

Analysis and Evaluation of the Slugging Form of
Ridesharing*

Shuo Ma

Department of Compute Science

University of Illinois at Chicago

Chicago, U.S.A.

sma21@uic.edu

Ouri Wolfson
Department of Compute Science

University of Illinois at Chicago

Chicago, U.S.A.

wolfson@cs.uic.edu

ABSTRACT

Ridesharing is a promising method to address transportation

problems such as traffic jams and parking. Although traditional

carpooling and taxi ridesharing have been investigated by many,

slugging, as a simple yet effective form of ridesharing, has not

been well-studied. In this paper, we formally define the slugging

problem and its generalization. We provide proofs of their

computational time complexity. For the variants of the slugging

problem that are constrained by the vehicle capacity and travel

time delay, we prove NP-completeness and also propose some

effective heuristics. In addition, we discuss the dynamic

slugging problem. We conducted experiments using a GPS

trajectory data set containing 60 thousand trips. The

experimental results show that our proposed heuristics can

achieve close-to-optimal performances, which means as much as

59% saving in vehicle travel distance.

Categories and Subject Descriptors
J.m [Computer Applications]: Miscellaneous

General Terms
Algorithms

Keywords

ridesharing, slugging, NP-completeness, heuristics.

1 INTRODUCTION

Transportation problems, such as traffic jams, finding parking

slots, hailing a taxi during rush hours, are long-existing

headaches in cities, especially those with a large population.

These problems negatively affect the environment, the economy,

and more importantly average peoples’ daily lives.

*
This research was supported in part by the U.S. Department of

Transportation National University Rail Center (NURAIL), Illinois

Department of Transportation (METSI), National Science Foundation
grants IIS-1213013, CCF-1216096, DGE-0549489.

Different methods have been mainly proposed to tackle these

problems separately. For example, extending the road network is

one common approach to tackle traffic jams; sensors which can

detect the availability of parking spaces [1] are installed to help

drivers find open parking slots more quickly. However, those

solutions often require additional construction or new equipment

added to the existing infrastructures and thus are often expensive

to implement. In addition, their benefits are usually limited to

the specific corresponding problem.

One reason for the above transportation problems is that the

passenger seats of vehicles are under-utilized. Thus, we study

ridesharing as a promising means to improve the utilization of

vehicle ridership and thus reduce the number of cars on the road.

Ridesharing practices have a variety of characteristics. For

example, ridesharing can be either dynamic or static. Dynamic

ridesharing arranges trips on a very short notice. By contrast,

static ridesharing arranges trips that are known in advance,

usually hours or a day or two before the departure time.

Ridesharing can arrange either recurring or ad-hoc trips. Also,

ridesharing can either change or keep the route of the original

trips of drivers. (In case routes are kept, riders need to get on

and off the driver’s car at the origin and destination locations of

the driver instead of their own.) Riders may share the cost with

the driver or not. Table 1 summarizes the characteristics of some

of the most common ridesharing applications.

Table 1 Characteristics of some most common ridesharing

applications

Ridesharing

Applications

Characteristics

Dynamic
Recurring

Trip

Route

Change

Cost

Sharing

taxi

ridesharing
yes no

yes
yes

hitchhiking yes no no no

carpooling no yes/no yes yes

slugging [6] yes/no yes/no
no no/very-

low

In this paper we are interested in one particular ridesharing

form, i.e. slugging. In slugging a passenger walks to the driver’s

origin, boards at the driver’s departure time, alights at the

driver’s destination, then walks from there to the passenger’s

own destination. Thus slugging involves two modes of

transportation, car and walking. Since slugging does not change

any spatio-temporal aspect of the drivers’ original trips, slugging

is the simplest form of ridesharing in the sense of bringing

minimum disruptions to the drivers. Thus it can be offered at

minimum or no-cost to the riders. Compared to other forms of

ridesharing where route change is allowed, e.g. taxi ridesharing

[14], slugging avoids unnecessary complications such as

complex fare mechanism or ridesharing-incurred travel time

delay for drivers (e.g. due to unexpected congestion encountered

on the way to some pickup). Thanks to its simplicity, slugging

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SIGSPATIAL'13, November 05 - 08 2013, Orlando, FL, USA

Copyright 2013 ACM 978-1-4503-2521-9/13/11 $15.00.

http://dx.doi.org/10.1145/2525314.2525365

mailto:wolfson@cs.uic.edu
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2525314.2525365

has already become a common transport mode in some of the

busiest traffic areas in the North America, e.g. auxiliary

interstate highways around urban areas such as Washington

D.C., Bay area, Houston, and other cities [2, 3].

Though currently slugging is mainly used for regular commute

trips, we envision that it can also be applied to ridesharing

scenarios that involve mostly one-time casual trips. For

example, consider a ridesharing website where travelers post

their trips scheduled in the near future. When posting their trip,

travelers may announce their roles in ridesharing: drivers,

passengers, or both (i.e. travelers who have a car can leave the

role to be determined by the website). The website will compute

a slugging plan to group these travelers and decide the driver

and passengers for each group. The only attached string for a

passenger is that she needs to walk to the origin location of the

driver’s trip before the driver departs, and she needs to walk

from her driver’s destination to her own destination. Drivers are

willing to accept such a ride for a various reasons, such as

environmental-friendliness, companionship, the privilege of

driving on HOV lanes, reduced or waived toll on highways,

small payment, etc.

The increasing popularity of bike sharing programs indicates

that people are open to alternative modes of transportation,

particularly the ones like slugging that involve physical activity

(i.e. walking). The motor industry is also actively promoting

shared services like slugging, as stated in the “Blueprint for

Mobility” vision recently released by Ford company.

To the best of our knowledge, our work is the first one to study

slugging from a computational perspective. We define and study

the basic slugging problem and its variants that are constrained

by the vehicle capacity and travel time delay. We also discuss

the dynamic version of the slugging problem. The experimental

results show that our proposed heuristics achieve 59% saving in

vehicle travel distance. Given the size of our real data set is 39

thousand trips and the average distance of a trip in the data set is

6.3 kilometers, the saving equals to 144,963 kilometers, which

means the reduction of over 4.5 thousand gallons of gasoline

and 71 tons of carbon dioxide emission.

In summary, the contributions of the paper include:

 We formalize the slugging problem using a graph
abstraction. We propose a quadratic algorithm to solve the
slugging problem.

 We define a generalization of the slugging problem and
prove its NP-completeness.

 For the variants of the slugging problem that are constrained
by the vehicle capacity and travel time delay, we prove their
NP-completeness and propose effective heuristics. Via
extensive experiments, we demonstrate that the proposed
heuristics have near-optimal performance in terms of the
saving in vehicle travel distance.

 We also consider the dynamic slugging problem and
evaluate it via experiments; in the dynamic problem the trips
are announced incrementally.

The remainder of the paper is organized as follows. In Section 2,

we review existing literature related to our work. Section 3

formally defines and studies the slugging problem, its

generalization, its constrained variants, its dynamic version, and

heuristics for the intractable variants. We evaluate the proposed

heuristics in Section 4.

2 RELATED WORKS

In this section we review existing works on three problems that

are relevant to slugging, i.e. taxi-ridesharing, carpooling and the

dial-a-ride. Similar to slugging, all these problems are

transportation problems that involve pickups and drop-offs.

Unlike slugging where passengers change their origin and

destinations in order to join the trip of drivers, in all three

problems, drivers change their route in order to pick up and

deliver the passengers. Both taxi ridesharing and carpooling are

specific forms of ridesharing. The difference is that each driver

in carpooling usually is associated with her own trip, while in

taxi ridesharing this is not the case. Also taxi ridesharing usually

needs appropriate pricing mechanisms to incite taxi drivers. The

dial-a-ride problem slightly differs from carpooling as all

vehicles start a trip and return to the same location called the

depot.

2.1 Taxi Ridesharing
There have been a number of works on the taxi ridesharing

application [14, 15, 16, 17]. These works modeled the taxi

ridesharing problem by considering different constraints. In

contrast to slugging, the routes of driver trips, i.e. taxis in this

case, change to accommodate passengers. Among these works,

some (see [17]) only considered vehicle capacity constraints,

while the rest also considered time window constraints, i.e.

travelers need to depart and arrive in given time intervals. [15] is

the only paper that models monetary constraints, which are used

to guarantee monetary incentives for both taxi drivers and taxi

riders. These works on taxi ridesharing mainly concern the

efficiency and scalability of ridesharing, i.e. how fast a query

can be answered and how many queries the system can handle.

In contrast, we focus on the effectiveness of slugging as a

whole, e.g. the saving in vehicle travel distance, while the

existing works on taxi ridesharing often consider the

effectiveness of ridesharing from the perspective of a single

request, e.g. reducing the increase in vehicle travel distance for

every new request [14].

2.2 Carpooling
There have been many works on modeling and analyzing the

traditional carpooling problem where drivers need to change

their routes due to ridesharing. In [7], the authors modeled a

carpooling problem and proposed an exact method based on

Lagrangean column generation to solve it optimally. Since the

carpooling problem is NP-hard, the exact approach practically

only works for small instances of the carpooling problem,

where there are at most a few hundred trips. For large instances

with hundreds of thousands trips, many heuristics have been

proposed [4, 18]. These heuristics are applied to compute the

best route of a vehicle for a given set of requests, since the route

of drivers is allowed to change. As such route changes do not

occur in slugging, these heuristics are not applicable.

Despite being a sibling of the carpooling problem, the slugging

problem has so far drawn little attention from researchers. There

have been some reports on the current state of slugging

operations (see [8]). But our work is the first formal study of

slugging from a computational viewpoint.

2.3 Dial-A-Ride Problem (DARP)
The Dial-A-Ride Problem (DARP) [5], a.k.a. the Vehicle

Routing Problem with Time Windows in the operation research

literature, is closely relevant to the carpooling problem. The

DARP can be considered the carpooling problem with additional

restrictions (e.g. all vehicles are required to start any trip from a

depot location and return to the depot after the trip). In contrast

to slugging, vehicle routes are manipulated to accommodate

passengers’ origin and destination locations. DARP is proved to

be NP-hard. Cordeau et al. summarizes the state-of-the-art

heuristics for DARP [9].

3 SLUGGING

We introduce the concept of slugging in Sec. 3.1. We formally

define the basic slugging problem in Sec. 3.2. Next we introduce

and discuss the vehicle-capacity constrained slugging problem

in Sec. 3.3, and the delay bounded slugging problem in Sec. 3.4.

Then we describe the slugging problem with both constraints

and propose heuristics for it in Sec. 3.5. Finally, we discuss the

dynamic slugging problem and its parameters in Sec. 3.6.

3.1 Preliminaries
In slugging, some travelers abandon their original trips and join

the trip of other travellers, the drivers, without asking the drivers

to change their route or their departure time. To be more specific,

consider two travellers and , and their respective trips and

 , each of which is described by an origin destination pair and

a start time at which the traveller intends to depart. Assume that

traveller abandons her trip and joins ’s trip. In this case we

say that is merged into . More specifically, traveller

executes her new trip as follows: at the start time of she

walks to the origin location of trip , then she waits until the

start time of (if arrives later than the start time of then

she cannot join), she shares the ride with , she alights at the

destination of and finally she walks from there to her own

destination. Clearly, the only impact that traveller has on trip

 is the occupation of one seat in B’s vehicle. In other words,

there is no disruption to any spatio-temporal aspect of .

In the above example, there is only one traveler associated with

each trip. In general, each trip can be associated with a party of

multiple travelers who cannot be separated during the trip

(assuming that the size of the party is always smaller than the

number of seats in a vehicle).

As shown in the above example, one necessary condition for trip

 to be able to be merged into trip is that the travellers of trip

 can walk from the origin of at the start time of and arrive

at the origin of trip before the start time of (assuming a

constant walking speed and taking the shortest path). Consider a

set of trips where the travelers of each trip

 announce their willingness to serve as: driver, or passenger,

or both. Then for each trip pair and , where the travelers of

 have announced their willingness to be passengers, and the

travelers of have announced their willingness to be drivers,

we can compute whether or not can be merged into . To do

that, a preprocessing stage is performed. At this stage, a map is

used to compute the shortest path between the respective origins.

Specifically, for such a trip pair , the shortest path

between the origins of the two trips is computed. Based on the

calculated shortest path, a presumed walking speed, and the start

times of and , we can readily determine whether or not trip

 can be merged into . If so, we say that pair is a

mergable pair where is a passenger trip and is a driver trip.

For a mergeable pair , the shortest path between the

destinations of and is also calculated in order to determine

the travel time delay for the passenger trip . The travel time

delay for passenger trips imposes a natural constraint on the

slugging problem, which will be discussed further in Sec. 3.4

and 3.5.

Now that we have defined a mergeable pair, for a given set of

trips, consider the set of all mergeable pairs represented as a

graph S. Assuming that the trip start-times are distinct, we

observe that S possesses the following two properties.

First, S is acyclic. Suppose there exists a cycle of mergeable

pairs , , …, in . Mergeable pair

 means that the start time of is smaller than that of

 . However, the first n-1 pairs of the cycle collectively tell us

that the start time of should be smaller than that of .

Contradiction. In other words, S is acyclic because the start-

times of the trips on a path in S are increasing.

Second, S is transitive (i.e. if () and),

then . If the travelers of can arrive at the origin of

 before the start time of , and the travelers of can arrive at

the origin of before the start time of , then the travelers of

 definitely can arrive at the origin of before the start time of

 as well by: first arriving at the origin of and then taking the

same path used by the travelers of to the origin of ; this

assumes that all travelers have the same walking speed.

3.2 Basic Slugging Problem
Slugging is a graph problem. We formulate it as follows.

Definition 1 A slugging graph , is a directed acyclic

graph where is a set of trips and is set of

directed edges between nodes that is transitive, i.e. if ()

 and () , then .

Note that a node in a slugging graph may not have any incident

edges. A node with no incident edge can exist as it represents a

trip that cannot be merged into any other trip, or into which no

other trip can be merged. For example, a trip geographically

bounded in the northeastern corner of a city may become such a

disconnected node if all other trips are bounded in the

southwestern corner of the city, and they all start at

approximately the same time.

A slugging graph indicates which trips can be merged into

others. However, although a trip can be merged into multiple

other trips, in a concrete slugging plan it is merged into only one

other trip. In other words, a slugging graph gives the possible

pairs of trips that can be combined, whereas a slugging plan

gives an actual combination that will be executed in practice. So,

based on a slugging graph, a slugging plan can be constructed.

Intuitively, a slugging plan is a subgraph of the slugging graph

that gives the driver and the passengers of each car.

Definition 2 Given a slugging graph , a slugging

plan , is a subgraph of that satisfies the

following conditions: (i) () there is no such

that ; and (ii) () there does not exist

 such that .

Intuitively, condition (i) states that any trip can be merged

into at most one other trip. Condition (ii) states that a trip can

be merged into another trip only if there is no other trip

that has been merged into . These constraints precisely reflect

the nature of the slugging problem: each trip is either a

ridesharing provider, i.e. providing a car to be shared with other

riders, or a ridesharing consumer, i.e. taking exactly one ride

provided by a provider.

Fig. 1 gives an illustrative example of slugging plans. Subfigure

(a) shows a slugging graph of four trips. Subfigures (b) (c) (d)

(e) show all slugging plans that are maximal, i.e. cannot include

more edges. For instance, consider the slugging plan shown in

subfigure (b). Given that already exists, neither edge

 nor edge can be added because the addition

violates Condition (i), and neither edge nor edge

 can be added because either addition violates Condition

(ii).

Fig. 1 An illustrative example of slugging plans

A mergable pair in a slugging plan means that is

merged into . That is to say, is simply eliminated while

there is no change to other than the fact that the number of

passengers in ‘s vehicle is increased. Therefore the benefit of

merging into only depends on the passenger trip and

thus can be measured by some attribute of , e.g. the vehicle

travel distance that is saved. In other words, the benefit of

merging into another trip is independent of the other trip. The

implication is that if an edge is labeled by the benefit of merging

the two trips at its endpoints, then all the edges exiting a node

have the same benefit. Formally, we define the benefit of a

slugging graph as follows.

Definition 3 A slugging graph is called benefit-

labeled if each edge () is associated with a label

 () , referred to as the benefit of edge , and

the benefits of all edges outgoing of the same node are identical,

i.e. such that () and ,

 () .

A straightforward example of a benefit function is the constant

function () for any mergeable pair () .

Intuitively, this benefit function measures the number of trips

saved by ridesharing. Another example of a benefit function is:

 () equals to the vehicle travel distance of trip .

Intuitively, this benefit function measures the saving in vehicle

travel distance.

Fig 2 An example of a benefit function for a ridesharing

form in which driver trips are changed

Definition 3 essentially says that the benefit of a mergeable pair

is independent of the driver trip. Note this characteristic is

unique to slugging and is not applicable to other ridesharing

forms. For example, if we consider a ridesharing form where the

route of driver trips can be changed, such as taxi ridesharing,

then a benefit function that measures the saving in the total

travel distance is dependent on the driver trip. Fig 2 shows an

illustrative example of this case. Fig 2 (a) shows three trips with

their travel distances, and the distances between the origins and

destinations of these trips. Fig 2 (b) and (c) show a trip after

merging into trip and , respectively, resulting

 and . In other words, since the

passenger is picked up at her origin and dropped off at her

destination, the total saving in travel distance depends on the

driver’s origin and destination.

The next definition gives the benefit of a ride-sharing plan as the

total benefit of its edges.

Definition 4 Given a slugging graph that is benefit-

labeled, the benefit of a slugging plan , denoted by

 , is the sum of the benefits of the edges in . That is to

say, ∑ ()()
.

Definition 4 is also applicable to slugging only, but not to other

ridesharing forms. To illustrate this point, consider again the

example shown by Fig 2. The benefit of merging into is 3,

as shown by Fig 2 (d); and the benefit of merging into is 2,

as shown by Fig 2 (b). However, as shown by Fig 2 (e), the

benefit of slugging plan is 3 rather than 5,

which is the sum of the benefit of the two pairs in the plan.

Problem 1 Given a slugging graph that is benefit-

labeled, find a subgraph that is a slugging

plan and has the maximum benefit. We refer to this as the

Slugging Problem (SP).

Theorem 1 SP can be solved in time.

Proof A trip is called a sink trip if its node has no

outgoing edges. Due to the fact that G is acyclic and transitive,

for each non-sink trip , there exists at least one sink trip

 such that .

Now we can construct the optimal slugging plan for SP using

the algorithm as shown by Fig. 3. The in Fig. 3 merges each

trip that is not a sink trip into any sink trip such that

 .

Fig. 3 Quadratic algorithm for SP

It is not hard to see that the constructed is indeed

optimal. First is constructed such that each passenger trip has

been merged into some driver trip. And since that the benefit of

merging a passenger trip is the same regardless which driver trip

the passenger trip is merged into, therefore, the benefit of is

maximum

T3

T2 T1

T3

T2 T1

T3

T2 T1

(a) a slugging graph

T3

T2 T1

(b) (c) (d)

T4 T4 T4
T4

(e)

T3

T2 T1

T4

1 112
(a) Three trips T1, T2, T3 with distances

being 12, 5, 2, respectively

2

1
1

2 2

3

2 5

3 2

2 33

(e) Benefit of ridesharing plan B{(T2,T1), (T3,T1)}=(12+5+2)-16=3

(c) B(T3, T2)=(5+2)-7=0

1 1

2
5

(b) B(T3, T1)=(12+2)-12=2

33

origin of trip i

destination of trip i

shortest path between locations

 path of a merged trip i

i

54

545

5

4

4

5

1

2 2

33 2
4

(d) B(T2, T1)=(12+5)-14=3

1
1

2 2

4

55 1

1

Let us consider the time complexity of Algorithm 1. As shown

by Line 1~6, trips that are sinks can be identified in time.

From Line 8~10, the slugging plan is calculated. Since there are

at most non-sink trips, and for each non-sink trip it takes

at most time to find a sink trip into which the non-sink

trip can be merged, then the time complexity of Line 8~11 is

 as well. Since is , the time complexity of

Algorithm 1 is . □

The transitivity of the slugging graph relies on the assumption

that travelers walk at the same speed. If we relax this

assumption, then the slugging graph is no longer transitive. This

relaxation leads to a generalization of SP in which the graph is

only acyclic. We prove in the appendix that this generalization

of SP is NP-complete.

3.3 Capacitated Slugging
The basic slugging problem may work well for the case where

vehicles have a large number of seats, such as (mini)buses. The

reason is that the problem does not constrain the number of

passengers that a driver can take. The problem becomes more

general if we consider a vehicle capacity constraint, given the

fact that private vehicles usually have a few seats. Thus we

introduce the slugging problem with the capacity constraint.

As mentioned in Sec. 3.1, a trip can be associated with multiple

travelers who ride together. In other words, these travelers have

the same origin, destination, and start time. Therefore, each

passenger trip in the graph should be tagged with a label which

represents the number of travelers associated with the trip. We

do so as follows.

Definition 5 A slugging graph is called no-of-

travelers-labeled if each node that represents a

passenger trip (i.e. has outgoing edges) is associated with a

number , referred to as the size of node .

Each driver trip also has a number of seats available for

passengers. In other words, each driver trip is associated with a

number of travelers. However, it may still have available seats in

the car to take slugging passengers. This availability is

represented in the slugging graph as follows.

Definition 6 A slugging graph G=(V, E) is called no-of-

available-seats labeled if each node that represents a

driver trip (i.e. has incoming edges) is associated with a label

 , referred to as the capacity of node

Definition 7 A slugging plan is capacitated if each

driver trip in takes at most additional passengers, i.e.

 ()
 .

Now we define the Capacitated Slugging Problem as follows.

Problem 2 Given a slugging graph that is no-of-

travelers-labeled, no-of-available-seats-labeled and benefit-

labeled, and a number , find a subgraph
 that is a capacitated slugging plan with the

benefit at least . We refer to this as the Capacitated Slugging

Problem (CSP).

Theorem 2 CSP is NP-Complete.

Proof: First, it is easy to see CSP is in NP. That is, given a

subgraph of , denoted by , we can verify whether is a -

capacitated slugging plan and if so, whether its benefit is at least

 . Now, we prove CSP is NP-hard by reducing the 0/1

Knapsack Problem to CSP.

The 0/1 Knapsack Problem is known to be NP-hard [11]. The

decision version of the problem is defined as follows: given a set

of items, and a knapsack of capacity . Each

item has a size and a value . The question is whether or

not we can pack items worth at least into the knapsack without

exceeding its capacity and without splitting items.

Given an instance of 0/1 Knapsack Problem, we can build an

instance of CSP as follows. First we construct a slugging graph

 as follows. Let the node set

 . Construct the edge set E as follows. For

each node
 , we add an edge

 to E. Note

that the edge set
 is indeed transitive and acyclic.

Therefore, is a slugging graph. Next we label the nodes of G.

Each node
 is labeled with a size equals to . The capacity

of node
 does not matter since they can only be passenger

trips. Node is labeled with a size equals to 1 and a capacity

equals to . Next we label the edges of G with a benefit.

Each edge
 is label with a benefit

 equals to

 , for . Now is slugging graph that is no-of-

travelers-labeled, no-of-available-seats-labeled and benefit-

labeled.

It can readily be shown that the constructed instance of CSP has

a capacitated slugging plan with a benefit of if and only if the

instance of 0/1 Knapsack Problem can pack items worth at least

 into the knapsack.□

3.3.1 A special case of CSP

A special case of CSP where the capacity of each car is , and

all trips are associated with only one traveler, is polynomial-time

solvable. We prove it formally as follows.

Problem 3 Given a slugging graph that is no-of-

travelers-labeled where the size of each passenger node is 1,

and no-of-available-seats-labeled where the capacity of each

driver node is 1, and benefit-labeled, find a subgraph

 that is a capacitated slugging plan with the

maximum benefit. We refer to this as the 1-traveler-1-

availability Capacitated Slugging Problem (1t1CSP).

Theorem 3 The 1t1CSP is solvable in time.

Proof We will show that the 1t1CSP is equivalent to the

maximum weighted matching problem. A matching of a graph is

a set of pairwise vertex-disjoint edges. The maximum weighted

matching problem is defined as: given an edge-weighted

undirected graph , find the matching where the

sum of the weight of the edges in it is maximum.

Given an slugging graph of the 1t1CSP, we

construct a weighted undirected graph as follows: ,

 , the weight of an edge equals to the benefit of

e. Since E is acyclic, contains no self-loops. Thus, each

matching of is a legitimate capacitated slugging plan and

the sum of the weight of edges in equals to the benefit of the

slugging plan.

Since the maximum weighted matching problem is solvable in

polynomial time [10], we can also solve the 1t1CSP in

polynomial time using the same algorithm. The running time of

this algorithm is . □

3.4 Delay-Bounded Slugging
In addition to the vehicle capacity constraint, it is also natural to

constrain SP by a bounded travel time delay. As mentioned in

Sec 3.1, in the preprocessing stage (that uses a map), for each

mergeable pair (), we compute the travel time delay for the

passenger trip , denoted by . Intuitively, is the delay

incurred by due to the fact that needs to walk to/from ’s

origin/destination, and possibly wait for to start. More

specifically, the delay equals to the difference: (the arrival time

of when the passengers ride with (i.e. walk to/from

origin/destination of)) – (the arrival time of when the

passengers ride in their own vehicle from their origin directly to

their destination). Now we define the travel time delay

representation in the graph.

Definition 8 A slugging graph is called delay-

labeled if each edge is associated with a label ,

which represents the travel time delay of with respect to

().

The travelers of each trip can specify a threshold which

represents their maximum tolerable travel time delay. We define

the delay threshold representation in the graph.

Definition 9 A slugging graph is called delay-

threshold-labeled if each node is associated with a label

 , referred to as the delay threshold of node .

The travel time delay constraint means that all edges outgoing of

a node with a travel time delay exceeding the delay threshold of

the node need to be filtered out. Thus we define a delay-

bounded-slugging-graph that satisfies this property.

Definition 10 Given a slugging graph that is delay-

labeled and delay-threshold labeled, the delay-bounded

slugging graph , is a subgraph of G where

 , .

Now we introduce the delay-bounded slugging problem.

Problem 4 Given the delay-bounded slugging graph that is

benefit-labeled, and a number , find a subgraph of

that is a slugging plan with a benefit of at least .

3.5 Delay Bounded and Capacitated

Slugging and Its Heuristics
In practice, both the capacity constraint and the travel time delay

threshold constraint are important. Thus, we combine them to

form the following problem.

Problem 5 Given the delay-bounded slugging graph
 that is no-of-travelers-labeled, no-of-available-seats-

labeled, and benefit-labeled, and a number , find a

subgraph that is a capacitated slugging

plan with a benefit of at least . We refer to this as the Delay

Bounded and Capacitated Slugging Problem (DBCSP).

Theorem 4 The DBCSP is NP-Complete.

Proof Obvious, since DBCSP is a generalization of CSP. □

Since the DBCSP is NP-Complete, we propose two greedy

heuristics for the DBCSP, namely Greedy-Benefit and Greedy-

AVG-Benefit. Both heuristics work in an iterative way. That is,

each heuristic greedily chooses one driver trip based on

certain criteria. Intuitively, Greedy-Benefit chooses the driver

trip that collects the maximum benefit of its incoming edges,

and Greedy-AVG-Benefit chooses the driver trip that collects the

maximum average benefit of its incoming edges.

To compute the maximum benefit and the maximum average

benefit, we need to solve an instance of the 0/1 knapsack

problem for each driver trip. Each driver trip and all its

passenger trips where () , form an instance of the

0/1 knapsack problem (see proof of Theorem 2). That is, trip

is considered the knapsack with a capacity equals to and

each is considered an item with a value equal to ()

and a size equal to .

Since the 0/1 knapsack program is NP-complete, we employ an

approximation algorithm called Efficiency Greedy (EG)

approximation algorithm [11]. The EG algorithm outputs the

larger between the following two numbers: (i) the total value

when packing items into the knapsack in non-increasing order of

their efficiencies (i.e. the ratio of value to size); (ii) the value of

the single item which is most valuable among all items. It is

known that the EG algorithm has a worst-case performance

bound of 2 [11].

Intuitively, at each iteration the Greedy-Benefit heuristic applies

the EG algorithm to each driver trip, and selects the driver trip

with the maximum benefit computed by EG. This trip and its

passengers are eliminated from the slugging graph, and then the

next iteration is started. The Greedy-AVG-Benefit is identical,

except that the driver trip selected is the one with the (maximum

benefit / number of passenger trips selected by EG).

Fig. 4 Heuristics for the DBCSP

More precisely, denote by the result of the instance

of the 0/1 knapsack program formed for trip output by the

EG algorithm. Denote by the number of passenger trips that

are selected for driver trip by the EG algorithm. Then, in

each iteration, the Greedy-Benefit and Greedy-AVG-Benefit

heuristic select the driver trip with the maximum and

 , respectively. Once a driver trip is picked, the

set of passenger trips that are merged into are also

determined by the EG algorithm. Next the delay-bounded

slugging graph is updated by removing the nodes of the driver

and its passengers, and the edges that touch upon them. This

update completes an iteration, and a new iteration then starts.

The algorithm terminates when the slugging graph becomes

empty.

Fig. 4 summarizes the algorithm for the proposed heuristics.

Lines 6~7 calculates for every driver trip in an

iteration. Since there are driver trips in an iteration, and

the computation of for each by the EG algorithm

runs in , therefore, the selection of the driver trip

in an iteration runs in . The updating process

takes for each selected trip and takes in total, as

there are at most trips selected in an iteration. Since there are

 iterations, the time complexity of the greedy heuristics is

 .

To illustrate the Greedy-Benefit and Greedy-AVG-Benefit

heuristics, please consider the delay-bounded slugging graph

shown in Fig. 5 (a). The number on each edge represents its

benefit. Assume that the capacity and the size of each node is 4

and 1, respectively. The optimal slugging plan for this simple

example is shown in Fig. 5 (b), with a benefit of 38.

(a) a delay-bounded (b) the corresponding optimal

 slugging graph slugging plan

Fig. 5 An example of delay-bounded slugging graph

Now we generate a slugging plan using the greedy-based

heuristics. Let us first consider the Greedy-Benefit heuristic. In

the first iteration, is chosen as the driver trip because the

maximum benefit that it can collect from its incoming edges is

the largest among all driver trips. Then the graph is updated by

deleting all edges associating with any of . In the next

iteration is chosen as the driver trip. The graph then updates

again and becomes empty of edges. The edges selected in each

step are shown in Fig. 6 and the benefit of the resulting slugging

plan is 33.

 (a) edges selected in 1st step (b) edges selected in 2nd step

Fig. 6 Running example of the Greedy-Benefit heuristic

In contrast, Greedy-AVG-Benefit chooses in the first iteration

because has the largest average benefit of passenger trips.

Then is selected in the second iteration and is selected in

the third iteration. Fig. 7 shows edges selected in each iteration

and the final slugging plan has a total benefit of 38.

 (a) 1st step (b) 2nd step (c) 3rd step

Fig. 7 Running example of Greedy-AVG-Benefit heuristic

For the example shown in Fig. 5, Greedy-AVG-Benefit is

coincidentally optimal. But the greedy heuristics cannot always

guarantee the optimal solution. For example, neither heuristics is

optimal for the example shown in Fig. 8, assuming that the size

of each node is 1.

Fig. 8 An example for which heuristics are sub-optimal

3.6 Dynamic Slugging
The basic and constrained slugging problems that we have

discussed are presented in a static context where all trips are

known before the calculation of the slugging plan and the

slugging plan is only calculated once. In this section, we discuss

how to deal with the slugging problem in a dynamic context

where the computation of a slugging plan is performed many

times on the fly as the announcements of trips are continuously

arriving.

Fig. 9 illustrates an instance of the dynamic slugging problem

that involves five trips. The announcement of each trip is

depicted by a circle and the start time of each trip is depicted by

a diamond. On the one hand, it is necessary that there exists a

temporal gap between the announcement and the start time for

each trip; otherwise (i.e. if trips start at the same time when they

are announced) there will be no room for ridesharing. On the

other hand, such a temporal gap may be small (a few minutes)

since these trips are dynamically generated. In the extreme case

where these temporal gaps are huge (e.g. hours or even a day),

the dynamic problem then degenerates to the static problem.

Here we assume that the temporal gap between the

announcement and trip start time is the same for all trips and

denote this number by . In other words, each trip is announced

 time units before its start-time.

Fig. 9 The dynamic slugging problem

As in the static case, the objective of the dynamic problem is

maximizing the total benefit. In the dynamic slugging problem,

the slugging plan is computed and executed every seconds as

depicted by the vertical lines in Fig. 9, where is referred to as

the decision interval. Now we describe how the overall benefit

of ridesharing is calculated for the dynamic problem. Once a trip

is announced, it remains in the input set of the slugging plan

computation until either of the following events happens: (i) the

trip is included in the slugging plan as a result of a computation;

(ii) the start time of the trip is reached (i.e. the trip starts without

any ridesharing). The aggregate slugging plan (of all trips) is

simply the union of all slugging plans calculated in each

decision time point, and thus the overall benefit is computed

based on the aggregate plan.

Table 2 An example of the dynamic slugging problem

 The Set of Trips

As the Input

Calculated

Slugging plan

Benefit

First

computation
 1

Second

computation
 2

Aggregate

3

Table 2 gives a running example of how the benefit is computed

in the dynamic context for the example given in Fig. 9. Suppose

T1

T2
T3

T4

T5

T6

10
6

10

7

6

T7 11

T1

T2
T3

T4

T5

T6

10

10

7

T7 11

T1

T2
T3

10

10 T4

T5

T67

6

T5T7 11 T1

T2
T3

10

10

T4 T67

T2 10T1 6 T4T3 6

Trip announcement Trip start time
time

T1

T2

T3

T4

T5

computation computation

that the first computation outputs a slugging plan .

Since is not included in the plan and it has not reach its start

time, remains in the input set. Suppose that the second

slugging plan computation yields . Therefore,

the aggregate slugging plan is and

the aggregate benefit is 3, assuming that the benefit of each

merging is 1.

The value of should be tuned carefully in order to maximize

the benefit of ridesharing. We evaluate the optimal value of

experimentally and present the results in the next section.

4 EVALUATION

4.1 Setting
We conducted experiments using a taxi GPS trajectory data set

[13]. The dataset contains real traces from more than five

thousand taxis in Shanghai during a single day. These taxis have

been equipped with GPS receivers (one for each). The GPS

receivers periodically report their current states to a data center

via GPRS links. Each record has a format <TAXI_ID,

TIMESTAMP, LONGITUDE, LATITUDE, OCCUPIED>.

Intuitively, each sequence of consecutive records where the

OCCUPIED field constantly equals to 1 is an occupied trip. Fig.

10 shows a TAXI_ID and TIMESTAMP ordered snippet of a

GPS trajectory data file and the blue rectangle represents an

occupied trip.

Fig. 10 A snippet of taxi trajectory data that defines a trip

For our experiments, each such occupied trip defines a trip as

follows: the time stamp and the GPS point of the first record in

the sequence defines the start time and origin of , respectively;

the time stamp and the GPS point of the last record in the

sequence defines the end time and destination of , respectively;

the travel time of then equals to the start time minus the end

time; the travel distance is the road network distance between

the origin and destination as obtained via the Google Map API.

Out of 60 thousand occupied trips extracted from the data set,

we selected 39 thousand trips which last over 5 minutes. This

constituted our experimental pool of trips. The average travel

time and travel distance of these trips is 12.3 minutes and 6.3

kilometers, respectively.

We evaluate the DBCSP in all experiments. The benefit of

ridesharing is measured by the saving in vehicle travel distance.

To compute the edge set of the slugging graph, we assume that

all travelers walk at the same speed, denoted by , and always

walk along the shortest road path between two locations.

Table 3 Parameter setting in the experiments

Notation Definition Default Value

 travelers’ walking speed 5 km/h

 travel time delay threshold 20 minute

 vehicle capacity 3

 temporal gap between the

announcement and trip start time

15 minute

In all the experiments, we assume that each trip is associated

with only one traveler and she is willing to be either a passenger

or driver in the slugging plan. For simplicity, we assume that all

trips have the same travel time delay threshold, denoted by ;

and all cars have the same number of seats, denoted by . Table

3 lists default values for the parameters used in our experiments.

4.2 Upper Bound on the DBCSP

Fig. 11 An upper bound of the DBCSP

What is the maximum benefit that can be obtained by slugging?

To answer this question, we obtain an upper bound on the

benefit of a slugging plan for the DBCSP by relaxing either one

of the two constraints imposed by the definition of slugging plan

(see Def. 2). Relaxing Condition (ii) and the capacity constraint,

we get an upper bound, denoted by
 , by merging each

passenger trip into some driver trip regardless whether or

not has been merged into some other trip and regardless

whether or not has any available seat left. Relaxing Condition

(i), we get another upper bound, denoted by
 , by making

each driver trip collect the maximum benefit regardless

whether or not any its passenger trip has been merged into

any driver trip other than . The smaller value of
 and

 is used as the final upper bound. Fig. 11 shows the

algorithm that outputs this bound. It is easy to see that the time

complexity of the algorithm is .

4.3 DBCSP With Varying Travel Delay
First we evaluate the proposed greedy-based heuristics by fixing

the vehicle capacity and varying the travel time delay threshold.

Experiments are performed for various thresholds of travel time

delay [] minutes with an increment of 5 minutes.

Fig. 12 DBCSP with varying delay thresholds

As Fig. 12 shows, when the travel time delay threshold is large,

both the Greedy-Benefit and the Greedy-AVG-Benefit perform

5 10 15 20
0%

10%

20%

30%

40%

50%

60%

70%

S
av

in
g

in
 V

eh
ic

le
 T

ra
ve

l D
is

ta
nc

e

Travel Time Delay Threshold (minutes)

 Upper-Bound

 Greedy-Benefit

 Greedy-AVG-Benefit

consistently close to the upper bound. When , these

heuristics have a 59% saving while the upper bound is 70%.

Given the average distance of these trips is 6.3 kilometers and

the size of our data set is 39 thousand, the 59% saving in vehicle

travel distance is 144, 963 kilometers which means the reduction

of over 4.5 thousand gallons of gasoline and 71 tons of carbon

dioxide emission.

When the travel time delay threshold is small, there is no

significant difference between the greedy-based heuristics and

the upper bound. This is because, with a small , slugging

opportunities are so rare that the slugging graph is extremely

sparse. As a result, the graph admits very few possible slugging

plans.

 (a) = 20 minutes (b) = 5 minutes

Fig. 13 Visualization of a delay-bounded slugging graph

For example, Fig. 13 (a) and (b) visualize the delay-bounded

slugging graph of a subset of trips when is 20 and 5 minutes,

respectively. The darker the node’s color is, the larger the node’s

in-degree (i.e. the number of incoming edges) is. When is 20

minutes, the graph is weakly connected. When is 5 minutes,

most edges disappear and the graph is scattered into many

disconnected components, each of which comprises of at most

four nodes. In this case, it is clear that different algorithms will

make little difference in the resulting slugging plan.

4.4 DBCSP with Varying Vehicle Capacity

Fig. 14 DBCSP with varying vehicle capacities

In this experiment, the vehicle capacity varies, i.e. []
while the travel time delay threshold is fixed. Fig. 14 shows the

performance of different heuristics. The result is consistent to

that of Fig. 12, i.e., the greedy heuristics perform relatively close

to the upper bound consistently. In addition, it is shown that the

saving percentage saturates as the capacity increases, given the

travel time delay is bounded. This is because the average

number of incoming edges for each driver trip in the input graph

is small, which can also be observed from Fig. 13. Even when

 minutes, as shown in Fig. 13 (a), most driver trips have

only one or two passenger trips that can be merged into them,

and the average number of passenger trips for a driver trip is

1.38.

4.5 Dynamic DBCSP
In this experiment, we evaluate the Greedy-Benefit heuristic in a

dynamic context. is set to be 3 and is set to be 15 minutes.

We set to be smaller than , otherwise many trips will start

without encountering any computation of a slugging plan.

Since is 15 minutes, we set the range of to [10, 880] second

with an increment of 30 seconds. Fig. 15 (a) shows a clear trend

of decrease in benefit as the value of increases. But the figure

also clearly shows that the benefit fluctuates locally. To see the

fluctuation more clearly, we further fine tune the value of

within a relative small range. Fig. 15 (b) shows the benefit

fluctuating as decision interval increase from 10 seconds to

100 seconds with an increment of 10 seconds. The saving rate

reaches the maximum when equals to 40 seconds.

 (a) the decrease trending (b) fine tune of

Fig. 15 Impact of the decision interval

Fig. 15 can be explained by two conflicting factors. On the one

hand, as increases, the computation of slugging plans becomes

less frequent, so travelers of passenger trips cannot start walking

until the time of the next computation. Therefore, the wasted

time costs many ridesharing opportunities and thus decreases the

benefit. On the other hand, as increases, the input pool of trips

for each computation of the slugging plan becomes larger and

thus the benefit may increase. Fig. 15(a) suggests that the first

factor wins the tug-of-war, so we have an overall decreasing

trend with local fluctuations. It is also revealed from Fig. 15 that

the saving rate at its peak (i.e. =40 seconds) is about 26.6%. In

contrast, the saving rate of the corresponding static problem with

the same capacity and delay parameters (i.e. =3 and

minutes) is 33%.

5 SUMMARY AND CONCLUSIONS

In this paper, we have analyzed slugging, an increasingly

popular form of ridesharing, probably due to its simplicity.

Specifically, we have formalized and studied the slugging

problem. For the unconstrained slugging problem, we have

proposed a quadratic algorithm to solve it optimally. We prove

the NP-completeness of its constrained variants. For the

constrained variant, we proposed heuristics and evaluated them

on a data set consisting of tens of thousands of real trajectories

of taxi cabs in Shanghai. The heuristics achieved near-optimal

travel distance savings. The experimental results suggest that the

saving in travel distance can reach as much as 59% whereas the

optimal slugging plan achieves at most 70% savings. Given the

size of our data set is 39K and the average distance of trips in

the data set is 6.3 kilometers, the saving equals to 144,963

kilometers, which means the reduction of over 4.5 thousand

gallons of gasoline and 71 tons of carbon dioxide emission. In

addition, for the dynamic slugging problem, we evaluated the

impact of the decision interval, i.e. how frequently to run the

slugging algorithm, on the overall benefit.

In the future, we are going to refine this work towards a working

system by considering and modeling other practical individual

preferences such as riders’ social preferences [12]. For the

dynamic slugging problem, we are going to improve the plan

calculation algorithm by considering a probabilistic model

2 3 4 5

55%

60%

65%

70%

S
av

in
g

in
 V

eh
ic

le
 T

ra
ve

l D
is

ta
nc

e

Vehicle Capacity C

 Upper-Bound

 Greedy-Benefit

 Greedy-AVG-Benefit

0 150 300 450 600 750 900
14%

16%

18%

20%

22%

24%

26%

28%

S
a

v
in

g
 i
n

 V
e

h
ic

le
 T

ra
v
e

l
D

is
ta

n
c
e

Decision Interval f (seconds)

 Greedy-Benefit

0 20 40 60 80 100
25.8%

26.0%

26.2%

26.4%

26.6%

S
a

v
in

g
 i
n

 V
e

h
ic

le
 T

ra
v
e

l
D

is
ta

n
c
e

Decision Interval f (seconds)

 Greedy-Benefit

which looks ahead, i.e. predicts the future announcement of trips.

The objective function here optimized the overall benefit. It is

possible to consider individual trips and minimize the walking

distance and/or travel time delay of an average passenger trip.

These extensions will be considered in future work.

6 REFERENCES

[1] San francisco parking. http://sfpark.org/.

[2] Slugging. http://en.wikipedia.org/wiki/slugging.

[3] Map of slugging sites in washington d.c. slug-lines.com,

Forel Publishing Company, LLC (June 2010).

[4] N. AGATZ, E. A. S. M. W. X. Sustainable passenger

transportation: Dynamic ride-sharing. Tech. rep., Erasmus

Research Inst. of Management (ERIM), Erasmus Uni.,

Rotterdam, 2010.

[5] A. ATTANASIO, J.-F. CORDEAU, G. GHIANI, AND G.

LAPORTE. Parallel tabu search heuristics for the dynamic

multi-vehicle dial-a-ride problem. Parallel Comput. 30, 3

(Mar. 2004), 377–387.

[6] E. BADGER. Slugging the people transit. Miller-McCune

(2011).

[7] R. BALDACCI, V. MANIEZZO, AND A. MINGOZZI. An exact

method for the car pooling problem based on lagrangean

column generation. vol.52, INFORMS, pp. 422–439.

[8] N.D. CHAN, AND S.A , SHAHEEN. Ridesharing in north

america: Past, present, and future. Transport Reviews 32, 1

(2012), 93–112.

[9] J.-F. CORDEAU, AND G. LAPORTE. The dial-a-ride problem:

models and algorithms. Annals of Operations Research 153

(2007), 29–46.

[10] Z. GALIL. Efficient algorithms for finding maximal

matching in graphs. In CAAP’83, G.Ausiello and

M.Protasi, Eds., vol.159 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 1983, pp. 90–113.

[11] M.R. GAREY, AND D.S. JOHNSON. Computers and

Intractability; A Guide to the Theory of NP-Completeness.

W. H. Freeman Co., New York, NY, USA, 1979.

[12] G. GIDÓFALVI. Instant Social Ride-Sharing. ITS World, 8p,

Transportation Society of America (2008), 1–8.

[13] S. LIU, Y. LIU, L. M. NI, J. FAN, AND M. LI. Towards

mobility-based clustering. In Proc. of KDD’10.

[14] S. MA, Y. ZHENG, AND O. WOLFSON. T-share: A large-scale

dynamic ridesharing service. In Proceedings of the 29th

IEEE International Conference on Data Engineering, 2013.

[15] S. MA, Y. ZHENG, AND O. WOLFSON. Real-time taxi-

sharing with smart phones.

[16] P. D’OREY, R. FERNANDES, M. F. Empirical evaluation of a

dynamic and distributed taxi-sharing system. In IEEE Conf.

on Intelligent Transportation Systems (Sept. 2010).

[17] C.-C, TAO. Dynamic taxi-sharing service using intelligent

transportation system technologies. In Wireless

Communications, Networking and Mobile Computing,

2007. WiCom 2007.

[18] K. TSUBOUCHI, K. HIEKATA, AND H. YAMATO. Scheduling

algorithm for on-demand bus system. In Information

Technology: New Generations, 2009. ITNG ’09.

Appendix

Problem: Given a directed acyclic graph where V is

a set of trips and E is the set of edges that is benefit-labeled, and

a number , find a subgraph that is

a slugging plan with the benefit at least . We refer to this

problem as the Generalized Slugging Problem (GSP).

Theorem: GSP is NP-complete.

Proof: First, it is easy to see GSP is in NP. Now, we prove GSP

is NP-hard by reducing the set cover problem to GSP.

The set cover problem is well-known NP-hard. It is defined as

follows: given a set of elements, a family of subsets of ,

 and a integer , the question is whether there

exists a set of at most of these subsets whose union equals to

 . If the answer is yes, the problem has a set covering of size .

Given an instance of set covering problem, i.e. a universe

 and a family of subsets of , we

can build an instance of GSP as follows. First we construct the

graph as follows: We define

 and construct E as

follows. If , add an edge
 to E for all

 and , and add an edge (
) to E

for all . Note that is indeed acyclic. We define

benefit function as a constant function () for all

 () . We also define benefit threshold .

Now we show that the set cover problem has a set covering of

size iff there is a subgraph of that is a slugging plan and has

a benefit as least of .

First, assume that the set cover instance admits a set covering of

size , denoted by , we will now construct a subgraph of ,

denoted by , that is a slugging plan and has a benefit as least

of , i.e. , as follows: start with an empty subgraph

 ; for each node , choose another node
 such that

 and , then add edge
 to the edge set of .

Since , the benefit of increases by 1 for times. For

each set , add edge
 to the edge set of , so

 increases by 1 for at least times. is a legitimate

slugging plan since each and each
 is chosen

to be passenger trips only while each
 and is

chosen to be driver trips only, and no trip is merged into more

than one other trips. The benefit of is at least .

Conversely, assume that there is a slugging plan

 of benefit at least , we now prove that

there is a set covering of size by proof of contradiction.

Suppose there is no set covering size . Since for each node

 , it can contribute at most 1 to the benefit of , and all

 ’s collectively contribute at most to the benefit of . Let

us first assume that all ’s are contributing. Denote by the set

of ’s such that edge
 . Clearly is a set cover.

Since any cover size is larger than thus , then there are

less than nodes
 are free to merged into node , i.e.

contribute 1 to the benefit of . Thus .

Contradiction. Now assume that not all contribute to ,

say edge (
 is removed from , the removal may or may

not set
 free, i.e. allow

 add to . Even

 is added to , since

 is previously

removed from , and thus the benefit of will not increase.

Contradiction remains. Therefore, there must be a set cover of

size of .□

