? programmatio |

Proceedings

of the 2™ international symposium on Programming
edited by B. Robinet

" Paris

April, 13-15 1976

Actes du 2° colloque international sur la programmation

direction B. Robinet
Paris
13-15 avril 1976

DUNOD_
——————

phase recherche | informatique

166

STATIC DETERMINATION OF DYNAMIC
PROPERTIES OF PROGRAMS

Patrick COUSOT* and Radhia COUSOT**

Univergité Scientifique et M&dicale de Grenoble

1 - INTRODUCTION -

In high level languages, compile time type verifications are usualy incomplete,
and dynamic coherence checks must be inserted in object code. For example, in
PASCAL one must dynamically verify that the values assigned to subrange type
variables, or index expressions lie betwsen two bounds, or that pointers are not
nil, ... We present here a gengrél algorithm allowing most of these certifica-
tions to be done at compile time. The static analysis of programs we do consists
of .an abstract evaluation of these programs, similar to those used by NAUR for
verifying the type of expressipns..in ALGOL 60 [6] ., by SINTZOFF for verifying
that. @ module corresponds to its logical specification [9] ., by KILDALL for global
program optimization [5] , by WEGBREIT for extracting properties of programs.,

[9] ., by KARR for finding affine relationships among veriebles of a program [4] .,
by SCHWARTZ for automatic data structure choice in SETL [8]

The sssential idea is that, whén doing abstract evaluation of a program,
"abstract” values are associated with vartables instead of the "concrete”

valams used while actﬁally executing. The basic operations of the language are
interpreted accordingly and the abstract interpretation then consists in a
transitive closure mechanism. One mdy consider abstract values belonging to no
finite sets, but the properties of the transitive closure algorithm are chosen

such that the abstract interpretation stabilizes after finitely many steps,

% Attaché de Recherche au CNRS, Laboratoire Associé N°7.
** This work was supported by IRIA-SESORI under grant 75-035.

107

which implies that it can be fully worked out at compile time. The' elementary
interpretation of the basic operations of the language and the' ¢hoice of abs-
tract values depend .upon the specific dynamic properties which one wants to
extract from the program. Provided that this cpofce of abstract values and
basic operations satisfies the general framework we specify in this paper,
correctness and termipation of the abstract evaluatidn a;gorithm are guarante?d
[2]. For siﬁplicity purposes we illustrate the method, by the determination of
range information associated wifh integer variables in high level languages
such as PASCAL [10] or LIS [31.

2 - ABSTRACT VALUES -

The abstract evaluation of a program is a "symbolic" interpretation of this
program, using abstract values instead of concrete or execution values. An
abstract value denotes a set A} concrete values, (defined in extension) or
properties of such a set (intensive definifion), satisfying a number of

dynamic conditions. Let Vc be the set of concrete values'and Va the set of

abstract values.

In most examples given here, Vc will be the set of integers and'Va the set
of intervals of integers. If V. = Z is the set of integers (between the
limits -» and +») used in a programming language, the intervals of integers

will be denoted [a, b] where a ¢ Z, b € % and a < b.

The correspondance between a set of concrete values and an abstract value,
is established by the "abstraction function" @ :
2 °____§__..v
a

. v
(this notation states that @(S) must be defined for any 8 of 2 ©)

Examp;e-;
s ¢z, @(S) = |MIN (x), MAX(y)
X €8 y eSS
@({_135g3}) = [_1s5]

8({8,4,5,...}) = [3,¥=]

108

Another function, <y, gives the concrete form of an abstract value :

Example s
y([a, B1) = {x | (xe Z) A (a < x5 b)}

The functions @ and y are defined such that they verify :

v
(¥s e 2 %, s y@(s)))

and (Vv ¢ Vo, vs= Bty (v,

Corresponding to the tnion U of sets of concrete values, the union U of abs-

tract values must also be defined for evefy particular abstract evaluation :

V. xV o _» V
a a a

Example :
[a;s.b;1 0 [a,, b,] = [MIN(a;, a,), MEX(b;, b,)]
L . LV
The abstraction function @ is assumed to be a morphism from (2 c’ u)

into (V_, 0) :
2 - -
¥(s;, 5,) € V_, @__(Sl us,) =@(sy) U @(sy)
This implies that U has the associativity, commutativity and idempotency pro-

perties, and that the zero element 0 of U is also @(®) where § is the empty .

sett. 0 is called the null abstract value.

Corresponding to the inclusion ¢ of sets of concrete values, the abstract

evaluation uses the inclusion £ of abstract values, whj.ch is 'defined by :
¥Wv.,, v,) € v2
1®* "2 a’

{\'71 < v2} <= {v:L Uv, = 'v2%

and {v: v, (v, 2 vy) Ay # vy}

109

From this definition and the hypothesis on U, < can be showned to be a partial

ordering, and [1 is included in every abstract value.

Example :
[a;, by1 < [ap, by] <=> lay<ap) A (by 2 D))

[-2, 10] £ [-3, 12] but [-2, 10] and [0, .12] are not comparable.

Ya is a complete U-semi-lattice under the partial ordering <.

Example :
The strict}y increasing infinite chain - 0, [1, 11, [1, 2], [1, 3], ...

has an upper bound which is [1, +=].

Finally, for the abstract evaluation of loops, the problem arises of computing

" the limit of strictly increasing infinite chains, in a finite number of steps.

For that purpose, an operation has been defined, called widening, denoted v

Vv oxvV S v
a a a

For every particular abstract evaluation, V must be defined such that :
2 - - -
V(vl, v2) € Vs {(vl u v2) S>(V1 v v2)} and

- every infiinite sequence Ss Sys sees S0 ..» of the form 8, = a,

s, =8 V vl, cves § = 85

1 o A 1 v Vs cees (where Vis Vps sees Vo «e. are

n

arbitrary abstract values), is not strictly increasing.

Example :
[al’_ b1V [a,, b, =
[if a; < a; then -« else a, fi,-

if b2 > bl then 4+« else bl Ei]

110

<i

OV [1, 101 = [1, 10]
[1, 101 V [1, 11] = [1, +=]

["'°°s +°°]

[1, +=1 7 [0, 12]

so that, in that case, the length of the sequences So’ Sl, “eey Sn’ «+s which

‘dre strictly increasing is less or equal to ..

3 - ABSTRACT CONTEXTS -

The abstract evaluation of a program compites by successive approximations an
abstract context. at every program point. An abstract context is a set of pairg
(i, v) which expresses that the identifier i has the abstract value v at some
program point. Then, in every actual execution of the program, the objects

accessed by i will be in the set y(v) at that program point.

If I denotes the set of identifiers (after the syntactieal conflicts of
identifiers in the program have been resolved), the set ¥ of abstract contexts

is such that :
Ix (v, -{3OhH
a
t: c 2
and the pairs in a given context differ from one another in their identifiers:
[2 . :
{vC € B, Wi, §) € I°, ¥(v, w ¢ (v, - {017,

{(i, v) e CA (s W eCA (i, v) ¥ (F, W= {i%Fjll

We note C(i) the value of an identifier i in a context C, it is defined by

c(i) = if (}V'e (Va - 0On | (i, v) € C) then v else [0 fi.

Example :
Cc= {(Xs [1, lo]), (Ya [, O])} H
c(x) = [1, 10] ; ¢c(=z) =0

In particular, we note ¢ the null abstract context so that, from the above

definition : {Vi ¢ I, o(i) = ﬁ}.

111

The union C U C' of two contexts C and C', will be used for axbressing, for
example, the context resulting from conditionnal stetements. The widening
C V C' of contexts, will be used in loops. They are defined using the union

and widening of abstract values :

C,UC, ={ti, V) | ieD A lve (V-{ON) A.(v = C (1) U Cy(1))}

(9]
<in
o

]

{t, V) | BeD A ve (V{ON) A (v ="C (1) ¥ C,yli))]

We can show, for every identifier i, that :

(G, v 82] (i3

1 ?1[11 u Cz[i]

"

and (C1 v CZJ (1) C1(i? v C2EiJ

Examglé :
€y = {{x, [1, 101}, [y, [~ O1)}
€, = {x [0, 510, (2, [1, *=])}
c, 3;62 =T, U C, = {(x [0, 101D, (ys [0])s (2, [T, *w]))
c, v C, = {(xs [-= 101D, (y, [0]), (2, [1. *=D)}
c, v Cy = {0x [0s *=1), (y, [-= 01, (2, [1. +e])}

As before, we define the inclusion ; of contexts by

{C1 < Cz}<=> {C1 U C2 = C2}

and ,{Cﬂ < €, }<=> {(C, E,CZJ A (C, +‘c21}

: !
it can be shown that this is equivalent to

{ C1.s cz} <f>{ vie I, c1t1) < CZ(iJ}

t: is a complete ;-semi—lattics.under the partial ordering <.

In addition, for every contexts C,, C2 we have :

1

AN

Chuby=Cyvet,

and there are no infinite strictly increasing chains SU P S1

Al
.
A
w
Al
.

n
of abstract contexts of the form‘SU =9 S1 = SD ; C1...., S =8 ; Cn""

for arbitrary abstract contexts C1,..., Cn,...

112

4 - PROGRAMS -

As a first approximation of programs, we will use finite flowcharts. They

ars built from the following elementary program units :

A single entry node : % »
exit nodes H =D

assignment nodes’ : —®] ;i :- expression ——»
test-nodes :
true false

[Tq.avoid the choice of a particular programming language, we will assume
that the evaluation of axbrsssions in assignment and test nodes have no
side-effect).

simple junction nodes :

loop Jjunction nodes : .

113

Only connected flowcharts are considered and there is at least one path from
the unique entry node to every node of the Flowcﬁart. With these conditions,
svéry cycle in the flowchart contains at least one simple or loop Junction
node. Additionally, a preliminary graph theoretic analysis of the flowchart
has been performed, chéosing which of the junction nodes are loop junction
nqdes, so that every cycle contains at least one loop junction node, and that

the total number of lobp junction nodes is minimal.

Example :

false

true false

114

5 - ELEMENTARY ABSTRACT INTERPRETATION OF BASIC PROGRAM UNITS ‘-

For every particular application of the abstract evaluation algorithm, we
must provide a definition of the evaluation of basic program units. The
function 1 defines for.any'assignment or test program unit n and‘input
context C, an output\éontsxt J(n, C), (or two when n is a test node). The
spplication J must be a correct "abstraction” of fhe actual execution of

program unit n. It may be defined as follows :

5.1. - ¥ n'€ Na (the set of assignment nodes), n is of the form :

n
—® v = f(V,,414, V) f—m———»
1 m -

1

where (v, V,,ess, va e 1™ and ?(v1..... vm] is an expression of the langua-

1

ge depending on the variables v, ,..., vm.,Then :

1

tvcel,viel 1i+v= Y, €)= Cli)} and
tvc e €, Jn, CI(V) = @[{f(v1..._;vm]|[y1,.i..vml € y[C(v1JJx...xY[CFVm)]}]}

The first condition expresses that the evaluation of the expression

F[v1,.... va'has no sidg effect, and the second one that the value of v in
the output context, is the abstraction of the set of values of the expression
F(v1,..., vm] when the values [v14..-,vm] of [v1,..,, vm] are chosen in the

input context C.

(In order to avoid language'dapendent problems, we make the general asgumption
that all functions and predicates are "naturally extended” in such a way
that they are undefined whenever at least one of their arguments is

undefined (i.e. is 0)).

115

Examgles :
T C=0
n-|{x :=10
1 Y, o) = {tx, [10, 10 1}
T l C={(x, [1, 101}, (y, [-2, 31}
no|x:= xX+y+1
l U(n, €) = {x, [0, 141), (y, [-2, 31)}
T l C = {(x, [1, 101}, (z, [-1, +11)}
n 1= X+

X 1= Xty

l Yin, C) = {(z, [-1., + 1)}
We have C(y) = [], so that the expression x + y is undefined, therefore
Jn, TIX) = [O.

FIn the case of that specific application, an interval arithmetic [7] is used
for defining J(n, C).

5.2. - The elementary abstract interpretation g(n, C) of a test node n, in

input context C results in two output contexts C_ and C_ associated with the

T F,

true and false edges respectively :

Voné NT(the saﬁ,of test nodes), n is of the form :

3=

116

where Q[v1,.... vm]-is a boolean expression without side-effect depending

on the variables Vgreees v_. Then wse define:lﬁh C) = [CT‘ CV) such that :

m
¥Yiel,
C;(1) = (1] {rey(C(1))) A

(} (yoeeeovd € ¥(CLV,D) X wue x y(Cly D) | Qtvgeeenv I

C.(4) = @lifg e v(C(4)))A

€] uyseeeeyp) € ¥(CLV D) X ven X y(Cly)] | ~QCv, s ey IT)

On the true edge for exampls, the abstract value of a variable i is the abs-
traction of the set of values 1 chosen in the input context C, for which the
avaluation of the predicate Q in context C may yield the value "true".

Examples : €= {(x,[10, *+a]),ly, [-1,+11]}

>

true false
C; -{[x7[10. +*Q);(y.[-1. +11)} Ce = @
— ’ C = {(x, [-=, +=])}
true false
C; ={(x, [0, +=])} e =llx, [-= -11)}
, C = {(x, [-=,+1), (y,[1,10])}
X2y
true false

Ce ={tg.[-~.9]),ty,[1,1p]J}

g, = (01, +=D, ty, [1,1010}

117

In the case of that specific application, the treatment of conditionnal
statements has to designate whether a given variable belongs to a certain

interval on the real line, our approach is similar to that. of [11.

5.3.. - When the abstract interpretor follows an execution path until reaching
a test node, this may give rise to two execution paths. Each of the two paths
will be executed pseudo-parallely, ﬁntil reaching an exit node, in which case
the execution of that path ends, or a junction node, in which case the pseudo-
parallel execution paths are synchronized. In order to compute the output con~
text of a Juncéion node, we must have first computed the input contexts of
the input edges which may be reached by an execution path. The unreaqhabia
input adges have their assoclated.contexts initialized to the null bontext .

For a simple junction node n, we have

C
i e [1, m] i
(the use of this generalized notation results from the commutativity and

associativity of ul.

Example.:
C1 ={(x, [1, 111} CZ ={(x, [2, 211}

C = C1 u C2 = C2 u C1

={(x, [1., 11 v [2, 2D}
={(x, [1, 211}

5.4. - In order that the abstract interpretation terminate correctly, we nsed
something analogous to the induction step used in the automatic verification
of programs with loops. This is provided at the loop junction nodes by the

widening of contexts, as follows :

118

€2, 341
C Cm,j+'l
1,31

If the ,j“J pass on a loop junction node n has associated the context Sj to the
output arc o of that node (or SD has been initialized to the null context),
then the context associated to a on the j+1tb pass, will be :

S =S, V(z Ci,j+1]

3+ 4 em]

Example :

€y, 7 {06 [1, 110} Cy, =l 0xs [2. 210}

s, ={(x, [1, 113}

<

5,781V (8,515,

= s, v {(x, [1, 11 0 [2, 212}

={(x, [1, 1D} ¥ {(x, [1, 210}
={(x, [1, 11 ¥ [1, 2D)}
={(x, [1, +=])}

Note that the widening at the loop junction nodes introduces a loss éf infor-
mation. However it will be shown on examples that the tests behave as filters.
Furthermore, for a PASCAL like language, one can first use the bounds given

in the declaration of x, before widening to "infinite" limits.

119

6 - ABSTRACT INTERPRETOR -

The abstract interpretor starts with the empty context @ on all arcs. For each
of the different types of nodes, we have described a transformation which
specifies the context(s) for the output arc(s) of the node, in term of the
context{s) associated to input arc(s) to the node, and where relevant, the
contents of the node. The algorithm essentially performs applications of

these transformations until all contexts are stabilized , i.e. the application
of a transformation at any node results in no changé in the contexts of its
output arcs. The distinct exscution paths are followed pseudo-parallely, with

synchronization on junction nodes.

During abstract evaluation, it should be noted that it is useless to go on
along one path when the output context C' of a node is included in the context
C already associated with the arc out of that node. This results from the fact
that the elementary interpretation ;[is an increasing function. for £ in e.

It can be shown that :

{c' Ec} => {vn, J(n,c) 2P0, OF

The proof of termination of the abstract evaluation comes from the fact that
on one hand the sequence of contexts assoclated with the output arc of each
loop junction node form a strictly ascending chain which cannot be infinite

and, on the other hand, that svery lbop contains a loop junction node.
The general abstract interprestor is now stated :

(As shown in [2] , it is convenient to mark: the edges of the graph.,
4n order to cause the sbstract interpretation to consider each arc of the

program graph at least once. For simplicity, this has not been done here] .

120

procedure abstract interpretation (graph) ;

begin
for sach arc of graph do local context (arc) := ¢ repeat ;
execution paths. := {exit-arc (entry-node (graph)) }- junctions := 8 iy

while (execution paths # @) do
while (execution paths # #) do

input arc := choose (execution paths) ;
execution paths := execution paths - {input arcl :

node := final-end (input arc) ;
case node of
- assignment node+*
assign output context (exit-arc (node],
Y{node, local context (imput arc)}) ;
- test node~
(CT. CFJ := J(nods, local context (input arcl)

assign output context (true-exit-arc (node), CT] :

assign output context (felse-exit-arc (nodel, CF] 3

- simple or loep Junction node®* junctions := junctions u
{node} ;
- exlt node - ;
end
rapeat ;
for each junction node of junctions do
output context : = § local ‘context (input arc): ’

input arc e gntry-arcs{junction node)

if = (output context < lacal context lexit-arc(junction node)))
then

case junction node of
simple junction node -
assign output context (exit-arc (junction nodel,
output context]) ;
loop junction node -+
assign output context (exit-arc (junction node),

local context (exit-arc {junction node)) ¥
output context) ;

.end
fi
repeat
Jjunctions := 9
repeat
raturn ;

procedure assign output context (output arc, output context) :

if = (output context £ local context (output arc)) then
local context (output arec) := output context ;

execution paths := execution paths u'{butput arc} ;

i,
end ;

121

In. [2] we have shown that the algorithm terminstes, even when analyzing
non-terminating programs, and that it is correct : if C' 1is the final abstract
context associated with an arc o, then for every identifer i of the program,

and‘every actual exscution of that program :

. 1f C(1) = O, then 1 is never initialized on arc o, or & is on a dead
path. -

- 1f C(1) is some abstract value v, then the concrete value of i on arc
a within every execution path p containing o belongs to y(v), under

the condition that i has been correctly initialized on path p.

Example :
Our first example is very simple in order to illustrate the technique :

i=d+1| ¥

The following table shows the analysis of. this program graph, with the speci~

fic abstract interpretation we have chosen as sxample in the paper ;

Programmation - 2° colloque international 9

122

input| local context sxecution
step |node| arc (input arc) output context paths junctions
1] {1} ?
2 O 0 {1,11,11} {2} 8
3 c 2 {1, [1,11} {1} {c}
4 c 2 {i, [1.11}
{1, [1.,11} {3¥ @
6)
5 d 3 {i, [1,11} {i, [1,11} {5} -3
6 5 {1, [1.11} {i, [2,21} {6} @
7 c 8 {i, [2,2]} {1 - el
8 |¢c 2 | {1, 01,11} {1, [1.1] 6[1,21ﬂ-
6 | {1, [2,21} ={1, [1,+=]} {3} 2
s (d | (®| U (=l {1,101, +=1} {4
{4, [1,108]} 5}
10 @ | . 1) {5} s
1 B | 4, 11100 B {1, [2,1011} {6} s
12 6 | {1, [2,101 1} . {c}
13 |c | @ 1D {1, [1,+=]7 ([1.1] U [2,1011)}
® | (2, 12,1011 2 {i, [1,+»]}.end. ‘

After processing the flowchart, the final context on each arc is listed in the
table opposits the circled nodes. Note that the results are approximate,which
is a conseguence of the undécidability of the problem of finding exact domains

for the variables at each program point.

7' - TWO STRATEGIES FOR ABSTRACT INTERPRETATION -

The first stratégy we have presented until now, consists in associating with
every edge of ths graph an increasing chain of contexts, starting from a first

approximation which is the null context.

One can procesd in a reverse way, by associating with every edge of the graph.

a dqcreasinglchain of contexts, starting from the universal context.

123

The abstract evaluation will then use ths partial ordaring‘g. which is
. defined by :

< v, }

2 > = U = v } <=
v (v1.v2] € Va' {v1 > v2} <=> {Vﬂ u v v1} <=> {v2 1

2

The universal abstract value # = @(VC), is-used to define the universal
context ¢, such that :
¥ 1 eI p(i) =#1}

Instead'of widening, we use the "narrowing” of abstract’values denoted & ,
which must be defined such that :

1%
- VgxV, —o—»V

a
2

2
- v [v1,v2] € Va' {v1

- every infinite seguence 8,2 S+t 8 ,... OF the form

n
g =#, 8y =8, A Vosrres 8T8 BV, e
(where vy vz,.... vn.... are arbitrary abstract values) is not strictly decrea-
sing. '
Example :

= @[Vc] ='[-m,+w]
[a1sb1] Z fazabz] =

[if a, = -» then a, else MIN [a1.a23,

1 2

if b1='+~ then pz else MAX (b,,b,]]

[-w, +0] & [-=,101] = [-»,101]
[-~,101] A [0,100] = [0,101]

[6.100] 2. 0,991 = [0,100]

For this new strategy, the abstract interpretor is obtained from the previous
oné, with @. ;. X instead of &, -2 and v respectively. (In this case too, one
must ensure that the abstract interpretor considers every édge of the program

graph at least once).

124

Example :
The following table shows the analysis of the program graph given.at

paragraph 6 , with this new strategy :

input local context execution
step | node .arc (input -arc) output context paths {Jjunctions
1 a | v {11 8
2 b @ P {1,.11,11} {2} @
3 c 2 {1, [1,11} # {c}
4 c 2 {1, 11,11}
¥ {3}]
v A
5 d 3] {1, [101,+=]} {4 8
' A1, [-=,1001} "5
8 e 4 {1, [101,+=]} " {s} 2
7 f @ {1, [-~,100]} {1, [-=,101]} {6} ¢
8 c 6 {1, [~=,1011} 9 {c}
g c @ {1, [1,11}
{1, [-=,+=]d [-=,101]}
@ {1, [-=,1011} ={1, [-=,101]} {3} 2
10 d @ {1, [-»,1011} {1, [101,1011} {4}
{1, t-=,100]} = {1, [-=.100]1}. end.
11 . @ {1, [101,101]} s 4

Gensrally . as noticed in the above example, the two strategies don’t come out
with the same result. If the first strategy leads th the abstract value \Z for
identifer i, and the sescond one gives Vg the final result may be choosen as
@(Y[V }.n y(v J), which is a better result than those obtained separately.
However a best solution, is to start with the strategy which associates with
every edgé of the graph an 1ncreasing chain of contexts and to use next the

resulting contexts for initialization when applying the other stratsgy.

125

8 - EXAMPLES -

The final result obtained for our first example is :

{3.0}
i:=1;
{1, 11,11}
L : {i, [1,1011}
Jif i < 100 then
{i,[1,1001}
i :=41i+1 ;
{i,[2,1011}
g tol
else
{1,1101,1011}
stop
fi ;
The next.;;ampls is the binary search of a given ksey K in a table R of 100
elements whose keys are in incrsasing order. The result of the program analysis

1s the following :

lwb := 1 ; upb := 100 ;

{(wb, [1.,1]), (upb, [100, 1001)}

L ¢ {(wb, [1.,1011), (upb, [0,1001), (m, [41,100])}
if upb < lwb then '

{(lwb, [4,1011), (upb, [0,1001}, (m, [1,100])}.
unsuccessfull search ;

-4
e

(Qb. [1,1001), (upb, [1.,10013, (m, [1,1001)}
1= (upb + 1lwb) ¢ 2 ;

(lwb, [1,1001), (upb, [4,1001), (m, [4,1001)}
if K = R(m) thén
successfull search ;
8lsif K < R(m) then
upb :=m - 1 ;
{(lwb, [1,100]), (upb, [D,99]1), (m, [1,100])}

o 3

glse

lwb :t=m + 1 ;

{(lwb, [2, 4011), (upb, [1,1001}; (m, [4,1001)}
fi ;
(b, [1.1011), (upb., [0,1001), (m, [1,100]3}

gotol ;s

126

In PASCAL or LIS like languages., where lwb, upb and m have been declared
of type 1 ..101, 0 .. 100 and 1 .. 100, dynamic tests for assignments
to these variables or bounds tests for access to array R are statically

shotwn to be useless.

The last example is dedicated to detection of incorrect access to records

through nil pointers. There are four abstract values 0, nil, not-nil, dubious

with the following ordering :

N
B

In the case of ‘an abstract u-semi-lattice satisfying the maximal chain

not-nil;

condition (every strictly increasing chain is finite), the widening v
is.taken to be u. This is the case in that example because there is a

finite set of abstract values.

The problem consists in finding the Kth value of a linear linked list L :

™

L —_ » o_—J__. —] Y

value next

127

The intended solution, with its analysis 1s the following :

{(K, [-=,+=]), (L, dubious)}
AF K < 0 then stop f1 ;
cursor := L ;
E «{(K, [1,+=]), (cursor, dubious), (L, dubious)}
if K # 1 then

{(K, [2,+=]), (cursor, dubious),...}
K:=K-1;

{(K, [1,+=], (cursor, dubious),...}

ﬁcursor=ﬂ_ﬂw_@
else
{ (K[, +#]),(cursor, not-nil),...}
[a] cursor := next (cursor);

{..., (cursor, dubious),...}

fis
{(K, [1,+=]), (cursor, dubious), (L, dubious)}
EO to E

fis
{(K, 11,11), (cursor, dubious), (L, dubious)};

[B] ... value (cursor)...

It is shown, at line [a] that "cursor” in "next(curser)”, is not a gil'pointer.
and it hés been taken account of the fact that the function next delivers

a nil or not-nil pointer. On the other hend, "cursor” might be pil .at line

[8], and from this diagnostic information, the programmer should be able to
discover that he has forgotten the case of a list of length K - 1.

9 - "DUAL'* ABSTRACT INTERPRETATIONS -

The abstract interpretations we have presented until now determine for svery
program point a "maximal” property, common to all possible runs of that
program. A "minimal” property may be obteined by two dual algorithms using
the intersection in place of union in the two former abstract interpretations.

128

-10 - CONCLUSION -

The abstract interpretation algorithm briefly reported here may be extendsd to
other control structures. This has be done for subprograms, including
recursive ones, and we are developping the case of semi-coroutines,coroutines,

backtracking, etc.

More general assertions about programs may be determined at.compile time
with the above method of program analysis, by choosing abstract values which
are more elaborated than those given in this paper. For example, abstract
‘values for integers may be chosen.. as intervals,‘lists of disjoined inter-

vals, intervals with symbolic bounds, lists of disjoined symbolic intervals ...

It is impprtant to note that, because of ths undecidable problems we areifaced
with, our results are valid but fundamentally not perfect. However it should be
clear that this incompleteness is acceptable for fhe verification of corrsct
uses of data and operations, for the supply of diagnostic informations, for
program optimization, for choosing types or organizations of data structures

in very high level languages, etc.

More generally, types are used in high-level languages for specifying soms
logical properties of data and their memory representation. As presented

in this papér the abpstract value concept, allows us to specify and statica;ly
check additionnal dynamic proparties. Under the 1ighf of -this work, we are now
extending the classical type approach, in order to catch the dynamic aspects
obtained by abstract interpretatiqn,vand thus provide a better data specifi-

cation framework in programming languages.

11 -

[11

2]

[3]

[4]

£s]

[8]

(71

129

BIBLIOGRAPHY -

BLEDSOE, W.W..- BOYER, R.S.
"Computer proofs of 1limit theorems”
Proceedings of the I.J.C.A.I., 586-600 (1971)

COUsoT, P. - COUSOT, R.

nyérification statique de la cohérence dynamique des programmes”
Laboratoire d’Informatique, U.S.M.G., Grenoble.

Research report of contract IRIA-SESORI 75-035, (Sept. 4975)

ICHBIAH, J.D. - RISSEN , J.P. - HELIARD, J.C. - COUSOT, P.
y"The system implementation language LIS”
CII - TR 4549 E/EN - (Dec.1974)

KARR, M.

"On affine relationships among variables of a program”
Massachusetts computer associates, inc.

CA - 7402 - 2811, (1974)

KILDALL, G.A.
"A unifed approach to global program optimization”

Conf. Record of ACM symposium on principles of programming languages.

Boston, 194-206 (1873)

NAUR, P.
"Checking of operand types in ALGOL compilers”
BIT 5, 151163 (1965}

RIS, F.N.
*Taols for the analysis of interval arithmetic"”

RC 5305, IBM T.J. Watson Research Center , (1975).

(8]

(9]

[101

[111

130

SCHWARTZ, J.T.
"Automatic data structure choice in a language of very high level”
Second ACM Symposium on Principles of Programming Languages,

Palo Alto, California, 386-40 (Jan. 1975)

SINTZOFF, M.

"Vérifipations d'assertions pour les fonctions utilisables comme valeurs
et affectant des variables extérisures”

proving and improving programs, Ed. G. HUET, G. KAHN,

IRIA, 11-27 (1875)

WEIGBREIT , B.
"Property extraction in well-founded property sets"”
IEEE transactions on software edgineering,

Vol SE-1, NO.3, 270-285 (Sept.1975)

WIRTH , N.
"The programming language PASCAL”
Acta Informatica 1, 35-63 (1971}

Authors' Address

P.COUSOT, R.COUSOT
Laboratoire d'Informatique (0.313)

Boite postale 53
38 041 GRENOBLE CEDEX

FRANCE.

