with the same cost. For

all sinks. Thus the total number of edgesN¢X + 3). If example, we can add a transhipment vertex for all vertexes

’Note that the optimization problems in EMD afdV D are exactly with a spe<_:|f|c color é'g blue) .SUCh that the cost of the
the same. Thus, any algorithm that computes EMD can compateD transportation between them will be smaller than the cost of

and vice versa with the same time complexity. the transportation to other colors.

Cl,g((l7 b) —‘rdt(b, C) < Cl,g((l7 C) =t=

d(a,b) +d(b,c) <t =di(a,c) < d(a,c)=
d(a,b) +d(b,c) < d(a,c)




5.1. Implementation notes

Flow-netowrk set-up time. For a fixed histogram
configuration é.g SIFT) the flow-network can be pre-
computed once. For sparse histograrsigriature}, the
flow-network set-up time complexity i9(M N); whereN
is the number of non-zero bins andlis the average number

color space and finally linear combinations of the two. We
conclude this section with running times.

6.1. SIFT

Our first image representation is orientation histograms.
The first representation - SIFT i$a 8 x 8 SIFT descriptor

of neighbors that need to be checked if the distance is lower[21] computed globally on the whole image. The second

than the threshold)/ is at mostV but it can be lower. For
example, lett be the threshold. If we are comparing two

images and the ground distance is a linear combination of

the spatial distance and the color distance, then the distan
computation to vertexes witli; distance bigger or equal

to ¢t can be skipped. That is, the set-up time in this case is

O(min(t>N, N?)).
Pre-flowing Monge sequences. A Monge sequence

representation - CSIFT is a SIFT-like descriptor. This de-
scriptor tackles two problems related to the SIFT descripto
for color image retrieval. First, it takes into account @olo
edges by computing the SIFT descriptor on the compass
edge image{(]. Note that on an edge image there should
be no distinction between opposite directions (0 and 180 for
example). Thus, opposite directions are considered equal.
The second drawback of the SIFT descriptor for color im-
age retrieval is its normalization. The normalization istpr
lematic as we lose the distinctive cue of the amount of edge

contains edges in the flow-network that can be pre-flowedPOINts in the image. In the CSIFT computation we skip the

(in the order of the sequence) without changing the min-
cost solution P4, 16]. For example, if the ground-distance
is a metric, zero-cost edges are Monge sequeitgeAlon
etal [4] introduced an efficient algorithm which determines
the longest Monge sequence.

Pre-flowing to/from isolated nodes.If a source is con-

nected only to the new transhipment vertex, we can pre-flow

all its mass to the transhipment vertex and eliminate it. If

normalization step. The final CSIFT descriptor fas8 x 8
bins. We used the following distances for these descriptors
Ly, Lo, X%, EMD-L; [20], SIFT,s [26] and EM D. Let

M be the number of orientation bins. The ground distances
between bingz;, y;, 0;) and(x;, y;, 0;) we use are:

dr =|[(zi, i) — (z5,y;)ll2 + min(|o; — o], M — |o; — 0;])
dr =min(dg,T)

a sink is connected only to the transhipment vertex, we can The results are given in Figi(a). Due to lack of space

add its deficit to the transhipment vertex and eliminate it.

6. Results

In this section we present results for image retrieval.
However, note that we do not claim that this is the opti-

we present for each distance measure, the descriptor
with which it performed best. Results of all pairs of
descriptors and distance measures can be found at:
http://www.cs.huji.ac.il/ ~ ofirpele/FastEMD/

The EMD with a thresholded ground distance performs
much better thanEM D with a non-thresholded ground

mal way to achieve image retrieval. Image retrieval is used distance. In fact, whileEM D with a non-thresholded
here as an example of an application where the EMD h_aSground distance negatively affects performanég)/ D
already been used, to show that thresholded distances yielgvith a thresholded ground distance improves performance.

good results. The major contribution is the faster alganith
We show that by using our algorithm the running time de-
creases by an order of magnitude.

Ly is equivalent toEMD with the Kronckers ground

distance P6. SIFTye is the sum of EMD over all the
spatial cells (each spatial cell contains one orientation

We use a database that contains 773 landscape imag&gisiogram). The ground distance for the orientation his-

from the COREL database, that were also used in \dng
al. [37]. The dataset contains 10 classeReople in Africa,

Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephantsiy the orientations shifts improves performance.

Flowers, Horses, Mountains and Food. The number of im-
ages in each class ranges from 50 to 100.

tograms ismin(|o; — o], M — |o; — 05|, 2). It was shown

in [26] and here that this addition of a small invariance
Our
distance also adds a small invariance to spatial shifts and
thus improves performance even more. However, using a

From each class we selected 5 images as query imagegfon-thresholded distance adds too much invariance at the

(numbersl, 10, .. ., 40). Then we searched for the 50 near-

expense of distinctiveness, thus reducing performance.

est neighbors for each query image. We computed the dis-

tance of each image to the query image and its reflection

and took the minimum. We present results for three types of6.2. L*a*b* Color Space

image representations: histograms of orientations, L*a*b

3The original database contains some visually ambiguossetasuch
as Africa that also contains images of beaches in Africa. Vdaually
removed these ambiguous images.

The state of the art color distance A,y - ciede2000
on L*a*b* color spacel?, 37] (see also Fig2). Thus,
our second type of image representation is simply a resized
color image In the L*a*b* space. We resized each image to
32 x 48 and converted them to L*a*b* space. LAt I; be


http://www.cs.huji.ac.il/~ofirpele/FastEMD/

dC o = 0.3

dC2 o = 0.3

Figure 3. Example of image retrieval using the best distanga/ D with thresholded ground distances (top row) and the secestl b
distance L like distance (bottom row). The nearest neighbor imagesmtered from left to right by their distance from the querage.

Note that by allowing small deformations in thieM D we obtain results that are visually similar to the query imagdllowing larger
deformationsij.e. using a non-thresholded distance negatively affectdtsesu

the two L*a*b* images. We used the following distances:  6.4. Running Time Results
LiAoo =Y (Aoo(1(2,y), I2(x,1)))

oy The algorithm we used for the computation of 87D
T _ : is successive shortest pathj.[ This algorithm has a worst
Froo = g(mln(Aoo(h(m’y)’b(w’y))’T)) time complexity of O(N2U log N). All runs were con-
LA = S (Aol (2, ), 2w, 9)))? ducted on a Pentium 2.8GHz. A comparison of the prac-
oy tical running time of our algorithm and other methods are
LAl = S (min(Aoo (I (&, ), I2(z, ), T))? given in tabled,2 and in Fig.5. It is noteworthy that EMD-
oy L, accuracy is much lower than our method and even lower
We also usedEM D, where the ground distance between than the simplel, norm (see Figd(a)). Indyk and Thaper
two pixels(z;, yi, Li, ai, b;), (x5, 9;, L, a;,b;) is: [17] and S_h|rdhonkar and Jacobs approximate EMD-
der = min(||(@i,93) — (27,9712 + Doo(Li, as, bi), (L, az,b;)) L4, so their accuracy is even lower. S_UFST gives good
) accuracy (second best, see F¢p)) and is faster than our

— _ method. Our method has better accuracy. More importantly,
The results forZ M/ D with a non-thresholded ground dis- - giFT, . is limited to a thresholded L1 norm with a thresh-

tance are not reported here since the experiments have ng§|q of 2 for 1-dimensional histograms. Our method is much
finished running (more t@n\ten days). Results are presenteghqre general. For example, SIET cannot be applied to
in Fig. 4(b). As shown,EZM D with a thresholded ground  colors. Lvet al. [29] report that their approximation runs 5
distance outperforms all other distances. times faster than Rubner’s. Our method runs 75-700 times

. faster and returns the exact distance.
6.3. Color and SIFT Combined

In the experiments described in this section, we used lin- -
ear comtE)inaéiohns of tlr)le o&ientation Pistogrﬁ\mfshand c%lo(rj. Our  Rubnerspq EMD-L,[20] SIFTys[26]
We combined the two best distances for each of the methods
(not)e that each distance was normalized so that its average 0.04s 3s 0.04s 0.00007s
is1):

dC = a (E/M\D dr—s, CSIFT) +(1-a) (E/M\D dcT:20)
We also used a combination of the tMig-like distances:

dC2 = a (L1, SIFT) + (1 — a) (L1AOTO=20)

We used three different values: 0.1, 0.3, 0.5. The Our Rubnerspg EMD-Li[20] SIFTos[26]
results appear in Figd(c)-(f). The combination of two 6s 4400s N.A. N.A.
E M D with thresholded distances performs best, especially _ o
for hard classes such as People in Africa and Food. TheTable 2. L*a*b*images matching time. Note that EMD-can be
image results examples for one “Food” query image are @PPlied only to regular grids and Sikdr can be applied only to
given in Fig. 3. More image results can be found at; ldimensional histograms.
http://www.cs.huji.ac.il/ ~ ofirpele/FastEMD/

Table 1. 384-dimensional SIFT-like descriptors matchinget
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Figure 4. Results for(irrzage retrieval. Our method is in bolal f Ea)) Orientation histogram results. Due to(lgck of spaegresent for
each distance measure, the descriptor with which it peddrbest. Results of all pairs of descriptors and distancesunesa can be found
at: http://www.cs.huji.ac.il/ ~ ofirpele/FastEMD/ . (b) L*a*b* color space results. (c)-(f) Linear combinat®of color
and orientation results, where (c) is an average over asekand (d)-(f) are for specific classes: (d) People in &fe¢ Food (f) Flowers.
There are two key observations. FirEIJ/M\D with thresholded ground distances performs best. Secontk of the classes are easyg
(f) Flowers. For these classd@& D does not improve performance. However, for harder classeh as (d) People in Africa and (e)
Food,E/M\D significantly improves results. Image result examples f@ %-ood” query image are given in Fig.

R
o

g .| —+— Ouralgorithm ceive distances, and are robust to outlier noise and quan-
= —+— Rubners algorithm tization effects. We proved that they are metrics. We
s ° V/_,// also proposed a fast algorithm. The algorithm runs an or-
? - der of magnitude faster than the original algorithm, which
T 95 5 55 6 65 7 75 s makes it possible to compute the EMD on large histograms

Figure 5. log-log running tim?é%vpf}w for matching graysdaie and databases, Experimen_ta_l results S.hOW that EMD h_as
ages with\' pixels.. Linear fit for our algorithma.3 x log(V) — the best per_formance when it is used with thresholded dis-
16. Linear fit for Rubner’s algorithm3.6 x log(N) — 21. tances. This has also been shown by Ruleteal [29]
and Ruzon and Tomasg(] for saturated distances, which
are essentially thresholded. This has also been demon-
7. Conclusions strated for thresholded distances by ket al. [23] and
Pele and Werman?[]. Our results strengthen these find-
We presented a new family of Earth Mover’s Distances. ings. Most importantly, our paper shows that using a
Members of this family correspond to the way humans per-


http://www.cs.huji.ac.il/~ofirpele/FastEMD/

thresholded distance not only improves accuracy, but re-[20] H. Ling and K. Okada. An Efficient Earth Mover’s Distance

duces the run time, using our algorithm. The speed can

be further improved using techniques such as Bayesian
sequential hypothesis testing7. The project home-

page, including code (C++ and Matlab wrappers) is at:
http://www.cs.huji.ac.il/

~ ofirpele/FastEMD/
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