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ABSTRACT 

Ridesharing is a promising method to address transportation 

problems such as traffic jams and parking. Although traditional 

carpooling and taxi ridesharing have been investigated by many, 

slugging, as a simple yet effective form of ridesharing, has not 

been well-studied. In this paper, we formally define the slugging 

problem and its generalization. We provide proofs of their 

computational time complexity. For the variants of the slugging 

problem that are constrained by the vehicle capacity and travel 

time delay, we prove NP-completeness and also propose some 

effective heuristics. In addition, we discuss the dynamic 

slugging problem. We conducted experiments using a GPS 

trajectory data set containing 60 thousand trips. The 

experimental results show that our proposed heuristics can 

achieve close-to-optimal performances, which means as much as 

59% saving in vehicle travel distance. 
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J.m [Computer Applications]: Miscellaneous 

General Terms 
Algorithms 
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ridesharing, slugging, NP-completeness, heuristics. 

1 INTRODUCTION 

Transportation problems, such as traffic jams, finding parking 

slots, hailing a taxi during rush hours, are long-existing 

headaches in cities, especially those with a large population. 

These problems negatively affect the environment, the economy, 

and more importantly average peoples’ daily lives.  
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Different methods have been mainly proposed to tackle these 

problems separately. For example, extending the road network is 

one common approach to tackle traffic jams; sensors which can 

detect the availability of parking spaces [1] are installed to help 

drivers find open parking slots more quickly. However, those 

solutions often require additional construction or new equipment 

added to the existing infrastructures and thus are often expensive 

to implement. In addition, their benefits are usually limited to 

the specific corresponding problem.  

One reason for the above transportation problems is that the 

passenger seats of vehicles are under-utilized. Thus, we study 

ridesharing as a promising means to improve the utilization of 

vehicle ridership and thus reduce the number of cars on the road.  

Ridesharing practices have a variety of characteristics. For 

example, ridesharing can be either dynamic or static. Dynamic 

ridesharing arranges trips on a very short notice. By contrast, 

static ridesharing arranges trips that are known in advance, 

usually hours or a day or two before the departure time. 

Ridesharing can arrange either recurring or ad-hoc trips. Also, 

ridesharing can either change or keep the route of the original 

trips of drivers. (In case routes are kept, riders need to get on 

and off the driver’s car at the origin and destination locations of 

the driver instead of their own.) Riders may share the cost with 

the driver or not. Table 1 summarizes the characteristics of some 

of the most common ridesharing applications.  

Table 1 Characteristics of some most common ridesharing 

applications 

Ridesharing 

Applications 

Characteristics 

Dynamic 
Recurring 

Trip 

Route 

Change 

Cost 

Sharing 

taxi 

ridesharing  
yes no 

yes 
yes 

hitchhiking yes no no no 

carpooling no yes/no yes yes 

slugging [6] yes/no yes/no 
no no/very-

low 

In this paper we are interested in one particular ridesharing 

form, i.e. slugging. In slugging a passenger walks to the driver’s 

origin, boards at the driver’s departure time, alights at the 

driver’s destination, then walks from there to the passenger’s 

own destination. Thus slugging involves two modes of 

transportation, car and walking. Since slugging does not change 

any spatio-temporal aspect of the drivers’ original trips, slugging 

is the simplest form of ridesharing in the sense of bringing 

minimum disruptions to the drivers. Thus it can be offered at 

minimum or no-cost to the riders. Compared to other forms of 

ridesharing where route change is allowed, e.g. taxi ridesharing 

[14], slugging avoids unnecessary complications such as 

complex fare mechanism or ridesharing-incurred travel time 

delay for drivers (e.g. due to unexpected congestion encountered 

on the way to some pickup). Thanks to its simplicity, slugging 
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has already become a common transport mode in some of the 

busiest traffic areas in the North America, e.g. auxiliary 

interstate highways around urban areas such as Washington 

D.C., Bay area, Houston, and other cities [2, 3]. 

Though currently slugging is mainly used for regular commute 

trips, we envision that it can also be applied to ridesharing 

scenarios that involve mostly one-time casual trips. For 

example, consider a ridesharing website where travelers post 

their trips scheduled in the near future. When posting their trip, 

travelers may announce their roles in ridesharing: drivers, 

passengers, or both (i.e. travelers who have a car can leave the 

role to be determined by the website). The website will compute 

a slugging plan to group these travelers and decide the driver 

and passengers for each group. The only attached string for a 

passenger is that she needs to walk to the origin location of the 

driver’s trip before the driver departs, and she needs to walk 

from her driver’s destination to her own destination. Drivers are 

willing to accept such a ride for a various reasons, such as 

environmental-friendliness, companionship, the privilege of 

driving on HOV lanes, reduced or waived toll on highways, 

small payment, etc. 

The increasing popularity of bike sharing programs indicates 

that people are open to alternative modes of transportation, 

particularly the ones like slugging that involve physical activity 

(i.e. walking). The motor industry is also actively promoting 

shared services like slugging, as stated in the “Blueprint for 

Mobility” vision recently released by Ford company. 

To the best of our knowledge, our work is the first one to study 

slugging from a computational perspective. We define and study 

the basic slugging problem and its variants that are constrained 

by the vehicle capacity and travel time delay. We also discuss 

the dynamic version of the slugging problem. The experimental 

results show that our proposed heuristics achieve 59% saving in 

vehicle travel distance. Given the size of our real data set is 39 

thousand trips and the average distance of a trip in the data set is 

6.3 kilometers, the saving equals to 144,963 kilometers, which 

means the reduction of over 4.5 thousand gallons of gasoline 

and 71 tons of carbon dioxide emission. 

In summary, the contributions of the paper include: 

 We formalize the slugging problem using a graph 
abstraction. We propose a quadratic algorithm to solve the 
slugging problem. 

 We define a generalization of the slugging problem and 
prove its NP-completeness.  

 For the variants of the slugging problem that are constrained 
by the vehicle capacity and travel time delay, we prove their 
NP-completeness and propose effective heuristics. Via 
extensive experiments, we demonstrate that the proposed 
heuristics have near-optimal performance in terms of the 
saving in vehicle travel distance.  

 We also consider the dynamic slugging problem and 
evaluate it via experiments; in the dynamic problem the trips 
are announced incrementally. 

The remainder of the paper is organized as follows. In Section 2, 

we review existing literature related to our work. Section 3 

formally defines and studies the slugging problem, its 

generalization, its constrained variants, its dynamic version, and 

heuristics for the intractable variants. We evaluate the proposed 

heuristics in Section 4. 

2 RELATED WORKS 

In this section we review existing works on three problems that 

are relevant to slugging, i.e. taxi-ridesharing, carpooling and the 

dial-a-ride. Similar to slugging, all these problems are 

transportation problems that involve pickups and drop-offs. 

Unlike slugging where passengers change their origin and 

destinations in order to join the trip of drivers, in all three 

problems, drivers change their route in order to pick up and 

deliver the passengers. Both taxi ridesharing and carpooling are 

specific forms of ridesharing. The difference is that each driver 

in carpooling usually is associated with her own trip, while in 

taxi ridesharing this is not the case. Also taxi ridesharing usually 

needs appropriate pricing mechanisms to incite taxi drivers. The 

dial-a-ride problem slightly differs from carpooling as all 

vehicles start a trip and return to the same location called the 

depot.  

2.1 Taxi Ridesharing 
There have been a number of works on the taxi ridesharing 

application [14, 15, 16, 17]. These works modeled the taxi 

ridesharing problem by considering different constraints. In 

contrast to slugging, the routes of driver trips, i.e. taxis in this 

case, change to accommodate passengers. Among these works, 

some (see [17]) only considered vehicle capacity constraints, 

while the rest also considered time window constraints, i.e. 

travelers need to depart and arrive in given time intervals. [15] is 

the only paper that models monetary constraints, which are used 

to guarantee monetary incentives for both taxi drivers and taxi 

riders. These works on taxi ridesharing mainly concern the 

efficiency and scalability of ridesharing, i.e. how fast a query 

can be answered and how many queries the system can handle. 

In contrast, we focus on the effectiveness of slugging as a 

whole, e.g. the saving in vehicle travel distance, while the 

existing works on taxi ridesharing often consider the 

effectiveness of ridesharing from the perspective of a single 

request, e.g. reducing the increase in vehicle travel distance for 

every new request [14].  

2.2 Carpooling  
There have been many works on modeling and analyzing the 

traditional carpooling problem where drivers need to change 

their routes due to ridesharing. In [7], the authors modeled a 

carpooling problem and proposed an exact method based on 

Lagrangean column generation to solve it optimally. Since the 

carpooling problem is NP-hard, the exact approach practically  

only works for small instances of the carpooling problem,  

where there are at most a few hundred trips. For large instances 

with hundreds of thousands trips, many heuristics have been 

proposed [4, 18]. These heuristics are applied to compute the 

best route of a vehicle for a given set of requests, since the route 

of drivers is allowed to change. As such route changes do not 

occur in slugging, these heuristics are not applicable.  

Despite being a sibling of the carpooling problem, the slugging 

problem has so far drawn little attention from researchers. There 

have been some reports on the current state of slugging 

operations (see [8]). But our work is the first formal study of 

slugging from a computational viewpoint. 

2.3 Dial-A-Ride Problem (DARP) 
The Dial-A-Ride Problem (DARP) [5], a.k.a. the Vehicle 

Routing Problem with Time Windows in the operation research 

literature, is closely relevant to the carpooling problem. The 

DARP can be considered the carpooling problem with additional 



 

restrictions (e.g. all vehicles are required to start any trip from a 

depot location and return to the depot after the trip). In contrast 

to slugging, vehicle routes are manipulated to accommodate 

passengers’ origin and destination locations. DARP is proved to 

be NP-hard. Cordeau et al. summarizes the state-of-the-art 

heuristics for DARP [9]. 

3 SLUGGING 

We introduce the concept of slugging in Sec. 3.1. We formally 

define the basic slugging problem in Sec. 3.2. Next we introduce 

and discuss the vehicle-capacity constrained slugging problem 

in Sec. 3.3, and the delay bounded slugging problem in Sec. 3.4. 

Then we describe the slugging problem with both constraints 

and propose heuristics for it in Sec. 3.5. Finally, we discuss the 

dynamic slugging problem and its parameters in Sec. 3.6.  

3.1 Preliminaries  
In slugging, some travelers abandon their original trips and join 

the trip of other travellers, the drivers, without asking the drivers 

to change their route or their departure time. To be more specific, 

consider two travellers   and  , and their respective trips    and 

  , each of which is described by an origin destination pair and 

a start time at which the traveller intends to depart. Assume that 

traveller   abandons her trip and joins  ’s trip. In this case we 

say that    is merged into   . More specifically, traveller   

executes her new trip as follows: at the start time of    she 

walks to the origin location of trip   , then she waits until the 

start time of    (if   arrives later than the start time of    then 

she cannot join   ), she shares the ride with  , she alights at the 

destination of    and finally she walks from there to her own 

destination. Clearly, the only impact that traveller   has on trip 

   is the occupation of one seat in B’s vehicle. In other words, 

there is no disruption to any spatio-temporal aspect of   .  

In the above example, there is only one traveler associated with 

each trip. In general, each trip can be associated with a party of 

multiple travelers who cannot be separated during the trip 

(assuming that the size of the party is always smaller than the 

number of seats in a vehicle).  

As shown in the above example, one necessary condition for trip 

   to be able to be merged into trip    is that the travellers of trip 

   can walk from the origin of    at the start time of    and arrive 

at the origin of trip    before the start time of    (assuming a 

constant walking speed and taking the shortest path). Consider a 

set of trips                 where the travelers of each trip 

   announce their willingness to serve as: driver, or passenger, 

or both. Then for each trip pair    and   , where the travelers of 

   have announced their willingness to be passengers, and the 

travelers of    have announced their willingness to be drivers, 

we can compute whether or not    can be merged into   . To do 

that, a preprocessing stage is performed. At this stage, a map is 

used to compute the shortest path between the respective origins. 

Specifically, for such a trip pair        , the shortest path 

between the origins of the two trips is computed. Based on the 

calculated shortest path, a presumed walking speed, and the start 

times of    and   , we can readily determine whether or not trip 

   can be merged into   . If so, we say that pair         is a 

mergable pair where    is a passenger trip and    is a driver trip. 

For a mergeable pair        , the shortest path between the 

destinations of    and    is also calculated in order to determine 

the travel time delay for the passenger trip   . The travel time 

delay for passenger trips imposes a natural constraint on the 

slugging problem, which will be discussed further in Sec. 3.4 

and 3.5.  

Now that we have defined a mergeable pair, for a given set of 

trips, consider the set of all mergeable pairs represented as a 

graph S. Assuming that the trip start-times are distinct, we 

observe that S possesses the following two properties. 

First, S is acyclic. Suppose there exists a cycle of mergeable 

pairs          ,          , …,           in  . Mergeable pair 

    
      means that the start time of     is smaller than that of 

   . However, the first n-1 pairs of the cycle collectively tell us 

that the start time of     should be smaller than that of    . 

Contradiction. In other words, S is acyclic because the start-

times of the trips on a path in S are increasing.  

Second, S is transitive (i.e. if (     )    and          ), 

then          . If the travelers of    can arrive at the origin of 

   before the start time of   , and the travelers of    can arrive at 

the origin of    before the start time of   , then the travelers of 

   definitely can arrive at the origin of    before the start time of 

   as well by: first arriving at the origin of    and then taking the 

same path used by the travelers of    to the origin of   ; this 

assumes that all travelers have the same walking speed.  

3.2 Basic Slugging Problem 
Slugging is a graph problem. We formulate it as follows. 

Definition 1 A slugging graph        , is a directed acyclic 

graph where                is a set of trips and   is set of 

directed edges between nodes that is transitive, i.e. if (     )  

  and (     )   , then           . 

Note that a node in a slugging graph may not have any incident 

edges. A node with no incident edge can exist as it represents a 

trip that cannot be merged into any other trip, or into which no 

other trip can be merged. For example, a trip geographically 

bounded in the northeastern corner of a city may become such a 

disconnected node if all other trips are bounded in the 

southwestern corner of the city, and they all start at 

approximately the same time. 

A slugging graph indicates which trips can be merged into 

others. However, although a trip can be merged into multiple 

other trips, in a concrete slugging plan it is merged into only one 

other trip. In other words, a slugging graph gives the possible 

pairs of trips that can be combined, whereas a slugging plan 

gives an actual combination that will be executed in practice. So, 

based on a slugging graph, a slugging plan can be constructed. 

Intuitively, a slugging plan is a subgraph of the slugging graph 

that gives the driver and the passengers of each car.  

Definition 2 Given a slugging graph        , a slugging 

plan               , is a subgraph of   that satisfies the 

following conditions: (i)  (     )       there is no     such 

that            ; and (ii)  (     )       there does not exist 

   such that            .  

Intuitively, condition (i) states that any trip    can be merged 

into at most one other trip. Condition (ii) states that a trip    can 

be merged into another trip    only if there is no other trip    

that has been merged into   . These constraints precisely reflect 

the nature of the slugging problem: each trip is either a 

ridesharing provider, i.e. providing a car to be shared with other 



 

riders, or a ridesharing consumer, i.e. taking exactly one ride 

provided by a provider.  

Fig. 1 gives an illustrative example of slugging plans. Subfigure 

(a) shows a slugging graph of four trips. Subfigures (b) (c) (d) 

(e) show all slugging plans that are maximal, i.e. cannot include 

more edges. For instance, consider the slugging plan shown in 

subfigure (b). Given that         already exists, neither edge 

        nor edge         can be added because the addition 

violates Condition (i), and neither edge         nor edge 

        can be added because either addition violates Condition 

(ii). 

 

Fig. 1 An illustrative example of slugging plans 

A mergable pair         in a slugging plan means that    is 

merged into   . That is to say,    is simply eliminated while 

there is no change to    other than the fact that the number of 

passengers in    ‘s vehicle is increased. Therefore the benefit of 

merging    into    only depends on the passenger trip    and 

thus can be measured by some attribute of   , e.g. the vehicle 

travel distance that is saved. In other words, the benefit of 

merging    into another trip is independent of the other trip. The 

implication is that if an edge is labeled by the benefit of merging 

the two trips at its endpoints, then all the edges exiting a node 

have the same benefit. Formally, we define the benefit of a 

slugging graph as follows. 

Definition 3 A slugging graph         is called benefit-

labeled if each edge (     )    is associated with a label 

 (     )    , referred to as the benefit of edge        , and 

the benefits of all edges outgoing of the same node are identical, 

i.e.           such that (     )    and          , 

 (     )          . 

A straightforward example of a benefit function is the constant 

function  (     )    for any mergeable pair (     ) . 

Intuitively, this benefit function measures the number of trips 

saved by ridesharing. Another example of a benefit function is: 

 (     )  equals to the vehicle travel distance of trip   . 

Intuitively, this benefit function measures the saving in vehicle 

travel distance. 

 

Fig 2 An example of a benefit function for a ridesharing 

form in which driver trips are changed 

Definition 3 essentially says that the benefit of a mergeable pair 

is independent of the driver trip. Note this characteristic is 

unique to slugging and is not applicable to other ridesharing 

forms. For example, if we consider a ridesharing form where the 

route of driver trips can be changed, such as taxi ridesharing, 

then a benefit function   that measures the saving in the total 

travel distance is dependent on the driver trip. Fig 2 shows an 

illustrative example of this case. Fig 2 (a) shows three trips with 

their travel distances, and the distances between the origins and 

destinations of these trips. Fig 2 (b) and (c) show a trip after 

merging    into trip    and   , respectively, resulting 

           and           . In other words, since the 

passenger is picked up at her origin and dropped off at her 

destination, the total saving in travel distance depends on the 

driver’s origin and destination. 

The next definition gives the benefit of a ride-sharing plan as the 

total benefit of its edges. 

Definition 4 Given a slugging graph         that is benefit-

labeled, the benefit of a slugging plan          , denoted by 

     , is the sum of the benefits of the edges in   . That is to 

say,       ∑  (     )(     )   
. 

Definition 4 is also applicable to slugging only, but not to other 

ridesharing forms. To illustrate this point, consider again the 

example shown by Fig 2. The benefit of merging    into    is 3, 

as shown by Fig 2 (d); and the benefit of merging    into    is 2, 

as shown by Fig 2 (b). However, as shown by Fig 2 (e), the 

benefit of slugging plan                   is 3 rather than 5, 

which is the sum of the benefit of the two pairs in the plan.  

Problem 1 Given a slugging graph         that is benefit-

labeled, find a subgraph                that is a slugging 

plan and has the maximum benefit. We refer to this as the 

Slugging Problem (SP). 

Theorem 1 SP can be solved in         time.  

Proof A trip       is called a sink trip if its node has no 

outgoing edges. Due to the fact that G is acyclic and transitive, 

for each non-sink trip   , there exists at least one sink trip 

   such that          .  

Now we can construct the optimal slugging plan for SP using 

the algorithm as shown by Fig. 3. The    in Fig. 3 merges each 

trip    that is not a sink trip into any sink trip    such that 

         .  

 

Fig. 3 Quadratic algorithm for SP 

It is not hard to see that the constructed           is indeed 

optimal. First    is constructed such that each passenger trip has 

been merged into some driver trip. And since that the benefit of 

merging a passenger trip is the same regardless which driver trip 

the passenger trip is merged into, therefore, the benefit of    is 

maximum 
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Let us consider the time complexity of Algorithm 1. As shown 

by Line 1~6, trips that are sinks can be identified in        time. 

From Line 8~10, the slugging plan is calculated. Since there are 

at most        non-sink trips, and for each non-sink trip it takes 

at most        time to find a sink trip into which the non-sink 

trip can be merged, then the time complexity of Line 8~11 is 

        as well. Since     is        , the time complexity of 

Algorithm 1 is        . □ 

The transitivity of the slugging graph relies on the assumption 

that travelers walk at the same speed. If we relax this 

assumption, then the slugging graph is no longer transitive. This 

relaxation leads to a generalization of SP in which the graph is 

only acyclic. We prove in the appendix that this generalization 

of SP is NP-complete.  

3.3 Capacitated Slugging  
The basic slugging problem may work well for the case where 

vehicles have a large number of seats, such as (mini)buses. The 

reason is that the problem does not constrain the number of 

passengers that a driver can take. The problem becomes more 

general if we consider a vehicle capacity constraint, given the 

fact that private vehicles usually have a few seats. Thus we 

introduce the slugging problem with the capacity constraint.  

As mentioned in Sec. 3.1, a trip can be associated with multiple 

travelers who ride together. In other words, these travelers have 

the same origin, destination, and start time. Therefore, each 

passenger trip in the graph should be tagged with a label which 

represents the number of travelers associated with the trip. We 

do so as follows. 

Definition 5 A slugging graph         is called no-of-

travelers-labeled if each node      that represents a 

passenger trip (i.e. has outgoing edges) is associated with a 

number     , referred to as the size of node   . 

Each driver trip also has a number of seats available for 

passengers. In other words, each driver trip is associated with a 

number of travelers. However, it may still have available seats in 

the car to take slugging passengers. This availability is 

represented in the slugging graph as follows.  

Definition 6 A slugging graph G=(V, E) is called no-of-

available-seats labeled if each node      that represents a 

driver trip (i.e. has incoming edges) is associated with a label 

    , referred to as the capacity of node     

Definition 7 A slugging plan           is capacitated if each 

driver trip in    takes at most      additional passengers, i.e. 

       (     )   
         . 

Now we define the Capacitated Slugging Problem as follows. 

Problem 2 Given a slugging graph         that is no-of-

travelers-labeled, no-of-available-seats-labeled and benefit-

labeled, and a number     , find a subgraph    
            that is a capacitated slugging plan with the 

benefit at least  . We refer to this as the Capacitated Slugging 

Problem (CSP).  

Theorem 2 CSP is NP-Complete. 

Proof: First, it is easy to see CSP is in NP. That is, given a 

subgraph of  , denoted by   , we can verify whether    is a -

capacitated slugging plan and if so, whether its benefit is at least 

 . Now, we prove CSP is NP-hard by reducing the 0/1 

Knapsack Problem to CSP.  

The 0/1 Knapsack Problem is known to be NP-hard [11]. The 

decision version of the problem is defined as follows: given a set 

of   items,              and a knapsack of capacity  . Each 

item    has a size    and a value   . The question is whether or 

not we can pack items worth at least   into the knapsack without 

exceeding its capacity and without splitting items.  

Given an instance of 0/1 Knapsack Problem, we can build an 

instance of CSP as follows. First we construct a slugging graph 

        as follows. Let the node set   
    

    
     

    . Construct the edge set E  as follows. For 

each node    
            , we add an edge     

     to E. Note 

that the edge set        
      is indeed transitive and acyclic. 

Therefore,   is a slugging graph. Next we label the nodes of G. 

Each node    
 is labeled with a size equals to   . The capacity 

of node    
 does not matter since they can only be passenger 

trips. Node    is labeled with a size equals to 1 and a capacity 

equals to    . Next we label the edges of G with a benefit. 

Each edge     
     is label with a benefit      

     equals to 

  , for          . Now   is slugging graph that is no-of-

travelers-labeled, no-of-available-seats-labeled and benefit-

labeled.  

It can readily be shown that the constructed instance of CSP has 

a capacitated slugging plan with a benefit of   if and only if the 

instance of 0/1 Knapsack Problem can pack items worth at least 

  into the knapsack.□ 

3.3.1 A special case of CSP 

A special case of CSP where the capacity of each car is  , and 

all trips are associated with only one traveler, is polynomial-time 

solvable. We prove it formally as follows. 

Problem 3 Given a slugging graph         that is no-of-

travelers-labeled where the size of each passenger node is 1, 

and no-of-available-seats-labeled where the capacity of each 

driver node is 1, and benefit-labeled, find a subgraph     

            that is a capacitated slugging plan with the 

maximum benefit. We refer to this as the 1-traveler-1-

availability Capacitated Slugging Problem (1t1CSP). 

Theorem 3 The 1t1CSP is solvable in                  time. 

Proof We will show that the 1t1CSP is equivalent to the 

maximum weighted matching problem. A matching of a graph is 

a set of pairwise vertex-disjoint edges. The maximum weighted 

matching problem is defined as: given an edge-weighted 

undirected graph           , find the matching where the 

sum of the weight of the edges in it is maximum.  

Given an slugging graph         of the 1t1CSP, we 

construct a weighted undirected graph    as follows:     , 

     , the weight of an edge      equals to the benefit of 

e. Since E is acyclic,    contains no self-loops. Thus, each 

matching   of    is a legitimate capacitated slugging plan and 

the sum of the weight of edges in   equals to the benefit of the 

slugging plan.  

Since the maximum weighted matching problem is solvable in 

polynomial time [10], we can also solve the 1t1CSP in 



 

polynomial time using the same algorithm. The running time of 

this algorithm is                 . □ 

3.4 Delay-Bounded Slugging  
In addition to the vehicle capacity constraint, it is also natural to 

constrain SP by a bounded travel time delay. As mentioned in 

Sec 3.1, in the preprocessing stage (that uses a map), for each 

mergeable pair (     ), we compute the travel time delay for the 

passenger trip   , denoted by     . Intuitively,      is the delay 

incurred by    due to the fact that    needs to walk to/from   ’s 

origin/destination, and possibly wait for    to start. More 

specifically, the delay equals to the difference: ( the arrival time 

of    when the passengers ride with    (i.e. walk to/from 

origin/destination of   ) ) – ( the arrival time of    when the 

passengers ride in their own vehicle from their origin directly to 

their destination). Now we define the travel time delay 

representation in the graph. 

Definition 8 A slugging graph         is called delay-

labeled if each edge           is associated with a label     , 

which represents the travel time delay of    with respect to 

(     ).  

The travelers of each trip    can specify a threshold which 

represents their maximum tolerable travel time delay. We define 

the delay threshold representation in the graph. 

Definition 9 A slugging graph         is called delay-

threshold-labeled if each node      is associated with a label 

    , referred to as the delay threshold of node   . 

The travel time delay constraint means that all edges outgoing of 

a node with a travel time delay exceeding the delay threshold of 

the node need to be filtered out.  Thus we define a delay-

bounded-slugging-graph that satisfies this property. 

Definition 10 Given a slugging graph         that is delay-

labeled and delay-threshold labeled, the delay-bounded 

slugging graph               , is a subgraph of G where 

           ,          .  

Now we introduce the delay-bounded slugging problem. 

Problem 4 Given the delay-bounded slugging graph    that is 

benefit-labeled, and a number     , find a subgraph    of    

that is a slugging plan with a benefit of at least  .  

3.5 Delay Bounded and Capacitated 

Slugging and Its Heuristics 
In practice, both the capacity constraint and the travel time delay 

threshold constraint are important. Thus, we combine them to 

form the following problem. 

Problem 5 Given the delay-bounded slugging graph    
       that is no-of-travelers-labeled, no-of-available-seats-

labeled, and benefit-labeled, and a number     , find a 

subgraph                 that is a capacitated slugging 

plan with a benefit of at least  . We refer to this as the Delay 

Bounded and Capacitated Slugging Problem (DBCSP). 

Theorem 4 The DBCSP is NP-Complete. 

Proof Obvious, since DBCSP is a generalization of CSP. □ 

Since the DBCSP is NP-Complete, we propose two greedy 

heuristics for the DBCSP, namely Greedy-Benefit and Greedy-

AVG-Benefit. Both heuristics work in an iterative way. That is, 

each heuristic greedily chooses one driver trip    based on 

certain criteria. Intuitively, Greedy-Benefit chooses the driver 

trip that collects the maximum benefit of its incoming edges, 

and Greedy-AVG-Benefit chooses the driver trip that collects the 

maximum average benefit of its incoming edges.  

To compute the maximum benefit and the maximum average 

benefit, we need to solve an instance of the 0/1 knapsack 

problem for each driver trip. Each driver trip    and all its 

passenger trips    where (     )     , form an instance of the 

0/1 knapsack problem (see proof of Theorem 2). That is, trip    

is considered the knapsack with a capacity equals to      and 

each    is considered an item with a value equal to  (     ) 

and a size equal to     .  

Since the 0/1 knapsack program is NP-complete, we employ an 

approximation algorithm called Efficiency Greedy (EG) 

approximation algorithm [11]. The EG algorithm outputs the 

larger between the following two numbers: (i) the total value 

when packing items into the knapsack in non-increasing order of 

their efficiencies (i.e. the ratio of value to size); (ii) the value of 

the single item which is most valuable among all items. It is 

known that the EG algorithm has a worst-case performance 

bound of 2 [11].  

Intuitively, at each iteration the Greedy-Benefit heuristic applies 

the EG algorithm to each driver trip, and selects the driver trip 

with the maximum benefit computed by EG. This trip and its 

passengers are eliminated from the slugging graph, and then the 

next iteration is started. The Greedy-AVG-Benefit is identical, 

except that the driver trip selected is the one with the (maximum 

benefit / number of passenger trips selected by EG). 

 

Fig. 4 Heuristics for the DBCSP 

More precisely, denote by           the result of the instance 

of the 0/1 knapsack program formed for trip    output by the 

EG algorithm. Denote by   the number of passenger trips that 

are selected for driver trip    by the EG algorithm. Then, in 

each iteration, the Greedy-Benefit and Greedy-AVG-Benefit 

heuristic select the driver trip with the maximum           and 

           , respectively. Once a driver trip    is picked, the 

set of passenger trips that are merged into    are also 

determined by the EG algorithm. Next the delay-bounded 

slugging graph is updated by removing the nodes of the driver 

and its passengers, and the edges that touch upon them. This 



 

update completes an iteration, and a new iteration then starts. 

The algorithm terminates when the slugging graph becomes 

empty.  

Fig. 4 summarizes the algorithm for the proposed heuristics. 

Lines 6~7 calculates           for every driver trip    in an 

iteration. Since there are        driver trips in an iteration, and 

the computation of           for each    by the EG algorithm 

runs in             , therefore, the selection of the driver trip 

in an iteration runs in               . The updating process 

takes        for each selected trip and takes         in total, as 

there are at most     trips selected in an iteration. Since there are 

       iterations, the time complexity of the greedy heuristics is 

              . 

To illustrate the Greedy-Benefit and Greedy-AVG-Benefit 

heuristics, please consider the delay-bounded slugging graph 

shown in Fig. 5 (a). The number on each edge represents its 

benefit. Assume that the capacity and the size of each node is 4 

and 1, respectively. The optimal slugging plan for this simple 

example is shown in Fig. 5 (b), with a benefit of 38.  

                  
(a) a delay-bounded        (b) the corresponding optimal  

     slugging graph                     slugging plan 

Fig. 5 An example of delay-bounded slugging graph 

Now we generate a slugging plan using the greedy-based 

heuristics. Let us first consider the Greedy-Benefit heuristic. In 

the first iteration,    is chosen as the driver trip because the 

maximum benefit that it can collect from its incoming edges is 

the largest among all driver trips. Then the graph is updated by 

deleting all edges associating with any of         . In the next 

iteration     is chosen as the driver trip. The graph then updates 

again and becomes empty of edges. The edges selected in each 

step are shown in Fig. 6 and the benefit of the resulting slugging 

plan is 33.  

                                    
     (a) edges selected in 1st step   (b) edges selected in 2nd step 

Fig. 6 Running example of the Greedy-Benefit heuristic 

In contrast, Greedy-AVG-Benefit chooses    in the first iteration 

because    has the largest average benefit of passenger trips. 

Then    is selected in the second iteration and    is selected in 

the third iteration. Fig. 7 shows edges selected in each iteration 

and the final slugging plan has a total benefit of 38. 

                         

      (a) 1st  step                 (b)  2nd   step               (c) 3rd  step  

Fig. 7 Running example of Greedy-AVG-Benefit heuristic 

For the example shown in Fig. 5, Greedy-AVG-Benefit is 

coincidentally optimal. But the greedy heuristics cannot always 

guarantee the optimal solution. For example, neither heuristics is 

optimal for the example shown in Fig. 8, assuming that the size 

of each node is 1. 

 

Fig. 8 An example for which heuristics are sub-optimal 

3.6 Dynamic Slugging  
The basic and constrained slugging problems that we have 

discussed are presented in a static context where all trips are 

known before the calculation of the slugging plan and the 

slugging plan is only calculated once. In this section, we discuss 

how to deal with the slugging problem in a dynamic context 

where the computation of a slugging plan is performed many 

times on the fly as the announcements of trips are continuously 

arriving. 

Fig. 9 illustrates an instance of the dynamic slugging problem 

that involves five trips. The announcement of each trip is 

depicted by a circle and the start time of each trip is depicted by 

a diamond. On the one hand, it is necessary that there exists a 

temporal gap between the announcement and the start time for 

each trip; otherwise (i.e. if trips start at the same time when they 

are announced) there will be no room for ridesharing. On the 

other hand, such a temporal gap may be small (a few minutes) 

since these trips are dynamically generated. In the extreme case 

where these temporal gaps are huge (e.g. hours or even a day), 

the dynamic problem then degenerates to the static problem. 

Here we assume that the temporal gap between the 

announcement and trip start time is the same for all trips and 

denote this number by  . In other words, each trip is announced 

  time units before its start-time. 

 

Fig. 9 The dynamic slugging problem 

As in the static case, the objective of the dynamic problem is 

maximizing the total benefit. In the dynamic slugging problem, 

the slugging plan is computed and executed every   seconds as 

depicted by the vertical lines in Fig. 9, where   is referred to as 

the decision interval. Now we describe how the overall benefit 

of ridesharing is calculated for the dynamic problem. Once a trip 

is announced, it remains in the input set of the slugging plan 

computation until either of the following events happens: (i) the 

trip is included in the slugging plan as a result of a computation; 

(ii) the start time of the trip is reached (i.e. the trip starts without 

any ridesharing). The aggregate slugging plan (of all trips) is 

simply the union of all slugging plans calculated in each 

decision time point, and thus the overall benefit is computed 

based on the aggregate plan.  

Table 2 An example of the dynamic slugging problem 

 The Set of Trips 

As the Input  

Calculated 

Slugging plan 

Benefit 

First 

computation 
                     1 

Second 

computation 
                              2 

Aggregate                                   
           

3 

Table 2 gives a running example of how the benefit is computed 

in the dynamic context for the example given in Fig. 9. Suppose 
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that the first computation outputs a slugging plan          . 

Since    is not included in the plan and it has not reach its start 

time,    remains in the input set. Suppose that the second 

slugging plan computation yields                   . Therefore, 

the aggregate slugging plan is                            and 

the aggregate benefit is 3, assuming that the benefit of each 

merging is 1.  

The value of   should be tuned carefully in order to maximize 

the benefit of ridesharing. We evaluate the optimal value of   

experimentally and present the results in the next section. 

4 EVALUATION 

4.1 Setting 
We conducted experiments using a taxi GPS trajectory data set 

[13]. The dataset contains real traces from more than five 

thousand taxis in Shanghai during a single day. These taxis have 

been equipped with GPS receivers (one for each). The GPS 

receivers periodically report their current states to a data center 

via GPRS links. Each record has a format <TAXI_ID, 

TIMESTAMP, LONGITUDE, LATITUDE, OCCUPIED>. 

Intuitively, each sequence of consecutive records where the 

OCCUPIED field constantly equals to 1 is an occupied trip. Fig. 

10 shows a TAXI_ID and TIMESTAMP ordered snippet of a 

GPS trajectory data file and the blue rectangle represents an 

occupied trip.  

 

Fig. 10 A snippet of taxi trajectory data that defines a trip 

For our experiments, each such occupied trip defines a trip   as 

follows: the time stamp and the GPS point of the first record in 

the sequence defines the start time and origin of  , respectively; 

the time stamp and the GPS point of the last record in the 

sequence defines the end time and destination of  , respectively; 

the travel time of   then equals to the start time minus the end 

time; the travel distance is the road network distance between 

the origin and destination as obtained via the Google Map API. 

Out of 60 thousand occupied trips extracted from the data set, 

we selected 39 thousand trips which last over 5 minutes. This 

constituted our experimental pool of trips. The average travel 

time and travel distance of these trips is 12.3 minutes and 6.3 

kilometers, respectively.  

We evaluate the DBCSP in all experiments. The benefit of 

ridesharing is measured by the saving in vehicle travel distance. 

To compute the edge set of the slugging graph, we assume that 

all travelers walk at the same speed, denoted by  , and always 

walk along the shortest road path between two locations.  

Table 3 Parameter setting in the experiments 

Notation Definition Default Value 

  travelers’ walking speed 5 km/h 

  travel time delay threshold 20 minute 

  vehicle capacity 3 

  temporal gap between the 

announcement and trip start time  

15 minute 

In all the experiments, we assume that each trip is associated 

with only one traveler and she is willing to be either a passenger 

or driver in the slugging plan. For simplicity, we assume that all 

trips have the same travel time delay threshold, denoted by  ; 

and all cars have the same number of seats, denoted by  . Table 

3 lists default values for the parameters used in our experiments. 

4.2 Upper Bound on the DBCSP  

 

Fig. 11 An upper bound of the DBCSP 

What is the maximum benefit that can be obtained by slugging? 

To answer this question, we obtain an upper bound on the 

benefit of a slugging plan for the DBCSP by relaxing either one 

of the two constraints imposed by the definition of slugging plan 

(see Def. 2). Relaxing Condition (ii) and the capacity constraint, 

we get an upper bound, denoted by     
 , by merging each 

passenger trip    into some driver trip    regardless whether or 

not    has been merged into some other trip and regardless 

whether or not    has any available seat left. Relaxing Condition 

(i), we get another upper bound, denoted by     
 , by making 

each driver trip    collect the maximum benefit regardless 

whether or not any its passenger trip    has been merged into 

any driver trip other than   . The smaller value of     
  and 

    
  is used as the final upper bound. Fig. 11 shows the 

algorithm that outputs this bound. It is easy to see that the time 

complexity of the algorithm is        .  

4.3 DBCSP With Varying Travel Delay  
First we evaluate the proposed greedy-based heuristics by fixing 

the vehicle capacity and varying the travel time delay threshold. 

Experiments are performed for various thresholds of travel time 

delay   [    ] minutes with an increment of 5 minutes.  

 

Fig. 12 DBCSP with varying delay thresholds 

As Fig. 12 shows, when the travel time delay threshold is large, 

both the Greedy-Benefit and the Greedy-AVG-Benefit perform 
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consistently close to the upper bound. When      , these 

heuristics have a 59% saving while the upper bound is 70%. 

Given the average distance of these trips is 6.3 kilometers and 

the size of our data set is 39 thousand, the 59% saving in vehicle 

travel distance is 144, 963 kilometers which means the reduction 

of over 4.5 thousand gallons of gasoline and 71 tons of carbon 

dioxide emission. 

When the travel time delay threshold   is small, there is no 

significant difference between the greedy-based heuristics and 

the upper bound. This is because, with a small  , slugging 

opportunities are so rare that the slugging graph is extremely 

sparse. As a result, the graph admits very few possible slugging 

plans.  

                              
           (a)  = 20 minutes                       (b)   = 5 minutes                        

Fig. 13 Visualization of a delay-bounded slugging graph  

For example, Fig. 13 (a) and (b) visualize the delay-bounded 

slugging graph of a subset of trips when   is 20 and 5 minutes, 

respectively. The darker the node’s color is, the larger the node’s 

in-degree (i.e. the number of incoming edges) is. When   is 20 

minutes, the graph is weakly connected. When   is 5 minutes, 

most edges disappear and the graph is scattered into many 

disconnected components, each of which comprises of at most 

four nodes. In this case, it is clear that different algorithms will 

make little difference in the resulting slugging plan. 

4.4 DBCSP with Varying Vehicle Capacity 

 

Fig. 14 DBCSP with varying vehicle capacities 

In this experiment, the vehicle capacity varies, i.e.   [   ] 
while the travel time delay threshold is fixed. Fig. 14 shows the 

performance of different heuristics. The result is consistent to 

that of Fig. 12, i.e., the greedy heuristics perform relatively close 

to the upper bound consistently. In addition, it is shown that the 

saving percentage saturates as the capacity increases, given the 

travel time delay is bounded. This is because the average 

number of incoming edges for each driver trip in the input graph 

is small, which can also be observed from Fig. 13. Even when 

     minutes, as shown in Fig. 13 (a), most driver trips have 

only one or two passenger trips that can be merged into them, 

and the average number of passenger trips for a driver trip is 

1.38. 

4.5 Dynamic DBCSP 
In this experiment, we evaluate the Greedy-Benefit heuristic in a 

dynamic context.   is set to be 3 and   is set to be 15 minutes. 

We set   to be smaller than  , otherwise many trips will start 

without encountering any computation of a slugging plan.  

Since   is 15 minutes, we set the range of   to [10, 880] second 

with an increment of 30 seconds. Fig. 15 (a) shows a clear trend 

of decrease in benefit as the value of   increases. But the figure 

also clearly shows that the benefit fluctuates locally. To see the 

fluctuation more clearly, we further fine tune the value of   

within a relative small range. Fig. 15 (b) shows the benefit 

fluctuating as decision interval   increase from 10 seconds to 

100 seconds with an increment of 10 seconds. The saving rate 

reaches the maximum when   equals to 40 seconds. 

     
      (a)  the decrease trending               (b) fine tune of   

Fig. 15 Impact of the decision interval 

Fig. 15 can be explained by two conflicting factors. On the one 

hand, as   increases, the computation of slugging plans becomes 

less frequent, so travelers of passenger trips cannot start walking 

until the time of the next computation. Therefore, the wasted 

time costs many ridesharing opportunities and thus decreases the 

benefit. On the other hand, as   increases, the input pool of trips 

for each computation of the slugging plan becomes larger and 

thus the benefit may increase. Fig. 15(a) suggests that the first 

factor wins the tug-of-war, so we have an overall decreasing 

trend with local fluctuations. It is also revealed from Fig. 15 that 

the saving rate at its peak (i.e.  =40 seconds) is about 26.6%. In 

contrast, the saving rate of the corresponding static problem with 

the same capacity and delay parameters (i.e.  =3 and      

minutes) is 33%.  

5 SUMMARY AND CONCLUSIONS 

In this paper, we have analyzed slugging, an increasingly 

popular form of ridesharing, probably due to its simplicity. 

Specifically, we have formalized and studied the slugging 

problem. For the unconstrained slugging problem, we have 

proposed a quadratic algorithm to solve it optimally. We prove 

the NP-completeness of its constrained variants. For the 

constrained variant, we proposed heuristics and evaluated them 

on a data set consisting of tens of thousands of real trajectories 

of taxi cabs in Shanghai. The heuristics achieved near-optimal 

travel distance savings. The experimental results suggest that the 

saving in travel distance can reach as much as 59% whereas the 

optimal slugging plan achieves at most 70% savings. Given the 

size of our data set is 39K and the average distance of trips in 

the data set is 6.3 kilometers, the saving equals to 144,963 

kilometers, which means the reduction of over 4.5 thousand 

gallons of gasoline and 71 tons of carbon dioxide emission. In 

addition, for the dynamic slugging problem, we evaluated the 

impact of the decision interval, i.e. how frequently to run the 

slugging algorithm, on the overall benefit. 

In the future, we are going to refine this work towards a working 

system by considering and modeling other practical individual 

preferences such as riders’ social preferences [12]. For the 

dynamic slugging problem, we are going to improve the plan 

calculation algorithm by considering a probabilistic model 
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which looks ahead, i.e. predicts the future announcement of trips. 

The objective function here optimized the overall benefit. It is 

possible to consider individual trips and minimize the walking 

distance and/or travel time delay of an average passenger trip. 

These extensions will be considered in future work. 
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Appendix  

Problem: Given a directed acyclic graph         where V is 

a set of trips and E is the set of edges that is benefit-labeled, and 

a number     , find a subgraph                 that is 

a slugging plan with the benefit at least  . We refer to this 

problem as the Generalized Slugging Problem (GSP). 

Theorem:  GSP is NP-complete. 

Proof: First, it is easy to see GSP is in NP. Now, we prove GSP 

is NP-hard by reducing the set cover problem to GSP.  

The set cover problem is well-known NP-hard. It is defined as 

follows: given a set   of   elements, a family of subsets of  , 

             and a integer  , the question is whether there 

exists a set of at most   of these subsets whose union equals to 

 . If the answer is yes, the problem has a set covering of size  .  

Given an instance of set covering problem, i.e. a universe 

           and a family of   subsets            of  , we 

can build an instance of GSP as follows. First we construct the 

graph         as follows: We define 

                 
    

      
        and construct E as 

follows. If     , add an edge        
  to E for all   

         and          , and add an edge (   
      ) to E 

for all         . Note that   is indeed acyclic. We define 

benefit function   as a constant function  (     )    for all 

 (     )   . We also define benefit threshold        . 

Now we show that the set cover problem has a set covering of 

size   iff there is a subgraph of   that is a slugging plan and has 

a benefit as least of  . 

First, assume that the set cover instance admits a set covering of 

size  , denoted by  , we will now construct a subgraph of  , 

denoted by   , that is a slugging plan and has a benefit as least 

of  , i.e.      , as follows: start with an empty subgraph 

  ; for each node       , choose another node    
 such that 

     and     , then add edge        
  to the edge set of   . 

Since      , the benefit of    increases by 1 for   times. For 

each set     , add edge     
        to the edge set of   , so 

      increases by 1 for at least     times.    is a legitimate 

slugging plan since each         and each    
      is chosen 

to be passenger trips only while each    
      and       is 

chosen to be driver trips only, and no trip is merged into more 

than one other trips. The benefit of    is at least      .  

Conversely, assume that there is a slugging plan    

            of benefit at least      , we now prove that 

there is a set covering of size   by proof of contradiction. 

Suppose there is no set covering    size  . Since for each node 

      , it can contribute at most 1 to the benefit of   , and all 

    ’s collectively contribute at most   to the benefit of   . Let 

us first assume that all   ’s are contributing. Denote by   the set 

of   ’s such that edge     
          . Clearly   is a set cover. 

Since any cover size is larger than   thus      , then there are 

less than     nodes    
 are free to merged into node      , i.e. 

contribute 1 to the benefit of   . Thus            . 

Contradiction. Now assume that not all        contribute to   , 

say edge (      
  is removed from   , the removal may or may 

not set    
 free, i.e. allow     

        add to   . Even 

    
        is added to   , since     

        is previously 

removed from   , and thus the benefit of    will not increase. 

Contradiction remains. Therefore, there must be a set cover of 

size of  .□ 


