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In the last couple of lectures, we have seen that the repetition codeC3,rep, which has distance
d = 3, can correct≤ 1 error. On the other hand the parity codeC⊕, which has distanced = 2, can
detect≤ 1 error, but can not correct1 error. In the last lecture, we extended these observations to
the general case: code with distanced can correct⌊d−1

2
⌋ errors and can detectd − 1 errors. Thus,

the fundamental tradeoff that we are interested in (the amount of redundancy in the code vs. the
number of error that it can correct) is equivalent to the one between rate and distance of the code
(for worst-case errors).

1 Hamming Code

We have seen that the repetition codeC3,rep has distance3 and rate1/3. A natural question to ask
is whether we can have distance3 with a larger rate. With this motivation, we will now consider
the so calledHamming code(named after its inventor, Richard Hamming), which we will denote
by CH . Given a message(x1, x2, x3, x4) ∈ {0, 1}4, its corresponding codeword is given by

CH(x1, x2, x3, x4) = (x1, x2, x3, x4, x2 ⊕ x3 ⊕ x4, x1 ⊕ x3 ⊕ x4, x1 ⊕ x2 ⊕ x4),

where the⊕ denotes the EXOR operator. It is easy to check that this code has the following
parameters:

CH : q = 2, k = 4, n = 7, R = 4/7.

Before we move onto determining the distance ofCH , we will need another definition.

Definition 1.1 (Hamming Weight). Let q ≥ 2. Given any vectorv ∈ {0, 1, 2, . . . , q − 1}n, its
Hamming weight, denoted bywt(v) is the number of non-zero symbols inv.

We now look at the distance ofCH .

Proposition 1.2. CH has a distance 3.

Proof. We will prove the claimed property via two properties ofCH :

∀c ∈ CH , c 6= 0 : wt(c) ≥ 3, (1)

and
min

c∈CH ,c 6=0
wt(c) = min

c1 6=c2∈CH

∆(c1, c2) (2)

We begin with the proof of (1), which follows from a case analysis on the Hamming weight of the
message bits. Below we will usex = (x1, x2, x3, x4) to denote the message vector.
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• Case 1: If wt(x) = 1 then at least two parity check bits in(x2 ⊕x3 ⊕x4, x1 ⊕x2 ⊕x4, x1 ⊕
x3 ⊕ x4) are1. So in this case,wt(CH(x)) ≥ 3.

• Case 2: If wt(x) = 2 then at least one parity check bit in(x2 ⊕ x3 ⊕ x4, x1 ⊕ x2 ⊕ x4, x1 ⊕
x3 ⊕ x4) is 1. So in this case,wt(CH(x)) ≥ 3.

• Case 3: If wt(x) ≥ 3 then obviouslywt(CH(x)) ≥ 3.

Thus, we can conclude thatmin
c∈CH ,c 6=0

wt(c) ≥ 3

We now turn to the proof of (2). For the rest of the proof, letx = (x1, x2, x3, x4) and
y = (y1, y2, y3, y4) denote two distinct messages. Using associativity and commutativity of the
⊕ operator, we obtain thatCH(x) + CH(y) = CH(x + y), where the “+” operator is just the
bit-wise⊕ of the operand vectors. Further, it is easy to verify that fortwo vectorsu,v ∈ {0, 1}n,
∆(u,v) = wt(u + v). Thus, we have

min
x 6=y∈{0,1}4

∆(CH(x), CH(y)) = min
x 6=y∈{0,1}4

wt(CH(x + y))

= min
x 6=0∈{0,1}4

wt(CH(x)),

where the second equality follows from the observation that{x + y|x 6= y ∈ {0, 1}n} = {x ∈
{0, 1}n|x 6= 0}. The proof of (2) is complete by recalling thatwt(CH(x)) = 0 if and only ifx = 0

andCH = {CH(x)|x ∈ {0, 1}4}. Combining (1) and (2), we conclude thatCH has a distance
3.

In fact the second part of the proof could also have been shownin the following manner. It
can be verified easily that the Hamming code is the set{x · GH |x ∈ {0, 1}4}, whereGH is the
following matrix.

GH =









1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1









In fact, any binary code (of dimensionk and block lengthn) that is generated1 by a k × n
matrix is called abinary linear code. This implies the following simple fact.

Lemma 1.3. For any binary linear codeC and any two messagesx and y, C(x) + C(y) =
C(x + y).

Proof. For any binary linear code, we have a generator matrixG. The following sequence of equal-
ities (which follow from the distributivity and associativity properties of⊕ and AND operators)
proves the lemma.

C(x) + C(y) = x · G + y · G

= (x + y) · G

= C(x + y)

1That is,C = {x · G|x ∈ {0, 1}k}, where addition is the⊕ operation and multiplication is the AND operation.
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The above lemma along with the arguments used to prove (2) in the proof of Proposition 1.2
imply the following result.

Proposition 1.4. For any binary linear code, minimum distance is equal to minimum Hamming
weight of any non-zero codeword.

Thus, we have seen thatCH has distanced = 3 and rateR = 4

7
while C3,rep has distanced = 3

and rateR = 1

3
. Thus, the Hamming code is strictly better than the repetition code (in terms of

the tradeoff between rate and distance). The next natural question is can we have a distance3 code
with a rate higher thanCH . We address this question in the next section.

2 Hamming Bound

We now switch gears to present our first tradeoff between redundancy (in the form of dimension
of a code) and its error-correction capability (in form of its distance). In particular, we will first
prove a special case of the so called Hamming bound for a distance of3.

We begin with another definition.

Definition 2.1 (Hamming Ball). For any vectorx ∈ [q]n,

B(x, e) = {y ∈ [q]n|∆(x,y) ≤ e}.

Next we prove an upper bound on the dimension ofeverycode with distance3.

Theorem 2.2.Every binary code with block lengthn, dimensionk, distanced = 3 satisfies

k ≤ n − log2(n + 1).

Proof. Given any two codewords,c1 6= c2 ∈ C, the following is true (asC has distance2 3):

B(c1, 1) ∩ B(c2, 1) = ∅. (3)

See Figure 1 for an illustration. Note that for allx ∈ {0, 1}n,

|B(x, 1)| = n + 1. (4)

Now consider the union of all Hamming balls centered around some codeword. Obviously their
union is a subset of{0, 1}n. In other words,

∣

∣

∣

∣

∣

⋃

c∈C

B(c, 1)

∣

∣

∣

∣

∣

≤ 2n. (5)

2Assume thaty ∈ B(c1, e) ∩ B(c2, e), that is∆(y, c1) ≤ e and∆(y, c2) ≤ e. Thus, by the triangle inequality,
∆(c1, c2) ≤ 2e ≤ d − 1, which is a contradiction.
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Figure 1: Hamming balls of radius1 are disjoint.

As (3) holds for every pair of distinct codewords,
∣
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∣
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⋃

c∈C

B(c, 1)

∣
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∣

=
∑

c∈C

|B(c, 1)|

= 2k · (n + 1), (6)

where (6) follows from (4) and the fact thatC has dimensionk. Combining (6) and (5) and taking
log2 of both sides we will get the desired bound:

k ≤ n − log2(n + 1).

Thus, the Hamming bound implies thatCH has the largest possible dimension for any binary
code of block length7 and distance3.
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