
A Measurement Study of Peer-to-Peer File Sharing
Systems

Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble
ftzoompy,gummadi,gribbleg@cs.washington.edu

Technical Report # UW-CSE-01-06-02

Department of Computer Science & Engineering
University of Washington

Seattle, WA, USA, 98195-2350



A Measurement Study of Peer-to-Peer File Sharing Systems

Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble
Department of Computer Science & Engineering

University of Washington
Seattle, WA, USA, 98195-2350

ftzoompy,gummadi,gribbleg@cs.washington.edu

Abstract

The popularity of peer-to-peer multimedia file sharing
applications such as Gnutella and Napster has created a
flurry of recent research activity into peer-to-peer architec-
tures. We believe that the proper evaluation of a peer-to-
peer system must take into account the characteristics of
the peers that choose to participate. Surprisingly, however,
few of the peer-to-peer architectures currently being devel-
oped are evaluated with respect to such considerations. We
believe that this is, in part, due to a lack of information
about the characteristics of hosts that choose to participate
in the currently popular peer-to-peer systems. In this pa-
per, we remedy this situation by performing a detailed mea-
surement study of the two most popular peer-to-peer file
sharing systems, namely Napster and Gnutella. In particu-
lar, our measurement study seeks to precisely characterize
the population of end-user hosts that participate in these
two systems. This characterization includes the bottleneck
bandwidths between these hosts and the Internet at large,
IP-level latencies to send packets to these hosts, how often
hosts connect and disconnect from the system, how many
files hosts share and download, the degree of cooperation
between the hosts, and several correlations between these
characteristics. Our measurements show that there is sig-
nificant heterogeneity and lack of cooperation across peers
participating in these systems.

1 Introduction
The popularity of peer-to-peer file sharing applications

such as Gnutella and Napster has created a flurry of recent
research activity into peer-to-peer architectures [5, 8, 12, 15,
16, 17]. Although the exact definition of “peer-to-peer” is
debatable, these systems typically lack dedicated, central-
ized infrastructure, but rather depend on the voluntary par-
ticipation of peers to contribute resources out of which the
infrastructure is constructed. Membership in a peer-to-peer
system is ad-hoc and dynamic: as such, the challenge of
such systems is to figure out a mechanism and architecture
for organizing the peers in such a way so that they can coop-
erate to provide a useful service to the entire community of
users. For example, in a multimedia file sharing application,

one challenge is organizing peers into a cooperative, global
index so that all content can be quickly and efficiently lo-
cated by any peer in the system [8, 12, 15, 17].

In order to properly evaluate a proposed peer-to-peer sys-
tem, the characteristics of the peers that choose to partici-
pate in the system must be understood and taken into ac-
count. For example, if some peers in a file-sharing sys-
tem have low-bandwidth, high-latency bottleneck network
connections to the Internet, the system must be careful to
avoid delegating large or popular portions of the distributed
index to those peers, for fear of overwhelming them and
making that portion of the index unavailable to other peers.
Similarly, the typical duration that peers choose to remain
connected to the infrastructure has implications for the de-
gree of redundancy necessary to keep data or index meta-
data highly available. In short, the system must take into
account the suitability of a given peer for a specific task be-
fore explicitly or implicitly delegating that task to the peer.

Surprisingly, however, few of the peer-to-peer architec-
tures currently being developed are evaluated with respect
to such considerations. We believe that this is, in part, due to
a lack of information about the characteristics of hosts that
choose to participate in currently popular peer-to-peer sys-
tems. In this paper, we remedy this situation by performing
a detailed measurement study of the two most popular peer-
to-peer file sharing systems, namely Napster and Gnutella.
The hosts that choose to participate in these systems are typ-
ically end-user’s home or office machines, often logically
located at the “edge” of the Internet.

In particular, our measurement study seeks to precisely
characterize the population of end-user hosts that partici-
pate in these two systems. This characterization includes
the bottleneck bandwidths between these hosts and the In-
ternet at large, typical IP-level latencies to send packets to
these hosts, how often hosts connect and disconnect from
the system, how many files hosts share and download, and
correlations between these characteristics. Our measure-
ments consist of detailed traces of these two systems gath-
ered over long periods of time – four days for Napster and
eight days for Gnutella respectively.

There are two main lessons to be learned from our mea-
surement results. First, there is a significant amount of
heterogeneity in both Gnutella and Napster; bandwidth, la-



tency, availability, and the degree of sharing vary between
three and five orders of magnitude across the peers in the
system. This implies that any similar peer-to-peer system
must be very careful about delegating responsibilities across
peers. Second, peers tend to deliberately misreport informa-
tion if there is an incentive to do so. Because effective del-
egation of responsibility depends on accurate information,
this implies that future systems must have built-in incen-
tives for peers to tell the truth, or systems must be able to
directly measure or verify reported information.

2 Methodology

The methodology behind our measurements is quite sim-
ple. For each of the Napster and Gnutella systems, we pro-
ceeded in two steps. First, we periodically crawled each
system in order gather instantaneous snapshots of large sub-
sets of the systems’ user population. The information gath-
ered in these snapshots include the IP address and port num-
ber of the users’ client software, as well as some informa-
tion about the users as reported by their software. Second,
immediately after gathering a snapshot, we actively probed
the users in the snapshot over a period of several days to di-
rectly measure various properties about them, such as their
bottleneck bandwidth.

In this section of the paper, we first give a brief overview
of the architectures of Napster and Gnutella. Following this,
we then describe the software infrastructure that we built to
gather our measurements, including the Napster crawler, the
Gnutella crawler, and the active measurement tools used to
probe the users discovered by our crawlers.

2.1 The Napster and Gnutella Architectures

Both Napster and Gnutella have similar goals: to facil-
itate the location and exchange of files (typically images,
audio, or video) between a large group of independent users
connected through the Internet. In both of these systems,
the files are stored on the computers of the individual users
or peers, and they are exchanged through a direct connec-
tion between the downloading and uploading peers, over an
HTTP-style protocol. All peers in this system are sym-
metric, in that they all have the ability to function both
as a client and a server. This symmetry is one attribute
that distinguishes peer-to-peer systems from many conven-
tional distributed system architectures. Though the process
of exchanging files is similar in both systems, Napster and
Gnutella differ substantially in how peers locate files (Fig-
ure 1).

In Napster, a large cluster of dedicated central servers
maintain an index of the files that are currently being shared
by active peers. Each peer maintains a connection to one of
the central servers, through which the file location queries
are sent. The servers then cooperate to process the query
and return a list of matching files and locations to the user.
On receiving the results, the peer may then choose to initi-
ate a file exchange directly from another peer. In addition to

S S

S S

napster.com

P P

P

P

P

P

Q

R

D

P
P

PP
P

P
P

Q

Q
Q

Q

Q
D

R

P

S

peer

server

Q
R

D
response

query
file download

Napster Gnutella

R

Figure 1. File location in Napster and Gnutella

maintaining an index of shared files, the centralized servers
also monitor the state of each peer in the system, keeping
track of metadata such as the peers’ reported connection
bandwidth and the duration that the peer has remained con-
nected to the system. This metadata is returned with the
results of a query, so that the initiating peer has some infor-
mation to distinguish possible download sites.

There are no centralized servers in Gnutella, however.
Instead, the peers in the Gnutella system form an over-
lay network by forging a number point-to-point connec-
tions with a set of neighbors. In order to locate a file, a
peer initiates a controlled flood of the network by sending a
query packet to all of its neighbors. Upon receiving a query
packet, a peer checks if any locally stored files match the
query. If so, the peer sends a query response packet back
towards to the query originator. Whether or not a file match
is found, the peer continues to flood the query through the
overlay.

To help maintain the overlay as the users enter and leave
the system, the Gnutella protocol includes ping and pong
messages that help peers to discover other nodes in the
overlay. Pings and pongs behave similarly to query/query-
response packets: any peer that sees a ping message sends
a pong back towards the originator, and also forwards the
ping onwards to its own set of neighbors. Ping and query
packets thus flood through the network; the scope of flood-
ing is controlled with a time-to-live (TTL) field that is
decremented on each hop. Peers occasionally forge new
neighbor connections with other peers discovered through
the ping/pong mechanism. Note that it is quite possible
(and common!) to have several disjoint Gnutella overlays
of Gnutella simultaneously coexisting in the Internet; this
contrasts with Napster, in which peers are always connected
to the same cluster of central servers.

2.2 Crawling the Peer-to-Peer Systems

We now describe the design and implementation of our
Napster and Gnutella crawlers. In our design, we ensured



that the crawlers did not interfere with the performance of
the systems in any way.

2.2.1 The Napster Crawler

Because we do not have direct access to indexes main-
tained by the central Napster servers, the only way we could
discover the set of peers participating in the system at any
time is by issuing queries for files, and keeping a list of
peers referenced in the queries’ responses. To discover the
largest possible set of peers, we issued queries with the
names of popular song artists drawn from a long list down-
loaded from the web.

The Napster server cluster consists of approximately 160
servers; Each peer establishes a connection with only one
server. When a peer issues a query, the server the peer is
connected to first reports files shared by “local users” on
the same server, and later reports matching files shared by
“remote users” on other servers in the cluster. For each
crawl, we established a large number of connections to a
single server, and issued many queries in parallel; this re-
duced the amount of time taken to gather data to 3-4 min-
utes per crawl, giving us a nearly instantaneous snapshot of
peers connected to that server. For each peer that we discov-
ered during the crawl, we then queried the Napster server
to gather the following metadata: (1) the bandwidth of the
peer’s connection as reported by the peer herself, (2) the
number of files currently being shared by the peer, (3) the
current number of uploads and the number of downloads in
progress by the peer, (4) the names and sizes of all the files
being shared by the peer, and (5) the IP address of the peer.

To get an estimate of the fraction of the total user popu-
lation we captured, we separated the local and remote peers
returned in our queries’ responses, and compared them to
statistics periodically broadcast by the particular Napster
server that we queried. From these statistics, we verified
that each crawl typically captured between 40% and 60%
of the local peers on the crawled server. Furthermore, this
40-60% of the peers that we captured contributed between
80-95% of the total (local) files reported to the server. Thus,
we feel that our crawler captured a representative and sig-
nificant fraction of the set of peers.

Our crawler did not capture any peers that do not share
any of the popular content in our queries. This introduces
a bias in our results, particularly in our measurements that
report the number of files being shared by users. However,
the statistics reported by the Napster server revealed that
the distributions of number of uploads, number of down-
loads, number of files shared, and bandwidths reported for
all remote users were quite similar to those that we observed
from our captured local users.

2.2.2 The Gnutella Crawler

The goal of our Gnutella crawler is the same as our Nap-
ster crawler: to gather nearly instantaneous snapshots of
a significant subset of the Gnutella population, as well as
metadata about peers in captured subset as reported by the

Figure 2. Number of Gnutella hosts captured
by our crawler over time

Gnutella system itself. Our crawler exploits the ping/pong
messages in the protocol to discover hosts. First, the crawler
connects to several well-known, popular peers (such as
gnutellahosts.com or router.limewire.com).
Then, it begins an iterative process of sending ping mes-
sages with large TTLs to known peers, adding newly dis-
covered peers to its list of known peers based on the con-
tents of received pong messages. In addition to the IP ad-
dress of a peer, each pong message contains metadata about
the peer, including the number and total size of files being
shared.

We allowed our crawler to continue iterating for approx-
imately two minutes, after which it would typically gather
between 8,000 and 10,000 unique peers (Figure 2). Accord-
ing to measurements reported by [6], this corresponds to at
least 25% to 50% of the total population of peers in the sys-
tem at any time. After two minutes, we would terminate the
crawler, save the crawling results to a file and begin another
crawl iteration to gather our next snapshot of the Gnutella
population.

Unlike our Napster measurements, in which we were
more likely to capture hosts sharing popular songs, we have
no reason to suspect any bias in our measurements of the
Gnutella user population. Furthermore, to ensure that the
crawling process does not alter the behavior of the system
in any way, our crawler neither forwarded any Gnutella pro-
tocol messages nor answered any queries.

2.2.3 Crawler Statistics

Both the Napster and Gnutella crawlers were written in
Java, and ran using the IBM Java 1.18 compiler on Linux
kernel version 2.2.16. The crawlers both ran in parallel on a
small number of dual-processor Pentium III 700 MHz com-
puters with 2GB RAM, and four 40GB SCSI disks. Our
Napster trace captured four days of activity, from Sunday
May 6th, 2001 through Wednesday May 9th, 2001. Over-



all, we recorded a total of 509,538 Napster peers on 546,401
unique IP addresses. Comparatively, our Gnutella trace
spanned eight days (Sunday May 6th, 2001 through Mon-
day May 14th, 2001), and it captured a total of 1,239,487
Gnutella peers on 1,180,205 unique IP-addresses.

2.3 Directly Measured Peer Characteristics

For each peer population snapshot that we gathered using
our crawlers, we directly measured various additional prop-
erties of the peers. Our broad goal was to capture data which
would enable us to reason about the fundamental character-
istics of the users (both as individuals and as a population)
participating in any peer-to-peer file sharing systems. The
data we collected includes the distributions of bottleneck
bandwidths and latencies between peers and our measure-
ment infrastructure, the number of shared files per peer, dis-
tribution of peers across DNS domains, and the “lifetime”
characteristics of peers in the system, i.e., how frequently
peers connect to the systems, and how long they choose to
remain connected.

2.3.1 Latency Measurements

Given the list of peers’ IP-addresses obtained by the
crawlers, we were easily able to measure the round-trip la-
tency between the peers and our measurement machines.
For this, we used a simple tool that measures the time spent
by a 40-byte TCP packets to be exchanged in between a peer
and our measurement host. Our interest in latencies of the
hosts is due to the well known feature of TCP congestion
control which discriminates against flows with large round-
trip times. This, coupled with the fact that the average size
of files exchanged is in the order of 2-4 MB, makes latency a
very important consideration when selecting amongst mul-
tiple peers sharing the same file. Although we certainly re-
alize that the latency to any particular peer is totally depen-
dent on the location of the host from which it is measured,
we feel the distribution of latencies over the entire popula-
tion of peers from a given host might be similar (but not
identical) from different hosts, and hence, could be of inter-
est.

2.3.2 Lifetime Measurements

To gather measurements of the lifetime characteristics
of peers, we needed a tool that would periodically probe a
large set of peers from both systems to detect when they
were participating in the system. Every peer in both Nap-
ster and Gnutella connects to the system using a unique IP-
address/port-number pair; to download a file, peers connect
to each other using these pairs. There are therefore three
possible states for any participating peer in either Napster
or Gnutella:

1. offline: the peer is either not connected to the Internet
or is not responding to TCP SYN packets because it is
behind a firewall or NAT proxy.

2. inactive: the peer is connected to the Internet and is
responding to TCP SYN packets, but it is disconnected
from the peer-to-peer system and hence responds with
TCP RST’s.

3. active: the peer is actively participating in the peer-to-
peer system, and is accepting incoming TCP connec-
tions.

Based on this observation, we developed a simple tool
(which we call LF) using Savage’s “Sting” platform [14].
To detect the state of a host, LF sends a TCP SYN-packet
to the peer and then waits for up to twenty seconds to re-
ceive any packets from it. If no packet arrives, we mark
the peer as offline for that probe. If we receive a TCP RST
packet, we mark the peer as inactive. If we receive a TCP
SYN/ACK, we label the host as active, and send back a RST
packet to terminate the connection. We chose to manipu-
late TCP packets directly rather than use OS socket calls to
achieve greater scalability; this enabled us to monitor the
lifetimes of tens of thousands of hosts per workstation.

2.3.3 Bottleneck Bandwidth Measurements

Another characteristic of peers that we wanted to gather
was the speed of their connections to the Internet. This is
not a precisely defined concept: the rate at which content
can be downloaded from a peer depends on the bottleneck
bandwidth between the downloader and the peer, the avail-
able bandwidth along the path, and the latency between the
peers.

The central Napster servers can provide the connection
bandwidth of any peer as reported by the peer itself. How-
ever, as we will show later, a substantial percentage of the
Napster peers (as high as 25%) choose not to report their
bandwidths. Furthermore, there is a clear incentive for a
peer to discourage other peers from downloading files by
falsely reporting a low bandwidth. The same incentive to
lie exists in Gnutella; in addition to this, in Gnutella, band-
width is reported only as part of a successful response to a
query, so peers that share no data or whose content does not
match any queries never report their bandwidths.

Because of this, we decided that we needed to actively
probe the bandwidths of peers. There are two inherently dif-
ficult problems with measuring the available bandwidth to
and from a large number of participating hosts: first, avail-
able bandwidth can significantly fluctuate over short periods
of time, and second, available bandwidth is determined by
measuring the loss rate of an open TCP connection. Instead,
we decided to use the bottleneck link bandwidth as a first-
order approximation to the available bandwidth; because
our measurement workstations are connected by a gigabit
link to the Abilene network, it is extremely likely that the
bottleneck link between our workstations and any peer in
these systems is last-hop link to the peer itself. This is par-
ticularly likely since, as we will show later, most peers are
connected to the system using low-speed modems or broad-
band connections such as cable modems or DSL. Thus, if



we could characterize the bottleneck bandwidth between
our measurement infrastructure and the peers, we would
have a fairly accurate upper bound on the rate at which in-
formation could be downloaded from these peers.

Bottleneck link bandwidth between two different hosts
equals the capacity of the slowest hop along the path be-
tween the two hosts. Thus, by definition, bottleneck link
bandwidth is a physical property of the network that re-
mains constant over time for an individual path.

Although various bottleneck link bandwidth measure-
ment tools are available [9, 11, 4, 10], for a number of rea-
sons that are beyond the scope of this paper, all of these
tools were unsatisfactory for our purposes. Hence, we de-
veloped our own tool (called SProbe) based on the same
underlying packet-pair dispersion technique as many of the
above-mentioned tools. Unlike these other tools, however,
SProbe uses tricks inspired by Sting [14] to actively mea-
sure both upstream and downstream bottleneck bandwidths
using only a few TCP packets. Our tool also proactively
detects cross-traffic that interferes with the accuracy of the
packet-pair technique, vastly improving the overall accu-
racy of our measurements.1 By comparing the reported
bandwidths of the peers with our measured bandwidths, we
were able to verify the consistency and accuracy of SProbe,
as we will demonstrate in Section 3.5.

2.3.4 A Summary of the Active Measurements

For the lifetime measurements, we monitored 17,125
Gnutella peers over a period of 60 hours and 7,000 Napster
peers over a period of 25 hours. For each Gnutella peer, we
determined its status (offline, inactive or active) once every
seven minutes and for each Napster peer, once every two
minutes.

For Gnutella, we attempted to measure bottleneck band-
widths and latencies to a random set of 595,974 unique
peers (i.e., unique IP-address/port-number pairs). We were
successful in gathering downstream bottleneck bandwidth
measurements to 223,552 of these peers, the remainder of
which were either offline or had significant cross-traffic. We
measured upstream bottleneck bandwidths from 16,252 of
the peers (for various reasons, upstream bottleneck band-
width measurements from hosts are much harder to obtain
than downstream measurements to hosts). Finally, we were
able to measure latency to a total of 339,502 peers. For
Napster, we attempted to measure downstream bottleneck
bandwidths to a set of 4,079 unique peers. We successfully
measured 2,049 peers.

In several cases, our active measurements were regarded
as intrusive by several people who participated in one of
the two systems monitored and were therefore captured in
our traces. Unfortunately, several e-mail complaints were
received by the computing staff at the University of Wash-
ington, and we decided to prematurely terminate our crawls,

1For more information about SProbe, refer to http://www.cs.
washington.edu/homes/tzoompy/sprobe.html.

hence the lower number of monitored Napster hosts. Nev-
ertheless, we successfully captured a sufficient number of
data points for us to believe that our results and conclusions
are representative for the entire Napster population.

3 Measurement Results

Our measurement results are organized according to a
number of basic questions addressing the capabilities and
behavior of peers. In particular, we attempt to address how
many peers are capable of being servers, how many behave
like clients, how many are willing to cooperate, and also
how well the Gnutella network behaves in the face of ran-
dom or malicious failures.

3.1 How Many Peers Fit the High-Bandwidth,
Low-Latency Profile of a Server?

One particularly relevant characteristic of peer-to-peer
file sharing systems is the percentage of peers in the system
having server-like characteristics. More specifically, we are
interested in understanding what percentage of the partici-
pating peers exhibit the server-like characteristics with re-
spect to their bandwidths and latencies. Peers worthy of
being servers must have high-bandwidth Internet connec-
tions, they should remain highly available, and the latency
of access to the peers should generally be low. If there is
a high degree of heterogeneity amongst the peers, a well-
designed system should pay careful attention to delegat-
ing routing and content-serving responsibilities, favoring
server-like peers.

3.1.1 Downstream and Upstream Measured Bottle-
neck Link Bandwidths

To fit profile of a high-bandwidth server, a participat-
ing peer must have a high upstream bottleneck link band-
width, since this value determines the rate at which a server
can serve content. On the left, Figure 3 presents cumula-
tive distribution functions (CDFs) of upstream and down-
stream bottleneck bandwidths for Gnutella peers.2 From
this graph, we see that while 35% of the participating peers
have upstream bottleneck bandwidths of at least 100Kbps,
only 8% of the peers have bottleneck bandwidths of at least
10Mbps. Moreover, 22% of the participating peers have
upstream bottleneck bandwidths of 100Kbps or less. Not
only are these peers unsuitable to provide content and data,
they are particularly susceptible to being swamped by a rel-
atively small number of connections.

The left graph in Figure 3 reveals asymmetry in the up-
stream and downstream bottleneck bandwidths of Gnutella
peers. On average, a peer tends to have higher downstream
than upstream bottleneck bandwidth; this is unsurprising,
because a large fraction of peers depend on asymmetric

2“Upstream” denotes traffic from the peer to the measurement node;
“downstream” denotes traffic from the measurement node to the peer.



Figure 3. Left: CDFs of upstream and downstream bottleneck bandwidths for Gnutella peers; Right:
CDFs of downstream bottleneck bandwidths for Napster and Gnutella peers.

Figure 4. Left: Reported bandwidths For Napster peers; Right: Reported bandwidths for Napster
peers, excluding peers that reported “unknown”.

links such as ADSL, cable modems or regular modems us-
ing the V.90 protocol [1]. Although this asymmetry is ben-
eficial to peers that download content, it is both undesirable
and detrimental to peers that serve content: in theory, the
download capacity of the system exceeds its upload capac-
ity. We observed a similar asymmetry in the Napster net-
work.

The right graph in Figure 3 presents CDFs of down-
stream bottleneck bandwidths for Napster and Gnutella
peers. As this graph illustrates, the percentage of Napster
users connected with modems (of 64Kbps or less) is about
25%, while the percentage of Gnutella users with similar
connectivity is as low as 8%.

At the same time, 50% of the users in Napster and 60%
of the users in Gnutella use broadband connections (Cable,
DSL, T1 or T3). Furthermore, only about 20% of the users

in Napster and 30% of the users in Gnutella have very high
bandwidth connections (at least 3Mbps). Overall, Gnutella
users on average tend to have higher downstream bottleneck
bandwidths than Napster users. Based on our experience,
we attribute this difference to two factors: (1) the current
flooding-based Gnutella protocol is too high of a burden on
low bandwidth connections, discouraging them from partic-
ipating, and (2) although unverifiable, there is a widespread
belief that Gnutella is more popular to technically-savvy
users, who tend to have faster Internet connections.

3.1.2 Reported Bandwidths for Napster Peers

Figure 4 illustrates the breakdown of the Napster peers
with respect to their voluntarily reported bandwidths; the
bandwidth that is reported is selected by the user during the
installation of the Napster client software. (Peers that re-



Figure 5. Left: Measured latencies to Gnutella peers; Right: Correlation between Gnutella peers’
downstream bottleneck bandwidth and latency.

port “Unknown” bandwidth have been excluded in the right
graph.)

As Figure 4 shows, a significant percent of the Napster
users (22%) report “Unknown”. These users are either un-
aware of their connection bandwidths, or they have no in-
centive to accurately report their true bandwidth. Indeed,
knowing a peer’s connection speed is more valuable to oth-
ers rather than to the peer itself; a peer that reports high
bandwidth is more likely to receive download requests from
other peers, consuming network resources. Thus, users have
an incentive to misreport their Internet connection speeds.
A well-designed system therefore must either directly mea-
sure the bandwidths rather than relying on a user’s input,
or create the right incentives for the users to report accurate
information to the system.

Finally both Figures 3 and 4 confirm that the most popu-
lar forms of Internet access for Napster and Gnutella peers
are cable modems and DSLs (bottleneck bandwidths be-
tween 1Mbps and 3.5Mbps).

3.1.3 Measured Latencies for Gnutella Peers

Figure 5 (left) shows a CDF of the measured latencies
from our measurement nodes to Gnutella peers. Approxi-
mately 20% of the peers have latencies of at least 280ms,
whereas another 20% have latencies of at most 70ms: the
closest 20% of the peers are four times closer than the fur-
thest 20%. From this, we can deduce that in a peer-to-peer
system where peers’ connections are forged in an unstruc-
tured, ad-hoc way, a substantial fraction of the connections
will suffer from high-latency.

On the right, Figure 5 shows the correlation between
downstream bottleneck bandwidth and the latency of in-
dividual Gnutella peers (on a log-log scale). This graph
illustrates the presence of two clusters; a smaller one sit-
uated at (20-60Kbps, 100-1,000ms) and a larger one at

over (1,000Kbps,60-300ms). These clusters correspond
to the set of modems and broadband connections, respec-
tively. The negatively sloped lower-bound evident in the
low-bandwidth region of the graph corresponds to the non-
negligible transmission delay of our measurement packets
through the low-bandwidth links.

An interesting artifact evident in this graph is the pres-
ence of two pronounced horizontal bands. These bands cor-
respond to peers situated on the North American East Coast
and in Europe, respectively. Although the latencies pre-
sented in this graph are relative to our location (the Univer-
sity of Washington), these results can be extended to con-
clude that there are three large classes of latencies that a
peer interacts with: (1) latencies to peers on the same part
of the continent, (2) latencies to peers on the opposite part
of a continent and (3) latencies to trans-oceanic peers. As
Figure 5 shows, the bandwidths of the peers fluctuate sig-
nificantly within each of these three latency classes.

3.2 How Many Peers Fit the High-Availability
Profile of a Server?

Server worthiness is characterized not only by high-
bandwidth and low-latency network connectivity, but also
by the availability of server. If peers tend to be unavailable
the preponderance of the time, this will have significant im-
plications about the degree of replication necessary to en-
sure that content is consistently accessible on this system.

In Figure 6, we display the distribution of uptimes of
peers for both Gnutella and Napster. Uptime is measured
as the percentage of time that the peer is available and re-
sponding to traffic. The “Internet host uptime” curves rep-
resent the uptime as measured at the IP-level, i.e., peers
that are in the inactive or active states, as defined in Sec-
tion 2.3.2. The “Gnutella/Napster host uptime” curves rep-
resent the uptime of peers in the active state, and therefore



Figure 6. IP-level uptime of peers (“Internet
Host Uptime”), and application-level uptime
of peers (“Gnutella/Napster Host Uptime”) in
both Napster and Gnutella, as measured by
the percentage of time the peers are reach-
able.

responding to application-level requests. For all curves, we
have eliminated peers that had 0% uptime (peers that were
never up throughout our lifetime experiment).

The IP-level uptime characteristics of peers are quite
similar for both systems; this implies that the set of peers
participating in either Napster or Gnutella are homogeneous
with respect to their IP-level uptime. In addition, only 20%
of the peers in each system had an IP-level uptime of 93%
or more.

In contrast, the application-level uptime characteristics
of peers differ noticeably between Gnutella and Napster.
On average, Napster peers tend to participate in the sys-
tem more often than Gnutella peers. From this, one might
hastily conclude that since more users participate in Nap-
ster, more content is available and therefore peers have on
average longer uptimes. However, this data can also be used
to draw an opposite conclusion: more content means that
users can find the files of interest faster, which results in
shorter uptimes. We believe that this difference is primarily
a factor of the design of the client software; Napster’s soft-
ware has several features (such as a built-in chat client and
an MP3 player) that cause users to run it for longer periods
of time.

Another significant difference can be observed in the tail
of the application-level distributions: the best 20% of Nap-
ster peers have an uptime of 83% or more, while the best
20% of Gnutella peers have an uptime of 45% or more. Our
(unproven) hypothesis is that Napster is, in general, a higher
quality and more useful service, and that this has a large in-
fluence on the uptime of its peers relative to Gnutella.

Figure 7 presents the CDF of Napster and Gnutella ses-
sion durations that are less than twelve hours. The graph is

Figure 7. The distribution of Napster/Gnutella
session durations.

limited to twelve hours because of the nature of our analy-
sis method; we used the create-based method [13], in which
we divided the captured traces into two halves. The reported
durations are only for sessions that started in the first half,
and finished in either the first or second half. This method
provides accurate information about the distribution of ses-
sion durations for session that are shorter than half of our
trace, but it cannot provide any information at all about ses-
sions that are longer than half our trace.3

There is an obvious similarity between Napster and
Gnutella; for both, most sessions are quite short—the me-
dian session duration is approximately 60 minutes. This
isn’t surprising, as it corresponds to the time it typically
takes for a user to download a small number of music files
from the service.

3.3 How Many Peers Fit the No-Files-to-Share,
Always-Downloading Profile of a Client?

In addition to understanding the percentage of server-like
Napster and Gnutella peers, it is equally important to deter-
mine the number of client-like peers. One aspect of a client-
like behavior is that little or no data is shared in the system.
Previous studies refer to these peers as free-riders [2] in the
system.

Another variable of interest is the number of downloads
and uploads a participating peer is performing at any given
time. A peer with a high number of downloads fits the pro-
file of a client, whereas a peer with a high number of up-
loads fits the profile of a server. In addition, correlating
the number of downloads with a peer’s bandwidth should
depict a clear picture as to how many of the participating
peers bring no benefits to the system, i.e., they have no files

3This method is necessary, since sessions may be active (or inactive)
for periods that are far longer than our trace duration; these long sessions,
if unaccounted, would skew the results.



Figure 8. Left: The number of shared files for Gnutella peers; Right: The number of shared files for
Napster and Gnutella peers (peers with no files to share are excluded).

to share, they have low bandwidths, and they always down-
load files.

Although we believe that any peer-to-peer, file sharing
system will have its free-riders, the system should not treat
its peers equally, but instead, it should create the right incen-
tives and rewards for peers to provide and exchange data.

3.3.1 Number of Shared Files in Napster and Gnutella

In Figure 8, the left graph shows the distribution of
shared files across Gnutella peers, and the right graph shows
this distribution for both Napster and Gnutella, but with
peers sharing no files eliminated from the graph. (As pre-
viously mentioned, we could not capture any information
about peers with no files from Napster.)

From the left graph, we see that as high as 25% of the
Gnutella clients do not share any files. Furthermore, about
75% of the clients share 100 files or less, whereas only 7%
of the clients share more than 1000 files. A simple calcula-
tion reveals that these 7% of users together offer more files
than all of the other users combined. This fact illustrates
that in spite of claims that every peer is both a server and a
client, Gnutella has an inherently large percentage of free-
riders: a large percentage of clients rely on a small percent-
age of servers.

The right graph shows that Napster peers are slightly
more consistent and offer less variation in the number of
shared files than Gnutella peers. Nonetheless, about 40-
60% of the peers share only 5-20% of the shared files, which
indicates that there is a large amount of free-riding in Nap-
ster as well.

3.3.2 Number of Downloads and Uploads in Napster

In Figure 9, the left graph shows the distribution of con-
current downloads by Napster peers classified by the peer’s
reported bandwidth, and the right graph shows a similar

curve for the number of concurrent uploads. Because these
graphs were obtained by capturing snapshots of the down-
load and upload activity using our crawler, these distribu-
tions are slightly biased towards capturing low-bandwidth
peers, since downloads take longer through low-bandwidth
connections.

Nonetheless, this graph shows interesting correlations
between peers’ reported bandwidths and their concurrent
downloads and uploads. First, there are 20% more zero-
download high-speed peers than zero-download low-speed
peers. We see two possible explanations – either higher-
bandwidth peers tend to download less often or they spend
less time downloading due especially to having higher con-
nection speeds. Second, the correlation between band-
widths and the downloads is reversed relative to bandwidths
and uploads (the percentage of zero-upload peers is higher
for modems than for cable modems).

3.3.3 Correlation between the Number of Downloads,
Uploads, and Shared Files

Figure 10 shows the percentage of downloads, the per-
centage of the peer population, the percentage of uploads
and the percentage of shared files, grouped according to
the reported bandwidth from Napster peers. The number
of shared files seems to be uniformly distributed across the
population: the percentage of peers in each bandwidth class
is roughly the same as the percentage of files shared by that
bandwidth class.

However, the relative number of downloads and uploads
varies significantly across the bandwidth classes. For exam-
ple, although 56Kbps modems constitute only 15% of the
Napster peers, they account for 24% of the downloads. Sim-
ilarly, cable modems constitute 32% of the peers, but they
account for 46% of the uploads. The skew in the number
of uploads is attributed by users selecting high-bandwidth



Figure 9. Left: The number of downloads by Napster users, grouped by their reported bandwidths;
Right: The number of uploads by Napster users, grouped by their reported bandwidths.

Figure 10. Percentage of downloads, peers,
uploads and shared files, grouped by re-
ported bandwidths (in Napster).

peers from which to download content. The skew in the
number of downloads, however, seems to be more repre-
sentative of the natural tendency of low-bandwidth peers to
also be free-riders.

3.4 The Nature of Shared Files

Another aspect of interest deals with the characteristics
of the shared files in the two systems. In Napster, all shared
files must be in an MP3 format, whereas any file type can
be exchanged in Gnutella. Each point in Figure 11 corre-
sponds to the number of files and the number of MB a Nap-
ster and Gnutella peer reports as shared (plotted on a log-log
scale). The obvious lines in both graphs imply that there is
a strong correlation between the numbers of files shared and

the number of shared MB of data. The slopes of the lines in
both graphs are virtually identical at 3.7MB, corresponding
to the average size of a shared MPEG3 audio file. Another
interesting point is the presence of a Gnutella peer that ap-
parently shares 0 files but 730 MB of data; clearly a bug in
the software or a case of malicious peers misreporting the
amount of data they have to share.

3.5 How Much Are Peers Willing to Cooperate in
a P2P File-Sharing System?

The peer-to-peer model fundamentally depends on the
concept of cooperation. How willing peers are to cooper-
ate is of vital importance to the viability of these systems.
Devising an experiment to quantify a peer’s willingness to
cooperate is of course very difficult; as a first-order approx-
imation, we measured the extent to which peers deliberately
misreport their bandwidths.

Figure 12 shows the distribution of measured bandwidths
for Napster peers, classified by their reported bandwidth.
Note that as high as 30% of the users that report their band-
width as 64 Kbps or less actually have a significantly greater
bandwidth. In Napster (and any similar system), a peer
has an incentive to report a smaller bandwidth than the real
value, in order to discourage others from initiating down-
loads and consuming the peer’s available bandwidth. Sim-
ilarly, we expect most users with high bandwidths to rarely
misreport their actual bandwidths. Indeed, Figure 12 con-
firms that only than 10% of the users reporting high band-
width (3Mbps or higher) in reality have significantly lower
bandwidth.

In addition to showing that many peers are uncoopera-
tive in Napster, this graph serves to validate the accuracy of
our bottleneck bandwidth estimation technique. There is an
extremely strong correlation between measured bandwidth
and reported bandwidth, across all reported classes.



Figure 11. Shared files vs. shared MB of data in Napster and Gnutella.

Figure 12. Measured downstream bottleneck
bandwidths for peers, grouped by their re-
ported bandwidths.

Figure 13 shows the distribution of measured down-
stream bottleneck bandwidth of those Napster peers who
report unknown bandwidths. Overlain on top of this distri-
bution, we have shown the distribution of measured band-
widths of all Napster peers, regardless of their reported
bandwidth. The similarity between the two curves is obvi-
ous, from which we deduce the fact that peers which report
unknown bandwidths are uniformly distributed across the
population.

3.6 Resilience of the Gnutella Overlay in the Face
of Attacks

In Gnutella, peers form an overlay network by each
maintaining a number point-to-point TCP connections, over
which various protocol messages are routed. The Gnutella
overlay presents a great opportunity to understand the chal-

Figure 13. CDFs of measured downstream
bottleneck bandwidths for those peers report-
ing unkown bandwidths along with all Nap-
ster users

lenges of creating effective overlay topologies. In partic-
ular, we were interested in the resilience of the Gnutella
overlay in the face of failures or attacks.

In Gnutella, the fact that peers are connecting and dis-
connecting from the network has implications about the na-
ture of the overlay topology. In practice, because peers tend
to discover highly available and high-outdegree nodes in the
overlay, connections tend to be formed preferentially. As
Barabasi and Albert show [3], vertex connectivities in net-
works that continuously expand by the addition of new ver-
tices and in which nodes express preferential connectivity
toward high-degree nodes follow a power-law distribution.
Indeed, previous studies have confirmed the presence of a
vertex connectivity power-law distribution for the Gnutella
overlay [6] with an index of � = 2:3.



Figure 14. Lower bound on the number
of Gnutella peers that must suffer random
breakdowns in order to fragment the Gnutella
network.

Cohen et. al [7] have analytically derived that networks
in which the vertex connectivity follows a power-law distri-
bution with an index of at most (� < 3) are very robust in
the face of random node breakdowns. More concretely, in
such networks, a connected cluster of peers that spans the
entire network survives even in the presence of a large per-
centage p of random peer breakdowns, where p can be as
large as:

p � 1 +

�
1�m��2K3��

�� 2

3� �

�
�1

where m is the minimum node degree and K is the maxi-
mum node degree. For Gnutella, Figure 14 shows a graph
of this equation as a function of the maximum degree ob-
served in the system, where the power-law index � was set
to 2:3 and the minimum node degree m was set to 1.

As this graph shows, Gnutella presents a highly robust
overlay in the face of random breakdowns; for a maximum
node degree of 20 (which is approximately what we ob-
served in the real Gnutella overlay), the overlay fragments
only when more than 60% of the nodes breakdown. While
overlay robustness is a highly desirable property, the as-
sumption of random failures breaks down in the face of an
orchestrated attack. An malicious attack would perhaps be
directed against the best connected, popular, high degree
nodes in the overlay.

The left graph in Figure 15 depicts the topology of a
1771 peers forming a connected segment of the Gnutella
network captured on February 16th, 2001. The middle
graph shows a portion of the topology after 30% of the
nodes are randomly removed. After this removal, the largest
connected component in the topology consists of 1106 of
the remaining 1300 nodes. However, in the right graph, we
show the original topology after removing the 63 (less than

4%) best connected Gnutella peers. This removal has ef-
fectively “shattered” the overlay into a large number of dis-
connected components. As we see, although highly resilient
in the face of random breakdowns, Gnutella is nevertheless
highly vulnerable in the face of well-orchestrated, targeted
attacks.

4 Recommendations to Peer-To-Peer System
Designers

There has been a flurry of proposed distributed algo-
rithms for routing and location in a P2P system. Most of
these protocols and proposals make the implicit assumption
that the delegation of responsibility across nodes the over-
lay should be uniform, and hence that all nodes will tend to
participate and contribute equally in information exchange
and routing. In contrast, our measurements indicate that the
set of hosts participating in the Napster and Gnutella sys-
tems is heterogeneous with respect to many characteristics:
Internet connection speeds, latencies, lifetimes, shared data.
In fact, the magnitude of these characteristics vary between
three and five orders of magnitude across the peers! There-
fore, P2P systems should delegate different degrees of re-
sponsibility to different hosts, based on the hosts’ physical
characteristics and the degree of trust or reliability.

Another frequent implicit assumption in these systems
is that peers tend to be willing to cooperate. By definition,
to participate in a P2P system, a peer must obey the proto-
col associated with the system. In addition, most users tend
download pre-created software clients to participate in these
systems (as opposed to authoring their own). These soft-
ware packages typically ask users to specify a fix set of con-
figuration parameters (such as Internet connection speed)
that will be reported to other peers in the system. As we
have shown, many of these parameters are in practice either
left unspecified or deliberately misreported. Instead of re-
lying on reported characteristics, we believe that a robust
system should attempt to directly measure the characteris-
tics of peers in the system.

Another myth in P2P file-sharing systems is that all peers
behave equally, both contributing resources and consum-
ing them. Our measurements indicate that this is not true:
client-like and server-like behavior can clearly be identified
in the popular. As we have shown, approximately 26% of
Gnutella users shared no data; these users are clearly partic-
ipating on the network to download data and not to share.
Similarly, in Napster we observed that on average 60-80%
of the users share 80-100% of the files, implying that 20-
40% of users share little or no files.

The experiments and the data presented in this paper
indicate that many of the characteristics that Napster and
Gnutella P2P systems in practice match the characteristics
of the classic server-client model. Thus, we believe that fu-
ture robust P2P protocols should account for the hosts het-
erogeneity, relying on self-inspection and adaptation to ex-
ploit the differences in the hosts’ characteristics, behavior,



Figure 15. Left: Topology of the Gnutella network as of February 16, 2001 (1771 peers); Middle:
Topology of the Gnutella network after a random 30% of the nodes are removed; Right: Topology of
the Gnutella network after the highest-degree 4% of the nodes are removed.

and incentives.

5 Conclusions
In this paper, we presented a measurement study per-

formed over the population of peers that choose to partic-
ipate in the Gnutella and Napster peer-to-peer file sharing
systems. Our measurements captured the bottleneck band-
width, latency, availability, and file sharing patterns of these
peers.

Several lessons emerged from the results of our measure-
ments. First, there is a significant amount of heterogeneity
in both Gnutella and Napster; bandwidth, latency, availabil-
ity, and the degree of sharing vary between three and five
orders of magnitude across the peers in the system. This im-
plies that any similar peer-to-peer system must be very de-
liberate and careful about delegating responsibilities across
peers. Second, even though these systems were designed
with symmetry of responsibilities in mind, there is clear ev-
idence of client-like or server-like behavior in a significant
fraction of systems’ populations. Third, peers tend to delib-
erately misreport information if there is an incentive to do
so. Because effective delegation of responsibility depends
on accurate information, this implies that future systems
must have built-in incentives for peers to tell the truth, or
systems must be able to directly measure or verify reported
information.

6 Acknowledgments
We would like to thank all of the people in the University

of Washington Computing and Communications services
and the Department of Computer Science and Engineering
that patiently responded to the many complaint email mes-
sages arising from our bottleneck bandwidth measurement
study. In particular, we’d like to thank Michael Hornung,
Jan Sanislo, Erik Lundberg, and Ed Lazowska for support-
ing our work. We would also like to thank Neil Spring

and Andrew Whitaker for their helpful comments on this
research.

References
[1] 3Com. 3com v.90 technology, 1998. http:

//www.3com.com/technology/tech_net/
white_papers/pdf/50065901.pdf.

[2] E. Adar and B. Huberman. Free riding on gnutella. Technical
report, Xerox PARC, August 2000.

[3] A. Barabsi and R. Albert. Emergence of scaling in random
networks. Science, 286:509–512, 1999.

[4] R. Carter. Cprobe and bprobe tools. http:
//cs-people.bu.edu/carter/tools/Tools.
html, 1996.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proceedings of the ICSI Workshop on Design Issues
in Anonymity and Unobservability, Berkeley, CA, 2000.

[6] Clip2. Gnutella measurement project, May 2001. http:
//www.clip2.com/.

[7] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Re-
silience of the internet to random breakdowns. Physical Re-
view Letters, 85(21), November 2000.

[8] P. Druschel and A. Rowstron. Past: A large-scale, per-
sistent peer-to-peer storage utility. In Proceedings of the
Eighth IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schoss Elmau, Germany, May 2001.

[9] V. Jacobson. pathchar. http://www.caida.org/
tools/utilities/others/pathchar/, 1997.

[10] K. Lai and M. Baker. Nettimer: A tool for measuring bot-
tleneck link bandwidth. In Proceedings of the 3rd USENIX
Symposium on Internet Technologies and Systems, March
2001.

[11] B. A. Mah. pchar: A tool for measuring internet path char-
acteristics. http://www.employees.org/˜bmah/
Software/pchar/, 2001.



[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of the ACM SIGCOMM 2001 Technical Con-
ference, San Diego, CA, USA, August 2001.

[13] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego, CA, USA, June
2000.

[14] S. Savage. Sting: a TCP-based Network Measurement Tool.
In Proceedings of the 1999 USENIX Symposium on Internet
Technologies and Systems (USITS ’99), October 1999.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable content-addressable network. In
Proceedings of the ACM SIGCOMM 2001 Technical Confer-
ence, San Diego, CA, USA, August 2001.

[16] M. Waldman, A. Rubin, and L. Cranor. Publius: A ro-
bust, tamper-evident, censorship-resistant, web publishing
system. In Proceedings of the 9th USENIX Security Sym-
posium, August 2000.

[17] B. Zhao, K. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-resilient wide-area location and routing.
Technical Report UCB//CSD-01-1141, University of Cali-
fornia at Berkeley Technical Report, April 2001.


