Abstract

A new class of model-based filters for extracting trends and cycles in
economic time series is presented. These low pass and band pass filters are
derived in a mutually consistent manner as the joint solution to a signal
extraction problem in an unobserved components model. The resulting
trends and cycles are computed in finite samples using the Kalman filter
and associated smoother. The filters form a class which is a generalisa-
tion of the class of Butterworth filters, widely used in engineering. They
are very flexible and have the important property of allowing relatively
smooth cycles to be extracted from economic time series. Perfectly sharp,
or ideal, band pass filters emerge as a special case.

Applying the method to a quarterly series on US investment shows a
clearly defined cycle currently at the peak of a boom.
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1 Introduction

Separating out trends and cycles is fundamental to much of macroeconomic
analysis. For example, the filter introduced by Hodrick and Prescott (1997) is
widely used for this purpose. More generally trend extraction may be carried
out by using a low-pass Butterworth filter. This class of filters is widely used in
engineering, but, as recently pointed out by Gomez (2000), the Hodrick-Prescott
(HP) filter is a special case.

Rather than defining the cycle simply as the residual part of the series after
a trend has been extracted, a band pass filter may be used to remove high
frequency as well as low frequency components. In a recent paper Baxter and
King (1999) consider the design of band pass filters and their implementation
in finite samples. Their prime concern is to approximate the ‘ideal’ filter (a
perfectly sharp band pass filter) in the time domain using a finite moving average
and to use this filter for extracting business cycles. Christiano and Fitzgerald
(1999) also regard the rectangular gain function as the ultimate goal of filtering
operations; they too propose a finite sample approximation, demonstrating its
properties when applied to US macroeconomic data. The ideal filter can be
obtained as the limiting case of a Butterworth band pass filter.

An alternative approach is to extract trends and cycles from unobserved
components, or structural, time series models. The parameters of such models
are typically estimated by maximum likelihood and, once this has been done,
optimal estimates of the components are obtained by smoothing algorithms.
The calculations are most easily performed by putting the model in state space
form; see Harvey (1989). The principal aim of this article is to extend the class
of structural time series models so that they are able to extract smoother cycles.
In doing so, it is shown that the implied filters are closely linked to Butterworth
filters and that a model yielding the equivalent of an ideal band pass filter can
be obtained as a special case.

The attraction of the model-based approach is that the filters implicitly
defined by the model are consistent with each other and with the data. Fur-
thermore they automatically adapt to the ends of the sample and, if desired,



root mean square errors can be calculated. The models can also be used to gain
insight into the more ad hoc filters used in business cycle analysis, indicating
when it might be appropriate to use them and when they can lead to serious
distortions of the kind documented by Cogley and Nason (1995) and Harvey
and Jaeger (1993) for the HP filter and by Murray (2000) and Benati (2000) for
ideal band pass filters.

The plan of the article is as follows. Section 2 begins by discussing the
frequency domain properties of the Butterworth class of low pass and band pass
filters. Section 3 then sets out classes of unobserved components models for
which the Butterworth filters are optimal, at least for estimating components
near the middle of a long sample. The class of band pass Butterworth filters is
extended by basing them on models containing stationary cycles. This is crucial
for economic applications. A general class of unobserved components models,
containing both trends and cycles, is defined in section 4. The implied filters for
extracting trends and cycles from such models are mutually consistent and the
way in which they interact is studied in the frequency domain. Section 5 applies
the new models to real macroeconomic time series, with particular emphasis on
the extraction of relatively smooth cycles. Section 6 concludes.

2 Low pass and high pass filters

Low pass filters are used to isolate the trend in a series. Viewed in the frequency
domain, the effect of such filters is to pick out the low frequency movements. In
a similar way, band pass filters are designed to focus on mid-range frequencies,
associated with movements such as business cycle fluctuations.

The low pass Butterworth filter depends on a positive parameter, ¢, and a
positive integer index m. It can be expressed in terms of the lag operator, L,
as follows:

1
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m=1,2,3,.. (1)

Expanding this expression in powers of L gives the coeflicients, w;, attached to
the adjacent observations when the trend is estimated in the middle of a long
sample, that is

BE(L)y: = wiyis; (2)
J

For example if m = 1, it can be shown that the weights die away exponentially
on either side, that is

wi ={(1+0)/(1=0)}=0V,  j=01,2,.... (3)

where § = {—q — 2 + /¢% + 4q}/2. The weights in the filter sum to one, as
can be seen by setting L. =1 in (1), while the corresponding detrending filter is
given by 1 — B!2(L).



Figure 1: Butterworth low pass filter, B/Z()), for A, = 7/8 and m = 1,3 and
10.

The form of the Butterworth filter is motivated by its properties in the
frequency domain. The effect of the filter can be obtained from the frequency
response function, which is found by replacing L by exp(—i)) in (1). The
gain is the modulus of the frequency response function. Assuming the original
series to be stationary, the gain shows how the amplitude of components at
each frequency are affected; see, for example, Harvey (1993, p 190). Squaring
the gain gives the factor by which the spectrum of the original series must be
multiplied to give the spectrum of the filtered series. Since the filter in (1) is
symmetric and the frequency response function is nowhere negative, the gain
is equal to the frequency response function. Writing Bfﬁ(e’i/\) somewhat more
compactly as Bffb()\), the gain can be expressed as

1
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Using standard trigonometric identities, it can be shown that
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In the second equation in (5), Aj, is the frequency at which the gain equals
one-half. Without loss of generality in the gain shape, we can restrict attention
to the case 0 < A, < 7 since the function sin2(x/2) has a period of 27 and
is symmetric. The low-pass filter focuses on fluctuations with frequency below
Aip.  As can be seen in figure 1, where BE()\) is displayed for m equal to
1, 3, and 10 with X\, fixed at 7/8, the higher frequencies are cut off more
sharply as m increases. Indeed it can be seen from (5) that the filter becomes
more rectangular as m — 00. The parameter ¢ also influences the sharpness and
location; consistent with the relationship in (6), according to which higher values
of g coincide with a larger index m, the Butterworth low pass filter becomes
sharper as ¢ increases while Ay, remains fixed. On the other hand, if the order
m is fixed, then higher values of ¢ are associated with increases in the cutoff
frequency A;,. Overall the class of Butterworth low pass filters' offers a high
degree of flexibility with respect to the location of the cutoff frequency and the
sharpness of the filter.

Cyclical components can be extracted from an observed series using band-
pass filters based on the Butterworth low-pass filters. This may be done by
subtracting the weights for a Butterworth low pass filter for A;, = Ay from those
for a low-pass filter for Ao with Ay > A;. Setting the low pass index, m, to n
yields a gain function given by

b B sin(A/2) 0, ' sin(A/2) 5,1 "
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Since the weights in the low pass filters sum to unity, the weights in the band
pass filter sum to zero. As n — oo the gain becomes rectangular, cutting out all
frequencies outside the range between Ao and A;. Some business cycle researchers
have argued for the desirability of such sharp filters, referring to them as ideal.
The use of a sharp band pass filter involves the notion that the underlying
cyclical component itself is in fact defined by a range of frequencies. Thus,
in Baxter and King (1999), the business cycle component of a macroeconomic
time series is equated to those components with periodicity between 6 and 32
quarters, following Burns and Mitchell (1946).

A slightly different class of band pass filters is obtained from low-pass fil-
ters by a transformation as in Oppenheim and Schaffer (1989); see also Gomez
(2000). Given constants ¢ and A., which satisfy ¢ > 0 and 0 < A, < 7, these
filters have gain functions:
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L Another class of Butterworth filters is gven by replacing the sine function in equation (5)
by a tangent function; see Gomez (2000). We restrict attention to sine function filters as they
are most easily linked to unobserved components models.




Figure 2: Butterworth band pass filter, B& (M), for \. = 7/4, ¢ = 1,andn = 1,3
and 10.

The filters are indexed by a positive integer n. We will call them band pass
Butterworth filters. A plot of the gain function is shown in figure 2 for different
values of n with A\, set to 7/4 and ¢ = 1. As n increases, the filter cuts
out an increasingly distinct block of frequencies and so corresponds to an ideal
band pass filter. Since B¢ (0) = ¢/(q + 4™), the weights only sum to zero as n
goes to infinity. (Contrary to what is argued in Baxter and King (1999) in the
context of an ideal filter, there is no reason why the weights for a band pass
filter should sum to zero in general. However, the combined sum of the weights
for extracting all the components which are not part of the trend will normally
be zero.)

The parameter \. plays the role of a central frequency as the band selected by
the filter tends to concentrate in a neighborhood surrounding it. The parameter
q controls the spread of the gain function. Figure 3 displays the band pass
Butterworth filter for different values of this parameter, with A, = 7/4 and
n = 3. The peak of the graph becomes perceptibly narrower as ¢ shifts from
10 to 0.1, indicating an increased focus on components with frequency near ..

Thus, the band pass Butterworth filters possess a considerable degree of
flexibility regarding those aspects of primary interest to analysts. While the
general location of the peak of the gain is controlled by A., the sharpness or
rectangular resolution of the filter depends on the index m. The range of
frequencies captured by the filter is determined by g. A measure of bandwidth
can be found by solving for the two values of A at which the gain function equals
1/2. These values represent the two values of A for which the second term in
the denominator of (7) equals one. Thus, the solutions satisfy



Figure 3: Butterworth band pass filter, B&(\), for n = 3,\. = 7/4, and ¢ = 0.1,
1 and 10.

4cos? A\ — 8cos \.cos A + 4cos? \,)
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This results in a quadratic equation in cos A which when solved yields:

1 1
cos\ = Z(ql/” —4)cos A\, = Z(ql/” (¢*™ cos? A, — 4sin’ )\c))%

Denoting the two frequencies for which BZP()\) =1/2 by Ay and A2, the band-
width is given by |A2 — A;|. Given a desired value for the bandwidth along with
the frequency of interest A., one could solve (numerically) for g/". The index,
n, may be chosen on the basis of the desired sharpness.

The next section shows how Butterworth filters are implicitly given by
particular types of unobserved components models. This gives insight into when
various filters might be appropriate. It also solves the problem of how to form
weights near the beginning and end of a series and suggests how the filters may
be generalised.

3 Unobserved cyclical and trend components

This section sets out unobserved component models in which the optimal esti-
mates of trends and cycles are given by Butterworth filters.

Definition 1 An unobserved component {y,,, ,}72
tic trend, for positive integer m, if

oo 18 an mth order stochas-



Mg =M1+ G (9)
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where the disturbance term ¢, is serially uncorrelated with mean zero and con-
stant variance 0%, denoted hereafter by writing ¢, ~ WN(0, 0%),

The first order stochastic trend is a simple random walk, while for m = 2 the
trend is an integrated random walk. These specifications are frequently used
in structural time series models; see Harvey (1989), Young (1984) or Kitagawa
and Gersch (1996). In the integrated random walk case, 1 ¢ is the slope.

Although these stochastic trends are nonstationary, the Wiener-Kolmogorov
(WK) filter can still be used to give the optimal, or more precisely minimum
mean square error linear, estimator; see Bell (1984). If the only other component
is white noise, ¢, that is

Yt = o s + €0, €~ WN(0,02)

then the WK filter for a doubly infinite series yields the low pass Butterworth
filter, (1), with ¢ = ¢, = Ug/ag. This follows immediately on substituting
repeatedly to give p,, ;, = ¢;/(1 — L)™ and constructing the WK filter as the
ratio of the (pseudo) autocovariance generating function (ACGF) of p,, ; to
that of y; For finite samples, the trend may be extracted by the state space
smoother. Note that the estimated second-order trend is equivalent to a cubic
spline while m = 3 gives a quintic spline; see Kohn, Ansley, and Wong (1992).

The specification of stochastic cyclical components takes into account the
notion that economic cycles evolve over time. This specification has been
found useful in modeling cyclical behaviour in a wide variety of time series,
including real GNP; see Harvey and Jaeger (1993). 'The definition below is a
straightforward generalisation based on a recursion which generates a sequence
of cycles driven by a disturbance term which impacts in such a way as to preserve
continuity.

Definition 2 An unobserved component {wmt};ﬁ is an nth order stochas-

tic cycle, for positive integer n, if
Vi | _ cos A, sin A Uy Ky
[ wit ~P1 —sin Az COS A wit—l + 0 (10)

Yie | _ cos A\; sin A, Vit o Ay o
[wit =7 —sinA, cos . (P + 0 , t=2,..,m

where Ky ~ WN(O,ai), The parameter p is called the damping factor and
satisfies 0 < p < 1, while 0 < A\, < 7.
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The first order stochastic cycle is as described in Harvey (1989), with the
variance of the disturbance term for the auxiliary process wit set to zero instead
of 02, For n = 2, Py ¢ has a first order stochastic cycle as a driving variable so
the shocks to a second order cycle are themselves periodic. The properties of
the cycle are obtained by first writing

Voo ] [ 1=peosAl —psinAL ][ iy, i
vl | T | psinAL 1 — peos AL 0 r T A

from which it follows that
wi,t = C(L)wifl,m i = 27 4

where

1— pcos AL
)=
) = T cosn 1 7I7

Since 9, ;, = c(L)ky, repeated substitution yields v, ;, = [¢(L)]"k; and so the
autocovariance generating function (ACGF) is [¢(L)c(L~Y]"02. The spectral
generating function is obtained by replacing L by exp(—i)) and so the power
spectrum, for p < 1, is

2

FolX p o) oz 1+ p?cos® \, — 2pcos A, cos A
; e ) = 5—
PP 27 | 1+ pt 4+ 4p2 cos? A, — 4(p + p?) cos Ac cos A + 2p2 cos 24

(11)

This generalises the expression for n = 1 given in Harvey (1989, p 60) except
insofar as (10) contains only one disturbance term.
If the model consists of a stochastic cycle plus white noise, that is

Ye = wn,t +e, g~ WN(0703) (12)
then the WK filter for extracting the cycle is

oZc(L)"e(L- 1)

GBY(L) = : 13
o (L) o2e(L)re(L—1" 4+ 02 (13)
The frequency response function is again real and positive so the gain is
q |: 1+p2 cos? A, —2p cos A cos A :| "
K| 14+p%+4p2 cos? Ae—4(p+p3) cos Ae cos A+2p2 cos 2\
GBY(); p) = pttdp (p+r°) P (14)

1+ 1+p2 cos2 Ac—2pcos A cos A "
s 1+p%+4p2 cos? Aoc—4(p+p°) cos A cos A+2p2 cos 2\

where q,, = 02/02. The notation GB% is for generalised band-pass Butterworth
filter of order n, since when p = 1, the ordinary Butterworth band pass filter,
(7), is obtained.

Setting p equal to 1 in the band pass filter may be unappealing insofar as
it corresponds to a nonstationary cycle. Business cycles are normally thought



Figure 4: GBE(X;p) for n =2 and p = 0.5,0.8 and 1.0.

of as being stationary, so the additional flexibility resulting from the inclusion
of the damping factor is an important generalisation. Figure 4 plots the gain
of the band pass filter for p = 0.5, 0.8, and 1.0 with n set to 2. As p becomes
smaller, the gain function spreads out. Conversely, the spectrum becomes more
peaked around A, as p increases. For p = 1 the spectrum is undefined at A.,

but cancellation between the numerator and denominator means that the gain
is still defined.

4 General model-based filters

The stochastic trend and cyclical components, ,, , and ¢, , defined in the last
section, combine to form a class of structural time series models:

Ye = Py + Uy e, t=1,.7T, (15)

where the irregular term ¢; is white noise. The three components are assumed
to be mutually uncorrelated; this both simplifies the statistical treatment of the
model and ensures that the weighting patterns in the signal extraction filters
are symmetric; see Harvey and Koopman (2000). The model can be extended
s0 as to include a seasonal component, as in Harvey and Jaeger (1993), thereby
avoiding the potentially distorting effects of seasonal adjustment procedures.

The optimal estimator of the trend (cycle) in (15) will be called the gen-
eralised low (band) pass Butterworth filter of order (m,n). The low pass filter
may be written

1_ L 2m
B (L) = Il
ac/ 11 = LI™ + g/ |e(D)]" + 1




Figure 5: Generalised low pass and band pass Butterworth filters of order (2,2)
with ¢, = ¢- =l and p =1 and A\, = 7/4.

and its gain is

tc [t |
GB'friin()\): ¢ |2=2cos A

" 1492 0082 Ao—2p cos Ag cos A "

q 1 +q +p2 cos® Ac—2p cos A cos +1
¢ |2=2cos A K| 14p%+4p? cos? Ao—4(p+p°) cos A cos A+2p? cos 2\

(16)

The corresponding expressions for the band pass filter, GBgfm (L), are similarly
obtained.

The model-based low pass and band pass filters are applied simultaneously.
Applying simple low pass and band pass Butterworth filters separately will give
different results. Unless the filters are ‘ideal’, applying individual filters consec-
utively will also give different results. Thus a generalised band pass Butterworth
filter of order (2,2) will not give the same cycle as would be obtained by apply-
ing a band pass filter of order 2 to a series which has been detrended by a low
pass filter of order 2. A fully specified model enables trends and cycles to be
extracted by filters which are mutually consistent. Figure 5 shows gains for the
low pass and band pass Butterworth filters of order (2,2), given ¢; = ¢, = 1.
There is some overlap and a comparison with figure 1 shows that the need to
accommodate the band pass filter induces a dip in the low pass filter at interme-
diate frequencies. Figure 6 shows the same filters, but with the order increased
to (5,5). Both gain functions have become noticeably more block-like. Some
overlap between the two still exists, but it has fallen considerably. This ten-
dency continues as the order increases further with the gain function becoming
increasingly sharp and rectangular.

The gain function shows the effect of a filter on a stationary time series.

10
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Figure 6: Generalised low pass and band pass Butterworth filters of order (5,5)
with ¢, = ¢- =l and p =1 and A\, = 7/4.

However, the main reason for applying filters in economics is to deal with trends,
which are normally thought of as being nonstationary. The implications of
a particular filter for detrending or extracting a cycle can be determined by
examining the implied spectrum. For example, suppose we have an optimal
filter, that is one constructed from the correct model. If the model is of the
form (15), the spectrum of the extracted cycle is equal to the spectrum of the
original cycle multiplied by GBgfm (\). Because the effect of the filter is to damp
down the power of frequencies which are some way from \., the spectrum of
the extracted cycle will be more concentrated than that of the original and the
series itself will be smoother.

The effect of arbitrary band pass filters can be determined by deriving the
implied spectra in a similar way as was done for detrending filters in Harvey and
Jaeger (1993). An important question concerns the difference between applying
a simple band pass filter and a generalised band pass which takes account of
the possibility of a stochastic trend. Suppose the true series is integrated of
order d, denoted /(d). A simple band pass filter does not produce a stationary
series since there is no (1 — L)d term in its numerator. This can produce serious
distortions as pointed out by Murray (2000) and Benati (2000) in their studies
of ideal band pass filters. Of course a series may be differenced before applying
a band pass filter, but again the result may not be what is wanted. If the cycle
in the actual series is additive, as in (15), the effect of applying a band pass filter
to d—th differences is that the gain is multiplied by a factor of 2d/2(1 - cos)\)d/Q,
so low frequencies are attenuated.

To summarise, the proposed generalised low and band pass Butterworth
filters are mutually consistent and become closer to ideal filters with rectangular
gain functions as m and n tend to infinity. This raises the question of how
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desirable ideal filters are in the first place. In time series modelling the trend
index m is usually taken to be one or two. A higher value will give a nonlinear
forecast function and an estimated trend which is relatively responsive to short-
term movements in the series. Such trends may not be attractive. On the
other hand, higher values of n in the cycle will lead to more concentration
on a particular band of frequencies and hence to an extracted cycle which is
smoother than would be obtained with the usual value of n = 1. This may have
some merit. To see whether this is the case, the next section investigates how
well models with different values of n fit real economic time series.

5 TUS Macroeconomic time series

There are two attractions to estimating trends and cycles from a fully specified
model. The first is that the implied filters are optimal and mutually consistent
for given parameter values. The second is that the parameters can be estimated,
so the filters are consistent with the properties of the series. This section demon-
strates these points by fitting models to the logarithms of quarterly, seasonally
adjusted, US GDP and investment from 1947:1 to 1999:4 based on 1996 price
levels (Source: US Dept. of Commerce, Bureau of Fconomic Analysis: National
Accounts Data). The order of the stochastic trend is m = 2 and interest centres
on comparing the results for different orders of the cyclical component.

The estimation results are reported below in table 2. The calculations were
done with a program written in the Ox language of Doornik (1999), with ex-
tensive use being made of the state space algorithms in Ssfpack; see appendix
and Koopman, Shephard, and Doornik (1999). The parameters were estimated
by maximum likelihood and the variances are reported multiplied by 107. The
equation standard error, &, has been multiplied by 10*. The Box-Ljung statis-
tic Q(P) is based on P residual autocorrelations and should be tested against
a chi-squared distribution with degrees of freedom equal to P + 1 minus the
number of estimated hyperparameters. Goodness of fit is assessed by R%, the
coeflicient of determination with respect to first differences, as well as by the
equation standard error &. The figures in table 2 can be compared with those
in table 1 which were obtained using the STAMP package of Koopman et al
(2000); the small differences can be partly explained by the different ways in
which the disturbance terms are set up in the cyclical components. Note that

when 0727 is a free parameter in GDP it is estimated as zero.
Series Restrictions 02 of o o2 p 2r/A. Q(14) RL o
Real GDP  none 0 17 585 0 0.90 17.8 17.6 0.07 99
Investment none 21,250 0 1242 337 098 9.6 22.6 0.14 519
0727 =0 0 31 20,406 O 0.87 17.6 19.1 0.08 535

Table 1: STAMP parameter estimates and diagostics for US macroeconomic data.
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Series n  Restrictions o? o7 o2 P 2r/A. Q(14) RL o

Real GDP 1 none 21 670 0 0.92 19.2 28.3 0.05 100
2  none 0 594 91 0.74 142.8 12.0 0.14 96
2 A, fixed 14 413 117 0.76 19.2 11.2 0.09 98

Investment 1 none 46 23974 O 0.90 20.5 36.7 0.05 544
2  none 14 12126 5184 0.74 21.6 17.3 0.11 527
3 none 11 6074 6714 0.65 194 12.7 0.13 523
4  none 0 4564 7051 0.55 224 13.8 0.16 514
5 none 0 3159 7269 049 20.6 13.0 0.16 513
6 none 0 2379 7375 045 19.3 12.6 0.16 513

Table 2: Parameter estimates and diagnostics from fitting models to US macroeco-
nomic series; each variance is multiplied by 107 while 27 /A is the period in quarters.

Setting 7 = 1 gives estimated periods for both series of around five years;
similar results were reported by Harvey and Jaeger (1993) for a shorter sam-
ple. For n = 2, \. was estimated to be near zero for GDP. This is not very
satisfactory, though the Box-Ljung statistic is much lower. However, setting the
frequency to the value obtained with n = 1 gave similar diagnostics to those
obtained with unrestricted estimation and only a marginal increase in the equa-
tion standard error. The damping factor of the cycle fell from 0.92 to 0.76. The
pattern is similar to the cycle obtained with n = 1, but it is smoother because
some of the high frequency movements have been consigned to the irregular.

Estimation of the investment series for higher values of n was more successful.
The period is roughly the same for n from one to six while p shows a gradual
decline and the irregular variance increases. The cycles are shown for n = 1,2
and 4 in figures 7 through 9. The result for n = 6 is similar to that of n = 4.
Setting n greater than one gives a cycle which is smoother and more clearly
defined, thereby enabling turning points to be dated more easily. The higher
values of n also point to recent years as belonging to the upswing of a cycle,
something which is not apparent when n = 1.

The implicit weights used by the smoother to extract the trend and cycle-
the w}s in expressions like (2)- were calculated with the ‘Weights’ routine of
Koopman and Harvey (1999). These enable a comparison to be made with
nonparametric methods in which kernels, or weighting patterns, depend on a
pre-assigned bandwidth as opposed to an estimated signal to noise ratio.

The weights for extracting the cycle and trend in US investment near the
middle of the sample are shown in figure 10 for n = 1. The shape of the
implicit kernel is determined by the parameter estimates reported earlier for
the UC model with a 1st order stochastic cycle. Since there is no irregular, the
two contemporaneous weights (j = 0) sum to one, and at other points they are
equal and opposite. For the cycle, wy exceeds 0.9 indicating an emphasis on
the current observation, while the other coefficients show damped oscillations
as they collapse toward zero.

When n = 2, the irregular plays a role and figure 11 shows how smoother
cyclical estimates are produced. The current observation receives less weight
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Figure 9: Estimated cycle for US investment (logarithms) with n = 4.

and the two immediately adjacent observations have a significant positive weight-
ing. Thus the cycle is estimated by averaging over the current observation and
the ones immediately adjacent, and then subtracting a weighted sum of the
remaining observations.

The weighting pattern for the trend is flatter for n = 2 as compared with
n = 1, with a somewhat lower peak and no negative weights, at least in the
range considered.

The stylised facts from the estimated trends and cycles are such that the
trend shows a steady increase in the 1960s and the 1990s. At other times, the
underlying growth rate is slower and the cycles are more pronounced. The
extracted cycles for US investment in figures 7 through 9 are particularly in-
teresting. As m increases, there are really only two features that change as a
smoother cyclical component emerges. First, the peak in the late 1950s be-
comes lower and second, recent upward movments in the trend become assigned
to the cycle. Results for some other countries are presented in Trimbur (2000).

6 Conclusions

We have set up a class of unobserved component time series models consisting
of stochastic trend, cycle and irregular components. A seasonal component
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Figure 10: Observation weights for extracting the cycle (top) and the trend
(bottom) in US investment for n = 1.
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Figure 11: Observation weights for extracting the second-order cycle (top) and
the trend (bottom) in US investment.
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may be included if appropriate. The model may be estimated by maximum
likelihood and the specification checked by the usual diagnostics. The trend
and cycle components are then extracted optimally by the state space smoothing
algorithm. The new feature of the model lies in the specification of the cycle
which now depends on an index parameter n. In previous work n has effectively
been set to one, but by allowing a higher value a smoother, more clearly defined,
cycle is obtained. The example of US investment illustrates this point with
values of n equal to two and four.

The smoothing algorithm applied to a given model implies a particular
weighting pattern or filter for the observations. The Wiener-Kolmogorov filter
for a doubly infinite sample is easily written down. This enables the model-based
smoother to be compared with other filters for extracting trends and cycles. In
particular, it transpires that the Butterworth low pass filter is equivalent to
trend extraction in a stochastic trend plus noise model, while the Butterworth
band pass filter is obtained from a nonstationary cycle plus noise model. By
introducing a damping factor which allows the cycle to be stationary, a more
general class of Butterworth band pass filters is defined. Setting up a model
with both a trend and a cycle leads to a class of generalised Butterworth filters
which extract these components in a mutually consistent manner.

The ideal band pass filter can be eflectively obtained from the Butterworth
band pass filter by setting n to a high value. As has been pointed out, a simple
ideal filter can create spurious effects when used directly on a nonstationary
economic time series and a generalised band pass Butterworth filter can over-
come this problem to some extent by making allowance for the trend. However,
the argument for an ideal band pass filter carries across from engineering where
one might, for example, be interested in tuning a radio to a particular station.
Its use in economics is perhaps problematic, particularly as the implied cyclical
model may not be an appealing one.

To summarise, the filters implied by the proposed class of unobserved com-
ponents models include, as special cases, many filters which are popular in
business cycle research. Having a model underpinning a filter solves the prob-
lem of how to adapt the weights to the sample end points and how to find mean
square errors. Furthermore the model provides insight into when certain filters
are appropriate and when they can lead to serious distortions. Our preferred
strategy is to avoid potential distortions by using model-based filters which are
consistent with the data.
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A Appendix: State space form

The model underlying the generalised Butterworth filter, (15), can be put into
state space form (SSF) by defining the (2n +m) x 1 state vector o = (i}, ;)
where

M;t:[um,t Hm—1,t - - - Ml,t]andwz@:{wn,t w;,t - wit

The measurement equation is then
Yt :Zzlfat +€t7 t= 17"'7T7

where the vector 2, contains ones in the first and (m + 1) — th positions and
zeroes elsewhere. The transition equation for the trend is

My = Umfly 4 +Zm§t (18)

where U, is an m x m upper triangular matrix of ones and ¢,, is an m x 1
column of ones. The covariance matrix of the disturbance vector is therefore

Var(imC,) = z’mz’;nag (19)

The transition equation for the cyclical part of the state vector is

Yy =Ty 1 +1n @ [ ’Bt } (20)

where
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B pcos . psin. 0 0
T¢ = Un® |: 0 0 :| +I’”® |: _psin)\c IOCOS)\c (21)

The covariance matrix of the disturbance vector is

Var{in(}?[%t ”):z’nz’;@[%ﬁ 8} (22)

The Kalman filter is applied by initialising the nonstationary trend vector,
1, with a diffuse prior. The unconditional distribution of the cyclical state
vector 9, has mean zero and its covariance matrix I' is found by noting that
equation (21) represents a stationary VAR(1) in ¢,. Using a standard formula

EES)

vee{T'} = [Inz — Ty © Ty] ‘vec{ini!, © [ G 8 }}. (23)
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