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The evolution of behaviour patterns used in animal conflicts is discussed, 
using models based on the theory of games. The paper extends arguments 
used by Maynard Smith & Price (1973) showing that ritualized behaviour 
can evolve by individual selection. The concept of an evolutionarily stable 
strategy, or ESS, is defined. Two types of ritualized contests are distin- 
guished, “tournaments” and “displays”; the latter, defined as contests 
without physical contact in which victory goes to the contestant which 
continues longer, are analyzed in detail. Three main conclusions are drawn. 
The degree of persistence should be very variable, either between individ- 
uals or for the same individual at different times; a negative exponential 
distribution of persistence times is predicted. Individuals should display 
with constant intensity, independent of how much longer they will in fact 
continue. An initial asymmetry in the conditions of a contest can be used 
to settle it, even if it is irrelevant to the outcome of a more protracted con- 
flict if one were to take place. 

1. Introduction 

Most models of evolution ascribe “fitnesses” to individuals and then work 
out the way in which the frequencies of individuals of various kinds in the 
population change with time. Sometimes these fitnesses are assumed to be 
constant; sometimes it is supposed that the environment and hence the 
relative htnesses of different genotypes change either in space or time. Such 
models are quite satisfactory for many purposes. In recent years, however, 
there has been increasing interest in the evolution of characteristics which 
cannot adequately be analyzed by such models, for one or more of the 
following reasons : 

(1) The characteristic affects the survival of populations differently from 
that of individuals; examples are sexual reproduction (Williams, 1966; 
Williams & Mitton, 1973; Maynard Smith, 1971) and characteristics serving 
to regulate population density (Wynne Edwards, 1962). 
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(2) The characteristic affects the survival or reproduction of relatives of the 
individual possessing it (Hamilton, 1964; Trivers, 1972). 

(3) The fitness of a particular genotype depends on what other genotypes 
are present in the population and on their frequencies. 

The corresponding selective mechanisms in these three situations are group 
selection, kin selection and frequency-dependent selection. All three have 
been proposed as explanations for the comparative rarity of dangerous 
weapons or tactics in intra-specific animal conflicts. Thus Huxley (1956) 
probably expressed the most commonly held view when he argued that the 
use of dangerous weapons is rare because “it would militate against the 
survival of the species”. Hamilton (1971) has emphasized the evolutionary 
importance of the fact that excessively aggressive individuals may injure their 
close relatives. Maynard Smith & Price (1973) proposed a model of the 
evolution of conflict behaviour in which selection acts entirely at the individual 
level, but in which the success of any particular strategy depends on what 
strategies are adopted by other members of the population. The purpose of 
this paper is to pursue this line of reasoning a little further, particularly in the 
case in which serious injury is impossible. 

The main conclusion reached by Maynard Smith & Price (1973) was that 
in a species capable either of “ritualized” or “escalated” fighting-the latter 
being capable of seriously injuring an opponent-the evolutionarily stable 
strategy is to adopt the ritualized level, but to respond to escalation from an 
opponent by escalating in return. The importance of retaliation in the 
evolution of animal conflict was emphasized earlier by Geist (1966). In a 
population adopting such a “retaliation” strategy, a mutant which adopted 
escalation tactics too readily would be more likely to get seriously injured 
than the typical members of the population, who would usually settle 
conflicts without escalation. This conclusion, however, rested on the assump- 
tion that two individuals adopting purely ritualized methods could 
satisfactorily settle a contest. This assumption is investigated further in this 
paper. 

Two types of ritualized contest must be distinguished, which I will call 
“tournaments” and “displays”. An example of a tournament is a fight between 
two male deer, in which the antlers interlock and a pushing match ensues. 
The structure of antlers and the behaviour of the contestants is adapted to 
prevent serious injury. Physical contact does take place, however, and 
victory goes to the larger, stronger and healthier individuals. Tournaments 
of this kind are common. In such cases, no special difficulty arises in under- 
standing how a ritualized contest can be settled; the model considered by 
Maynard Smith &Price (1973) seems adequate to explain why more dangerous 
weapons or tactics do not evolve. 
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In a “display”, no physical contact takes place, or if it does do so it does 
not settle the contest and provides little or no information about which 
contestant would win an escalated contest. In such a contest, the winner is the 
contestant who continues for longer, and the loser the one who first gives 
way. It is the logic of contests of this kind that is considered in this paper. 
From an evolutionary point of view, tournaments and displays have some- 
thing in common, in that the winner is the individual which continues the 
contest longer, and we would therefore expect natural selection to favour 
characteristics (size and strength in one case and behavioural persistence in 
the other) enabling an individual to continue; there would be an ultimate 
balance between the advantages and disadvantages of increased size or 
persistence. There are, however, important differences. First, size and strength 
may change with age, but cannot be varied from day to day or from contest to 
contest. Second, the corresponding disadvantages of greater size would arise, 
not in the contest situation, but in other contexts, for example escape from 
predators, whereas the disadvantages of excessive persistence would arise 
from waste of time and energy in the contest itself. Third, the disadvantage of 
excessive persistence would be felt to the same extent by the ultimate winner 
as by the ultimate loser. For these reasons, the analysis which follows is 
relevant primarily to displays and not to tournaments. In real contests the 
distinction between a tournament and a display may not be as clear as I have 
suggested; the analysis will apply to the extent that the assumptions just given 
concerning the disadvantages of excessive persistence hold.? 

Many complications which arise in actual contests between animals have 
been ignored. Perhaps the most important are the changes which may occur 
with age in an individual’s chance of success, and the effects of previous 
experience of contests with the same opponent. 

2. Game Theory and Animal Contests 
The first attempt to apply the theory of games to evolution was made by 

Lewontin (1961). He was concerned with the evolution of genetic mechanisms, 
which he viewed as a game played between a species and nature. He argued 
that a species should adopt the “maximin” strategy-that is, the strategy 
which gives it the best chance of survival if nature does its worst. His 
approach was therefore very different from that adopted here; it tacitly 
assumed group selection, and the maximin strategy is not in general the 
same as the evolutionarily stable strategy. 

i A similar distinction has been made independently by Parker (1974). His paper is 
mainly concerned with ritualized contests which do provide reliable information about the 
outcome of escalation, whereas this paper is concerned with ritualized contests which do 
not. 
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Our own approach owes more to the papers by Hamilton (1967) and 
MacArthur (1965) on the evolution of the sex ratio. Hamilton pointed out 
that the choice by an individual of a sex ratio for its offspring can be seen as a 
choice of a strategy in a game against others, designed to maximize the 
individual’s contribution to future generations. MacArthur (1965), although 
he did not explicitly refer to game theory, sought for a sex ratio which was 
evolutionarily stable in precisely the sense defined below. 

A major difficulty in applying game theory to human conflicts lies in the 
need to place a numerical value, or “utility”, on the preferences the players 
place on the possible outcomes. How for example does one put the utilities 
of financial reward and of injury or death on the same numerical scale? This 
difficulty does not arise, at least in principle, in applying game theory to 
animal behaviour. In human conflicts, strategies are chosen by reason to 
maximize the satisfaction of human desires-or at least it is in those terms 
that they are analyzed by game theorists. Strategies in animal contests are 
naturally selected to maximize the fitness of the contestants. Thus apparently 
incommensurable outcomes can be placed on a single scale of utility accord- 
ing to the contribution they make to reproductive success. This equivalence 
between utility and contribution to fitness is the main justification for applying 
game theory to animal contests. 

The second general point is the nature of the “solution” we are seeking. If 
behaviour has evolved under individual selection, then the solution we want 
is an “evolutionarily stable strategy” or ESS. An ESS, which may be a pure 
or mixed strategy, is defined as follows. A strategy Z is an ESS if the expected 
utility of Z played against itself is greater than the utility of any other strategy 
J played against I. This can be written 

E,(Z) ’ E,(J), 
where E gives the expected utility of the strategy in parentheses played against 
the strategy indicated by the subscript. 

The relevance of this definition is as follows. In a population consisting 
entirely of individuals adopting strategy Z, rare variants arising by mutation 
which adopted a different strategy J would not increase in frequency, and 
hence the population would be stable under mutation and selection. 

In the definition, we have required that E&,Z) > E,(J); difficulties arise if 
Z&(Z) = EI(J). In this case, Z is an equilibrium strategy, but it need not be 
stable. To determine the stability, we need to know E,(J) and EJ(Z). Thus in a 
population of which a fraction p adopt Z and (1 -p) adopt J, the expected 
“fitnesses” are 

E(Z) = P&(Z) + (1 -z+%(Z), 
E(J) = P&(J) + (1 -z+%(J). 

Z will then be evolutionarily stable if EJ(Z) > EJ(J). 
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Thus we can extend our definition, and say that Z is an ESS if, for all 
alternative strategies J, either 

E,(Z) = E,(J) and E,(I) > &r(J)- (1) 
The stability need not be global. There may be more than one ESS for a 
given game. If so, a population would evolve to a different ESS according to 
its initial composition. 

An ESS may be a “mixed” strategy; that is, it may consist of adopting one 
out of a set of “pure” strategies according to a set of preassigned probabilities. 
If so, a stable population could either be genetically polymorphic, with 
appropriate frequencies of individuals adopting different pure strategies, or 
it could be monomorphic, the behaviour of all individuals being random in 
an appropriate way. 

In the appendix to this paper, Dr J. Haigh presents a preliminary analysis 
of the circumstances in which a game will have an ESS, and shows how one 
can search for an ESS if it exists. He considers games in which there is a 
finite number of pure strategies, and in which the pay-offs are the same for 
both players-i.e. if A and B are playing a game, the pay-off to A if he plays Z 
and if B plays J is the same as the pay-off to B if he plays Z and A plays J. He 
shows that if there are only two pure strategies it is always possible to find an 
ES!% If there are three or more pure strategies, there may be no ESS. Games 
can be constructed with three pure strategies which have no ESS. A popula- 
tion playing such a game, with pay-offs determining contributions to the 
next generation, was simulated on a computer; it evolved cyclically without 
ever reaching an equilibrium. So far, however, games which we have thought 
of as being models of some biological process have proved to have at least 
one ESS. 

3. A Simple Model 

Consider a contest between two individuals in which victory goes to the 
contestant who is prepared to continue for longer. Suppose that the pay-off 
to the victor is Y. If a contest is ever to be settled, there must also be some 
disadvantage to the contestants in a long contest. If so, the only choice of 
strategy open to a contestant is of the period for which he is prepared to 
continue, and hence of the pay-off, say -m, he is prepared to accept. Thus if 
two contestants adopt strategies m, and m2, where ml > m2, the pay-off 
to the first is v-m, and to the second is -m2. Our problem then is: how 
should a contestant choose a value of m, or, more precisely, is there a method 
of choosing m which is an ESS? 
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It is easy to see that no pure strategy is an ESS. Thus suppose that strategy Z 
selects ml +E, where E is a small random variable with mean zero; E is intro- 
duced to ensure that two contestants adopting Zhave equal chances of winning. 
Then E,(Z) = &u-ml. Strategy Jselects m,. Ifm, > m,, then El(J) = v-m,. 
Hence EJ(Z) > E,(Z), and Z cannot be an ESS. 

This reasoning might suggest that a contestant should select the highest 
possible value of m so as to make it difficult for his opponent to select a 
higher one. This is not so, because if m, > $0, E,(Z) < 0. Then if m, = 0, 
Z&(J) = 0, and therefore Z is again unstable. 

There is however a mixed strategy which is an ESS. This can be found as 
follows. Strategy Z is a mixed strategy which selects a value between x and 
x+6x with probability p(x)Sx. Then the expected gain of playing a fixed 
value m against Z is 

E(m) = i (v-x)p(x) dx - i mp(x) dx. 
0 m 

We now choose the function p(x) so that E(m) has the same constant 
value C for all values of m. Then C is the expected pay-off of any pure 
strategy played against I. Since the expected pay-off of any mixed strategy 
played against Z is the weighted mean of the pay-offs of the pure strategies 
composing it, the expected gain of any mixed strategy played against Z is 
likewise C. By the same reasoning, C is the pay-off of Z played against itself. 
Thus if we can find a functionp(x) such that E(m) = C, we shall have found 
an equilibrium strategy; we shall then show that the equilibrium is stable. 

To find p(x), we put E(m) = E(m + am), so that 

[ (u-x)p(x) dx - $ mp(x) dx = ,% (u -x)p(x) dx 

- ,f6m (m+~mhb) dx. 

After a little manipulation, remembering that 7 p(x) dx = 1, this gives 
0 

vp(m) = 1- 7 p(x) dx. 
0 

Equation (3) is satisfied by the function 

p(x) = i eext”, 

which is the equilibrium strategy we are seeking. We have now to show that 
the equilibrium is stable. Thus if strategy J plays a fixed value m, we have to 
show that E,(Z) > EJ(.Z) for all values of m. 
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E,(J) = Jp-m, 

Now 

and 

E,(I) = (v-m) 7 p(x) dx - i xp(x) dx 

= 20 e-ml”v. 
0 

(5) 

Hence 
E,(I) -E,(J) = 2v edm/” - 3v/2 + m, 

which is positive for all positive values of m. Therefore the strategy defined 
by the distribution (4) is an ESS. 

We conclude that an evolutionarily stable population is either genetically 
polymorphic, the strategies of individuals being distributed as in (4), or that 
it consists of individuals whose behaviour differs from contest to contest as 
in (4). There is no stable pure strategy, and hence no behaviourally uniform 
population can be stable. 

Substituting p(x) = I/v e-“lx in (2), we find that E(m) = 0. This may 
at first sight seem odd. Thus if we were to imagine that the reward for victory, 
v, is the obtaining of an item of food, and that the cost of the contest is the 
food equivalent of the energy used in the contest, it might seem that an 
evolutionarily stable population would use up in fighting all the energy it 
obtained from its food. Clearly no such population could survive. The 
absurdity arises because of a misinterpretation of the utility v. The advantage 
that the winner of such a contest has over the loser is to be measured not by 
the energy in the food obtained, but by the energy which the loser must 
expend in finding a second similar item of food. This point can be clarified by 
showing how the present model might apply to two other situations: 

(1) Two birds attempt to establish a territory in an area too small to con- 
tain both. The loser will have to establish a territory in some other probably 
less favourable habitat. The pay-off for winning is therefore the difference 
between the expected reproductive success in the contested territory and 
reproductive success in the alternative habitat. The cost of continuing the 
contest, to both contestants, is the loss of reproductive success caused by the 
delay in starting to breed, the expenditure of energy on display, etc. 

(2) Two individuals compete over the relative positions they shall occupy 
in a social hierarchy or peck order. The pay-off for winning is measured by 
the increased reproductive success consequent on being higher in the peck 
order; the cost of the contest is again measured by the expenditure of energy 
and any other risks that may be associated with a protracted contest. 

There is therefore nothing absurd about the conclusion that E(m) = 0. 
However, the ESS is not that which would be favoured by group selection. For 
the group, the optimal strategy is to continue for a very short random period. 
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4. Should a Contestant Give Information About His Intentions? 

It has been assumed in the preceding discussion that a contestant displays 
at full intensity until the predetermined moment when he retreats. Would it 
pay a contestant to convey to his opponent information about his intentions? 
In more biological terms, should the intensity of display be related to the 
length of time for which the contestant will continue? The short answer to 
this question is “no”, but the problem deserves further consideration. 

The first point to establish is that the information conveyed would have to 
be accurate. It is no use suggesting that each contestant should announce his 
intentions, and that then the contestant whose announced intentions are 
lower should at once retreat. In such a game, the only rational strategy would 
be to announce that one will go on for ever. 

Given that the information conveyed is accurate, it is easy to see that it is 
of no selective advantage to convey it. Thus consider two possible strategies: 
Z, who conveys no information about his intentions, but can modify his 
intentions in the light of information received; and J, who announces his 
intentions and cannot then modify them. At first sight it seems that if J 
announces a value of m greater than U, he is bound to win against Z, because Z 
would be foolish to compete. This, however, is mistaken. Thus suppose Z 
selects his strategy according to the distribution (4), and ignores the informa- 
tion he receives. Then it follows from the argument in the preceding section 
that Z is an ESS. A still more favourable strategy, I’, would be to behave 
according to the distribution (4) if .Z announced a strategy greater than U, but 
if .Z announced a strategy less than 0 to continue displaying until victory. It 
is then easy to show that there is no strategy J, pure or mixed, which is stable 
against I’; that is, for which EJ(.Z) > E,(Z). It follows that selection will 
oppose any tendency for the intensity of display to reveal future intentions. 

In case it seems that the proposed strategy I’ is too complex to evolve in 
actual animal species, it is worth pointing out that a genetically polymorphic 
population, in which (4) gives the frequency of individuals which always 
display for a period x, except in those cases when their opponent makes it 
clear that he does not intend to display for long, in which case the individual 
displays until his opponent retreats, is a realization of strategy I’. 

The predictions of this and the preceding sections, that the duration of 
contests should be very variable, and that an individual should display with 
constant intensity, independent of how much longer they will continue, needs 
experimental investigation. The most relevant investigation known to me is 
that of Simpson (1968) on the Siamese fighting fish Betta splendens. This 
agrees rather well with both predictions. Different contests do last very 
different lengths of time, and there are no statistically significant or consistent 
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differences between the patterns of behaviour of the eventual winner and the 
eventual loser, at least until close to the end of a contest. It must be admitted 
that the present model gives no explanation for the variety of behavioural 
components observed in these contests. 

5. Contests with Asymmetrical Conditions 

A population of rational beings playing the game considered in section 3 
would agree to toss a coin to decide each contest, the loser retreating at once. 
Is there any way, other than by group selection, in which a population of 
animals could adopt an equivalently satisfactory solution? For example, 
in contests for territory, if later arrivals always retreated in the face of an 
earlier occupant, this would provide a “rational” policy reducing the length 
of contests. The difficulty here is that if the chances of victory of later and 
earlier arrivals are equal, why should the former retreat? (In this particular 
case, chances might not be equal, because neighbours might attack a new- 
comer more vigorously than an established occupant, but this is a complica- 
tion I shall ignore.) I shall now show that if there is associated with each 
contest an asymmetry (e.g. late V. early arrival) recognizable to both contest- 
ants, then this can lead to the evolution of a stable strategy comparable to 
coin-tossing, even if the asymmetry does not alter the probabilities of victory 
in a contest. 

Thus suppose as before that the pay-off for winning is U, and the price to 
both contestants is measured by the duration of the contest. In addition, 
suppose that there is a “label” associated with each contest, so that one 
contestant “sees” the label A and the other the label B; in a series of contests, 
the frequencies with which any contestant sees A and B are equal. Does the 
presence of the label alter the nature of the ESS? 

Consider strategy Z, as follows: 
if see A, play M, where M > v, 
if see B, play 0. 

If the alternative to Z is strategy J, which plays a fixed m regardless of the 
label, then 

E,(Z) = $4 
if m < M, then E,(J) = *v--+m, 
if m > M, then E,(J) = v-+M. 

Since M > v, EI(I) > E,(J) for all positive values of m. 
If K is a mixed strategy which ignores the label, E,(K) is the weighted mean 

of a number of values of E,(J), and hence E,(Z) > E,(K). Hence Z is stable 
against any pure or mixed strategy which ignores the label. 
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By symmetry, the strategy-if see A, play 0; if see B, play M-is also an 
ESS. Of course, these two symmetric strategies cannot co-exist. Whichever is 
first established will continue indefinitely. But what of the strategy P, which 
ignores the label and plays according to the distribution (4)? We have 
E,(P) = 0 and &(Q = 0, so the stability of P depends on the values of &(I) 
and E,(P). 

Now 
EIV) = 94 

and from equation (5), 
E,(P) = +v+f(2ue-"/"-~). 

Since M > v, E,(P) < v/e c E,(I), so that lis stable and P unstable. This 
establishes our earlier assertion that there is an ESS comparable to the 
rational policy of coin-tossing. 

In biological terms, a method of settling contests by taking into account 
some asymmetric feature, such as first arrival, which could not by itself 
influence the outcome, can be evolutionarily stable. A possible example has 
been suggested to me by Dr M. Land. Juvenile jumping spiders defend a 
region of space around where they happen to be. If two individuals meet, the 
first one to see his opponent orientates and advances towards him, and the 
other retreats at once without a contest. This is a trivial contest. A more 
important example of a contest being settled by an initial asymmetry is 
reported by Kummer (1971) in hamadryas baboons. In the wild or in 
captivity, two males may fight over the possession of a female. Kummer 
brought together a male and female previously strange to one another, and 
left them for 15 min to form a pair bond. A second male, who had been able 
to observe the pair, was then introduced into the enclosure; this second male 
avoided conflict with the first arrival, who was left in possession of the female. 
On a later occasion the same two males were used in a similar experiment with 
a second female, but with their roles reversed; again the first arrival was left 
in possession of the female. Although the argument of this section applies to 
displays rather than to actual fights, the logic is the same provided that if a 
fight takes place both participants run a risk of injury. Kummer’s experiment 
is a clear illustration of the fact that an initial asymmetry, which is completely 
irrelevant to the outcome of a fight, can be used to settle a contest. 
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APPENDIX 

The Existence of Evolutionary Stable Strategies 

JOHN HAIGH 

Mathematics Division, University of Sussex 

Consider a situation where aij (i, j = 1, 2, . . ., m) is the pay-off to the 
player of strategy i when his opponent plays strategy j in a game of m pure 
strategies. Then any probability vector 

P = (PI,.. .,p,) 
( 

i~~pi = l,pi 3 Ofor i = 1,2 ,..., m 
> 

represents the mixed strategy 
“Play the ith pure strategy with probability pi, 1 < i < m”. 

Then, if E(p, q) is the mean pay-off to a player who uses p when his opponent 
uses q, we have 

E(p,q) = P’Aq 
where A is the matrix (aij) and p is a column vector, p’ its (row) transpose. 

According to the definition in the paper, p is an ESS (evolutionarily stable 
strategy) provided 

WP, P> 2 E(q, PI for all q (Al) 

and, if p + q but, E(p, p) = E(q, p), then 

@P, q) > E(q, 9). 642) 
It seems a natural conjecture, by analogy with game theory, to suggest 

that, whatever the matrix A, there is some ESS. There are some trivial cases 
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we should exclude-for example, if aii = aij = aji = ajj, then any strategy p 
that has only pi, pi > 0, played against any strategy q that has only qi, qj > 0 
will clearly result in the same value of E@, p), E@, q) and E(q, q), so the strict 
inequality in equation (A2) cannot arise. However, even leaving aside such 
trivial cases, [or even relaxing equation (A2) so that if E@, p) = E(q, p), we 
only require E(p, q) > E(q, a)] the conjecture isfizlse. There are non-trivial 
situations where no ESS exists. However, we will first give sufficient condi- 
tions on A that do guarantee the existence of an ESS in certain circumstances. 

Theorem 1: If, for any i, a,, > aji for all j =I= i, then i is a pure ESS. 
Proof: Obvious from the definition. 
This case can be best described as the “diagonally dominant case”-A has 

a column in which the term on the diagonal dominates all other terms. It is 
quite possible that A may have several diagonally dominant columns, and 
thus several different pure ESS’s. 

Theorem 2: If A is a non-trivial 2 x 2 matrix, there is an ESS. 

Proof We may suppose 

where a > 0 and b > c. (For, given any A, to subtract amount a,, from each 
pay-off merely decreases evenly the reward, and does not change the relative 
merits of the strategies. And, if a < 0 or b < c, there is already an ESS by 
Theorem 1.) 

Then it can be verified that (p, 1 -p) is an ESS, where 

b-c PC-’ 
a+b-c’ 

if b = c and a = 0, so that this expression is indeterminate, then 
. 

so here the pay-off is independent of your own strategy, which we again 
consider a trivial case. For 3 x 3 or larger matrices, some preliminary work is 
helpful 

(P’ - q’)A(p - a) = (p’ Ap - q’Ap) - (p’Aq - q’ Aq). 
Hence, if p’Ap = q’Ap, we shall require (for an ESS) p’Aq > q’Aq, which 
means that, if p’Ap = q’Ap, then (p’ -q’)A(p -q) < 0. If A were a positive 
definite matrix, this could not be satisfied, so to find a counterexample to the 
conjecture, we look for positive definite matrices without any diagonally 
dominant column. 
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Now ~(x+JJ+z)~+(x+~)*+(x+z)~ can be written 

@ y “f ; $(It) 

and so the matrix 
B=4 1 5 

i 1 
5 3 0 
1 4 3 

looks a candidate for a counterexample. 

Theorem 3: A necessary condition for p to be an ESS is that when Pi > 0, 
then (Ap)l = Max (Ap)j. 

j 
Proof: Since p’Ap > q’Ap for all q, consider the problem of maximizing 

(as r varies with p fixed) r’Ap. 

t’Ap = 1 rj(Ap)j 
j 

Suppose 
pi > 0 but (Ap)i < MAX (Ap)j = (Ap),. 

Then, if r is the kth pure strategy, r’Ap ‘= (AP)~ and 

P’AP = Pi( + ,qi Pj(AP)j < (APL 

since pi > 0. It is an immediate consequence of Theorem 3 (and it is also 
clear after a brief thought) that no pure strategy i can be an ESS if uil < aji 
for some j (a converse to Theorem 1). 

Thus no pure strategy of the matrix B is an ESS. Suppose (0, p, 1 -p) 
(1 > p > 0) is an ESS. By Theorem 3, we must have 4p + 3( 1 -p) = 3p + O(1 -p) 
i.e. 2p-3 = 0, impossible. Similarly, for (p, 0, 1 -p) to be an ESS 
p+3(1-p) = 4p+5(1-p) i.e. p+2=0, impossible. And, for (p, l-p, 0), 
4p+ (1 -p) = 5p + 3(1 -p) i.e. p = 2, impossible. For (p, q, 1 -p-q) 
[O<p,q,l-p-q< l]tobeanESS 

4p+q+5(1-p-q) = 5p+3q = p+4q + 3(1-p-q) 
i.e. 

(P,4,1-P-d = (++,~&~ 
and any strategy played against that has an expectation of J$$. But, playing 
(3, g, A) against the opponent’s (0, 0, 1) gains g, but playing (0, 0, 1) 
against (0, 0, 1) gains 3, and 3 > j+. Thus no ESScan exist. 

This example shows that the condition of Theorem 3 is not suficient for 
finding an ESS. But it also shows a logical way of seeking out all possible 
ESS’s. 


