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In the last couple of lectures, we have seen that the repetitodeC’; ,.,,, which has distance

d = 3, can correck 1 error. On the other hand the parity codeg, which has distancé = 2, can
detect< 1 error, but can not corredterror. In the last lecture, we extended these observatons t
the general case: code with distantean correct ;! | errors and can detedt— 1 errors. Thus,
the fundamental tradeoff that we are interested in (the amoiuredundancy in the code vs. the
number of error that it can correct) is equivalent to the oevben rate and distance of the code
(for worst-case errors).

1 Hamming Code

We have seen that the repetition cadg.., has distancd and ratel /3. A natural question to ask
is whether we can have distangevith a larger rate. With this motivation, we will now conside
the so calledHamming codénamed after its inventor, Richard Hamming), which we wéhdte
by Cy. Given a messager:, z», r3, 14) € {0, 1}4, its corresponding codeword is given by

Cu(w1, 22, 23, 4) = (T1, T2, T3, Ty, To B Ty B Ty, T1 B T3 B Ty, T1 B T2 B T4),

where the® denotes the EXOR operator. It is easy to check that this cadetlie following
parameters:
Cy:q=2k=4n=T,R=4/T.

Before we move onto determining the distanc&gf, we will need another definition.

Definition 1.1 (Hamming Weight) Let ¢ > 2. Given any vectoxv € {0,1,2,...,q — 1}", its
Hamming weight, denoted lt(v) is the number of non-zero symbolsvin

We now look at the distance 6f5.
Proposition 1.2. C'; has a distance 3.

Proof. We will prove the claimed property via two properties(t:

Vee Cy,c#0:  wt(c) >3, (1)

and
i t(c) = in A 2
B i) = min, Aler,cz) @

We begin with the proof of{1), which follows from a case arsadyon the Hamming weight of the
message bits. Below we will use= (x1, 25, x3, 4) to denote the message vector.
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e Case 1: If wt(x) = 1then at least two parity check bits(n, © z3 ® x4, x1 B xo D xy, 21 B
x3 @ xy) arel. Soin this casewt(Cy(x)) > 3.

e Case 2: If wt(x) = 2 then at least one parity check bit(in, ® x3 © x4, 1 ® 29 B x4, 21 B
x3 @ xy) is 1. Soin this caseyt(Cy(x)) > 3.

e Case 3: If wt(x) > 3 then obviouslywt(Cy(x)) > 3.

Thus, we can conclude thatmin wt(c) > 3

ceCy,c#0

We now turn to the proof off{2). For the rest of the proof, fet= (x4, 29, 23, 24) and
y = (y1,¥2, Y3, y4) denote two distinct messages. Using associativity and adativity of the
@ operator, we obtain that'y (x) + Cu(y) = Cu(x + y), where the 4" operator is just the
bit-wise® of the operand vectors. Further, it is easy to verify thatfar vectorsu, v € {0, 1},
A(u,v) = wt(u+ v). Thus, we have

i (Cu(x),Cu(y)) i (Cu(x+y))
= x¢grel‘1{101’1}4 wt(Cr(x)),

where the second equality follows from the observation {kat- y|x # y € {0,1}"} = {x €
{0,1}"|x # 0}. The proof of [2) is complete by recalling that(Cy(x)) = Oifand only ifx = 0
andCy = {Cy(x)|x € {0,1}*}. Combining [1) and[{2), we conclude th@t; has a distance
3. 0J

In fact the second part of the proof could also have been shiowime following manner. It
can be verified easily that the Hamming code is the{setGy|x € {0,1}*}, whereGy is the
following matrix.
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In fact, any binary code (of dimensidnand block lengthn) that is generat&iby akxn
matrix is called ainary linear code This implies the following simple fact.

Lemma 1.3. For any binary linear code” and any two messagesandy, C(x) + C(y) =
Clx+y).
Proof. For any binary linear code, we have a generator métriXhe following sequence of equal-
ities (which follow from the distributivity and associaitly properties ofy and AND operators)
proves the lemma.
Cx)+Cly)=x-G+y-G
=(x+y)- G
=C(x+Yy)

Thatis,C = {x - G|x € {0,1}*}, where addition is the> operation and multiplication is the AND operation.
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The above lemma along with the arguments used to pfdve (Reiprtoof of Propositioh 112
imply the following result.

Proposition 1.4. For any binary linear code, minimum distance is equal to munn Hamming
weight of any non-zero codeword.

Thus, we have seen thaf; has distancé = 3 and rateR = 2 while Cs ., has distance = 3
and rateR = % Thus, the Hamming code is strictly better than the repetitode (in terms of
the tradeoff between rate and distance). The next natuestiqun is can we have a distarkeode
with a rate higher than'y. We address this question in the next section.

2 Hamming Bound

We now switch gears to present our first tradeoff betweenn@alocy (in the form of dimension
of a code) and its error-correction capability (in form o distance). In particular, we will first
prove a special case of the so called Hamming bound for andistaf3.

We begin with another definition.

Definition 2.1 (Hamming Ball) For any vectorx € [¢]",

B(x,e) = {y € [d]"[A(x,y) < e}.
Next we prove an upper bound on the dimensioewsrycode with distanca.

Theorem 2.2. Every binary code with block length dimensionk, distancel = 3 satisfies
kE <n—logy(n+1).
Proof. Given any two codewords; # ¢, € C, the following is true (ag’ has distan&?)):
Blc, 1) N Bley, 1) = 0. (3)
See Figuréll for an illustration. Note that for alke {0, 1}",
|B(x,1)| =n+ 1. 4)

Now consider the union of all Hamming balls centered arowndescodeword. Obviously their
union is a subset df0, 1}". In other words,

Bl 1)

ceC

<o, 5)

2Assume thay € B(ci,e) N B(ca, e), thatisA(y,c;) < e andA(y, c2) < e. Thus, by the triangle inequality,
Al(cr, e2) < 2e < d— 1, which is a contradiction.



{0,1}"

Figure 1: Hamming balls of radiusare disjoint.

As @) holds for every pair of distinct codewords,

UB(e.1)| =D |B(c, 1)

ceC ceC

= 2. (n+41), (6)

where [6) follows from[{#}) and the fact th@thas dimensio. Combining [6) and{5) and taking
log, of both sides we will get the desired bound:

kE <n—logy(n+1).

0

Thus, the Hamming bound implies th@j; has the largest possible dimension for any binary
code of block lengtit and distance.
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