SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(6), 527-542 (JUNE 1994)

Memory Allocation Costs in Large C and
C++ Programs

david detlefs and al dosser
Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto,
CA 94301, U.S.A. (e-mail: detleé®src.dec.com,doss@rzso.dec.com)

and

benjamin zorn
Department of Computer Science, Campus B430, University of Colorado, Boulder
CO 80309-0430, U.S.A. (e-mail: zawts.colorado.edu)

SUMMARY

Dynamic storage allocation is an important part of a large class of computer programs written

in C and C++. High-performance algorithms for dynamic storage allocation have been, and will
continue to be, of considerable interest. This paper presents detailed measurements of the cost of
dynamic storage allocation in 11 diverse C and &+ programs using five very different dynamic
storage allocation implementations, including a conservative garbage collection algorithm. Four of
the allocator implementations measured are publicly available on the Internet. A number of the
programs used in these measurements are also available on the Internet to facilitate further
research in dynamic storage allocation. Finally, the data presented in this paper is an abbreviated
version of more extensive statistics that are also publicly available on the Internet.

key words: Garbage collection Dynamic storage allocation Performance evaluation Conservative collec-
tion Dynamic memory management

INTRODUCTION

Dynamic storage allocation (DSA) is an important part of many C and+C
programs, including language interpreters, simulators, CAD tools, and interactive
applications. Many different algorithms for dynamic storage allocation have been
designed, implemented, and compared. In the past, implementation comparisons have
most often been based on synthetic allocation behavior patterns, where object lifetime,
size, and interarrival time are taken from probability distributions (e.g. Referehces
and 2). Recently, Zorn and Grunwald have shown that the use of synthetic behavior
patterns may not lead to an accurate estimation of the performance of a particular
algorithm?

The existence of instruction-level profiling tobfshas made it possible to directly
count the number of instructions required by various allocation algorithms in large,
allocation-intensive programs. In this paper, we present a large number of detailed
measurements of the performance of five very different dynamic storage allocation

CCC 0038-0644/94/060527-16 Received 23 August 1993
(0 1994 by John Wiley & Sons, Ltd. Revised 26 January 1994

528 d. detlefs, a. dosser and b. zorn

implementations in 11 large, allocation-intensive C and - programs. The results

of this paper extend and complement the C-program measurements of Zae.
purpose of this paper is to make additional detailed measurements available to a
broad audience. For more details about the implementations measured and the
measurement methods used, the reader is referred to other papers.

One of the DSA implementations measured is a publicly available conservative
garbage collector for C and €+ (BW 2.6+,,,;).” Our measurements show that
this collector is competitive in both CPU time and memory usage with existing
commercial-quality malloc/free allocators. Furthermore, this allocator can be used to
replace the operating system calls to malloc/free without any modifications to the
program source code and is compatible with both C amél @rograms. We conclude
that conservative garbage collection is a competitive alternative to malloc/free
implementations, and programmers should keep this technology in mind when
building allocation-intensive programs.

PROGRAMS

The programs we measured were drawn from a wide variety of application areas
and were written in C and €+. All the programs measured make explicit calls to
malloc and free to allocate and deallocate heap storage, respectively. Some of the
programs, notably Sis, Espresso, Gawk, and Perl, also make a relatively large number
of calls to the realloc functionTable | summarizes the functionality of all of the
programs that we measured amdble Il summarizes the allocation behavior of those
programs. In these and all subsequent tables, the programs are ordered by approximate
size in lines of source code.

Many of the programs measured are publicly available, whereas others are pro-
prietary. To allow other researchers to reproduce our results, we have made the
tested versions of a number of our test programs available on the Internet. The
programs Perl, Ghost, Make, Espresso, Ptc, Gawk, and Cfrac are available via
anonymous FTP from the machineftp.cs.colorado.edu in the directory
pub/cs/misc/malloc-benchmarks. A README file in that directory describes how
these benchmarks were used to gather the statistics presented. Furthermore, each
benchmark includes a number of test inputs, including the ones used in this paper.
These programs have been used in a variety of dynamic storage allocation studies
(e.g. Reference$8, 8, and 9).

ALLOCATORS

The allocators we measured are summarized able Ill. Based on our experience,
these allocators implement some of the most efficient dynamic storage allocation
algorithms currently available. In particular, they are significantly faster than both
the Cartesian tree implementation and the first-fit implementation measured b§ Zorn.
Furthermore, four of the five allocators are publicly available and can be obtained
via the Internet.

Other recent papers comparing the performance of various aspects of dynamic
storage allocation also describe these algorithms, and we refer the interested reader
to those papers. Specifically, 4G+, ,,', and o all described in more detail by
Grunwald, Zorn and Henders8nThe Berkeley Unix 4.2 BSD allocator, of which

memory allocation costs 529

Table I. General information about the test programs

Program Language Description

Sis C SIS, Release 1.1, is a tool for synthesis of synchronous and asynchronous
circuits. It includes a number of capabilities such as state minimization and
optimization. The input used in the run was the full simplification of an
exclusive-lazy-and circuit.

Geodesy G+ Geodesy, version 1.2, is a programming language debugger. The input to this
program is a G+ compiler front end. The operations performed include
setting breakpoints, examining the stack, and continuing.

Id C++ Ild, version 1.2, is an incremental loader. The input to the program involved
incrementally loading 16 saved versions of a set of 26 object files.

Perl C Perl 4.10, is a publicly available report extraction and printing language
commonly used on UNIX systems. The input script formatted the words in a
dictionary into filled paragraphs.

Xfig C Xfig, version 2.1.1, is an interactive drawing program. The test case used
included the creation of a large number of circles and splines that were
duplicated, resized, and reshaped.

Ghost C GhostScript, version 2.1, is a publicly available interpreter for the PostScript
page-description language. The input file was a 126-page user manual. This
execution of GhostScript did not run as an interactive application as it is often
used, but instead was executed with the NODISPLAY option that simply forces
the interpretation of the PostScript (without displaying the results).

Make C GNU make, version 3.62 is a version of the common ‘make’ utility used on
UNIX. The input set was the makefile of another large application.

Espresso C Espresso, version 2.3, is a logic optimization program. The input file is an
example provided with the release code.

Ptc C PTC, version 2.3, is a Pascal to C translator. The input file was a 19,500 line

Pascal program (mf2psv.p) that is part of thgXTrelease.

Gawk C GNU Awk, version 2.11, is a publicly available interpreter for the AWK report
and extraction language. The input script formatted words in a dictionary.

Cfrac C CFRAC, version 2.00, is a program to factor large integers using the continued
fraction method. The input was a 35-digit product of two large prime numbers.

urix 1S @ derivative, is also described in that paper. The BWH2.4, allocator is

described in detail by Boehm and WeiSand summarized by ZoanIack listing,

an enhancement present in Version 2.6 of the collector, is described by Béehm.
The conservative collection allocator (BW ;) differs significantly from the

other allocators in that programmers using it are not required to call free. Instead,

the allocator periodically determines what heap objects are no longer in use and

automatically frees those objects. As such, this allocator provides significant advan-

tages to users that are not emphasized at all in the performance measurements

provided in this paper. Furthermore, because all the application programs measured

were written with explicit calls to malloc and free, the BW 2.4, allocator in

these measurements is placed at somewhat of a disadvantage. Specifically, while the

allocator provides a malloc atomic function for allocating objects that do not contain

530 d. detlefs, a. dosser and b. zorn

Table Il. Performance information about the memory allocation behavior for each of the test programs.

Instructions executed shows the total instructions executed by the program using.thallocator.

Total bytes and Total objects refer to the total bytes and objects allocated by each program. Average

size shows the average size of the objects allocated. Maximum bytes and Maximum objects show the

maximum number of bytes and objects, respectively, that were allocated by each program at any one
time

Program Lines of Instructions Total Total bytes Average Maximum Maximum Allocation

source executed objects x1(0° size objects bytes rate
(x10P) (x10°9 (bytes) &109) (x10®) (Kbytes/s)

Sis 172000 64794-1 63395 15797173 249.-2 48.5 1932-2 4120-8
Geodesy 82500 2648-1 2517 42152 16-7 113.8 3880-6 324-3
Iid 36000 3813 33 24829 752-4 2:1 1278-7 220-3
Perl 34500 1091-0 1604 34089 21-3 2:3 116-4 714-2
Xfig 30500 524 25 1852 727 19-8 1129-3 3721
Ghost 29500 1196-5 924 89782 97.2 26-5 2129-0 1861-7
Make 21000 53.7 23 539 23-0 10-4 208-1 2825
Espresso 15500 2400-0 1675 107062 63-9 4.4 280-1 1497-1
Ptc 9500 353.9 103 2386 23.2 102-7 2385-8 202-4
Gawk 8500 957-3 1704 67559 39-6 1-6 41.0 2050-1
Cfrac 6000 202-5 522 8001 15-3 1.5 21-4 1145-9

pointers, these programs do not take advantage of that function. Other operations
that the test programs perform for the sole purpose of allowing them to correctly
call free (e.g., maintaining object reference counts) are also unnecessary when the
BW 2.6+, allocator is used.

RESULTS

The results presented were gathered using a variety of measurement tools on a
DECstation 5000/240 with 112 megabytes of memory. Instruction counts were all
gathered by instrumenting the programs with Larus’ QPT téblwhich presents
per-procedure instruction counts with an output format similar to that of gprof.
Program execution time was measured using the Unix C-shell built-in ‘time’ com-
mand. The measurement of each program’s live data was gathered using a modified
version of malloc/free, and allocator maximum heap sizes were measured using a
modified version of the Unix sbrk system call.

In all of the tables presented, we indicate both the absolute performance of each
allocator and also the relative performance of each allocator compared tg.the
allocator. The, allocator was chosen as the baseline for comparison because it
is a commercially implemented allocator distributed with a widely used operating sys-
tem.

The measurements we present concern the CPU overhead (in terms of total
execution time and time spent in allocation routines) and memory usage of the
various combinations of allocators and programables IV and V show how many
instructions, on average, each program/allocator required to perform the malloc and
free operations, respectively. These two tables should be used only for comparing
the explicit malloc/free implementations, as substantial overhead in the BW,2;6
allocator, resulting from garbage collections, sometimes occurs in the realloc routine,

memory allocation costs 531

Table Ill. General information about the allocators. All the allocators except BW 2.6 are described
in more detail in Referenc®

Ultrix uix 1S @ variant of the malloc implementation, written by Chris Kingsley, that is
supplied with the Berkeley 4.2 Unix release. It is not publicly available, but comes
with the DEC Ultrix operating system.

BW 2.6+ sp This is version 2.6 of the Boehm-Demers—Weiser conservative garbage collector.
With various other authors, Boehm describes a number of related versions of this
collector”*>* For the measurements collected, the definitions/BRGE_SIZES (Ms)
and ALL_INTERIOR_POINTERS (,,) were enabled. The most recent version of the
collector is version 3.6.

Contact Person: Hans Boehmafs_Boehm.PARC@xerox.com)
FTP Site:anonymous@arisia.xerox.com:/pub/russell/gc.tar.Z

e enu IS variant hybrid first-fit/segregated algorithm written by Mike Haertel (version
dated 930716). It is an ancestor/sibling of the malloc used in GNU libc, but is
smaller and faster than the GNU version.

Contact person: Mike Haerteimke@cs.uoregon.edu)
FTP Site:anonymous@ftp.cs.uoregon.edu:pub/mike/malloc.tar.z

G++ G++ is an enhancement of the first-fit roving pointer algorithm using bins of
different sizes. It is distributed with the GNU-CH library, libg++ (through version
2.4.5) and is also available separately.
Contact Person: Doug Leall@oswego.edu)
FTP Site:anonymous@g.oswego.edu:/pub/misc/malloc.c

of of IS an implementation of Weinstock and Wulf's fast segregated-storage algorithm
based on an array of free lists!® Like the ,,' algorithm, o is a hybrid algorithm
that allocates small and large objects in different ways. Large objects are handled by
a general algorithm (in this case,+G-).
Contact Person: Dirk Grunwaldyfunwald@cs.colorado.edu)
FTP Site:anonymous@ftp.cs.colorado.edu:pub/cs/misc/gf.c

which is not presented. Also note the BW 2.4, allocator requires only two

instructions per free because we have intentionally caused frees for this allocator to
have no effect. In fact, the Boehm—Weiser collector does support explicit programmer
frees, but we disabled them to observe the performance of the collection algorithm.

In Table V, we also see that many of the allocators perform a constant number
of instructions in free. The,, allocator requires 18 instructions to place the freed
objects on the appropriate free list. The+& allocator requires only eight instructions
by deferring the size determination of the freed objects until a subsequent malloc.
Thus, G++ requires fewer instructions per free thap, but more instructions
per malloc.

Table VI shows the average number of instructions per object allocated that each
program/allocator spent doing storage allocation. This table shows the total instruc-
tions in malloc, free, realloc, and any related routines, divided by the total number
of objects allocated. This table should be used to compare the per-object overhead
of all the allocators, including BW 2:6,,;,, One should note that the overhead of
an allocator has a per-object-allocated and a per-byte-allocated component; for
allocators other than BW 246, the per-object component dominates. If this table
showed instructions/allocated-byte, outliers for BW 2,8;, such as lld, which
allocates a small number of relatively large objects, would be less unusual.

d. detlefs, a. dosser and b. zorn

532

LTT 9 Vet G9 LLT 6 70 1T 119 00T [4S] abeiany
0.0 €€ ¥9:0 o€ €8T 98 9¢-¢ 90T 00T Ly Jeljo
080 6€ 0T'T ¥S TLT 8 69T €8 00T 6V Jmeo)
S8-0 YA 02T 99 78T T0T 628 961 00T G§ Jd
08-0 ov ST LL 08'T 06 9T-¥ 80¢ 00T 0S ossalds3
060 ey 81 VL 06T T6 LT9 96¢ 00T 5174 e
A V. 2T T. 08T T0T 96-0T 19 00T 9§ 1soyo
18T 68 S0'T 29 8.1 S0T 0Z'6 evs 00T 65 Bux
080 LE 960 14% 8L'T Z8 0S¥ 10¢ 00T 174 [Hed
€eT 9. V.1 66 19T 26 8129 147451 00T LS pIl
€90 6¢ STT €5 9.1 T8 68-€ 6.1 00T 174 Asapoag
0¢-€ Z6T o1 ¥8 89T TOT GT-'8 681 00T 09 SIS
aAlle|]oy awnjosqy 9Ae|9Y aINjosSqy 9AledY dINjosqQy 9ANR|I9Y d9INjosqy 9ANe|dY 9Injosqy
(oojrew/nsui) (oojew/nsur) (oojrewynsur) (oojrew/nsui) (oojew/nsur)
10 ++mu nuo n_,mEn_u@.N \sm XN _.CM._@O._n_

T = d¥"8Ane|al S| aAle|ay "J0|BIN O} |[ed Jad suononiisul aAe|al pue ainjosqy ‘Al d|gel

533

memory allocation costs

622 187 vv-0 8 €5v 18 110 4 00'T 8T abeiany
v T 9z 10 8 19'% €8 1T-0 z 00T 8T oelD
8L T ze 10 8 0S¥ 18 110 z 00T 8T nmes
00-S 06 170 8 829 €TT 170 4 00T 8T 91d

8LT ze 10 8 19¥ ¥8 110 z 00T 8T ossaids3
96T 8z 10 8 19'% €8 110 4 00T 8T e
1T-€ 95 vi-0 8 68 88 110 z 00T 8T 1s0y9
112 6€ -0 8 v6-€ 1L 110 z 00T 8T Bux
zLT 1€ -0 8 9G¥ Z8 110 z 00T 8T led
€e-2 ra% vv-0 8 TTv 2 1T-0 Z 00T 8T pIl
6cT Gz -0 8 19-€ 99 TT-0 z 00T 8T Assposo
v6-2 €S v¥-0 8 ¥6-¢ 1L 1T-0 r4 00T 8T SIS
OAlleI9Y aINjosqy OANBIdY 8INjosqy dAle[Y 8INjosqy 9AIR|@Y 9Injosqy dAle|aY 8ln|osqy
(281/su1) (934y/nsun) (931ynswn) (281y/nsun) (831y/n1sU1)
10 +49 fue ¥Ui9z Mg xamn weibold

T =Of“hie|a) S| aAe[ey 9al4 0] |[ed Jad suononiSUl SANR[R) pue 3NjosSqY ‘A dldel

d. detlefs, a. dosser and b. zorn

534

Ge'T 26 10T 1L zee ¥ST 02-0T 0TL 00'T 99 abeiany
160 65 850 8¢ 09-2 69T 69T 01T 00T 59 oelD
90T 1L €60 29 9z G9T 12°S 6ve 00T 19 nmes
G8-0 Ly 0zZ'T 99 781 10T Z8'8 g8y 00T S5 9d

90T zL 6T g8 962 VLT 89% 81¢ 00T 89 ossaids3
20T 65 ve'T 8L 9e-2 LET 05'G 6TE 00T 85 e
LLT 621 80T 6. 9G6-2 /8T 816 0.9 00T €L 1s0y9
veT L6 20T 9 68T 61T 59-0T 1.9 00T €9 Bux
90T 89 180 Zs 662 €971 8G-€ 622 00T 9 led
GG'T STT ST L0T 812 19T ev-18 908€ 00T 172 pll
¥8-0 e 160 19 622 144 80-€ V6T 00T €9 Assposo
GT-¢ 9z 81T 26 122 2T o8 559 00T 8L SIS

aAlleI9Y 8INosSay dANe|9Y 9INjosgy oANe|I9Y 8Injosqy OAlReY dINjosqy aAleleYy 8Injosqy
(3oalgoynsur) (3oalgoynsur) (3oalgoynsur) (103lqo/nsur) (10alqo/nsur)
10 +49 fue ¥ Ui9z Mg xain weibold

O1*¥Ane|al sI anne|vy -

payeso|je 103lgo Jad suononnsul aAieal pue a1Njosqy ‘|A 3|gel

memory allocation costs 535

Each program spends a certain number of instructions outside storage allocation
routines doing program-specific work. This number (we will call it the ‘application
instructions’) remains constant across all the allocators used. We call the instructions
spent doing storage allocation the ‘allocation instructiori&ble VII shows what
fraction the allocation instructions are of the application instructions. This percentage
provides a good measure for comparing the relative CPU overhead of the different
allocators. As is clear from the table, thg., and G++ algorithms have the best
performance and the BW 244, collector has the worst performance overall.

Table VIII shows the absolute and relative execution times of the different
program/allocator combinations. The times presented are the sums of the user and
system times reported by the ‘time’ command. These data were collected from a
single run of each program/allocator and thus some variation in execution time,
which has not been measured, should be expected. However, our experience collecting
similar results indicates that the variation observed between different runs with the
same input is not a significant fraction of the total execution time.

In comparing Tables VIl and VIII we see some unexpected results, specifically
with the Sis program. In particular, the4Gt+ allocator spends more of its instructions
executing storage allocation code but executes faster than,theallocator. This
behavior is more understandable when we look more closely at the separate compo-
nents of the execution times as reported by the ‘time’ utility (a breakdown of these
times into user and system components is publicly available on the Internet). The
user time of Sis i IS 3675-7 seconds, whereas the system time is 157-9 seconds.
The user time of the Sis &+ allocator is 3688-9 seconds, whereas the system time
is just 3-3 seconds. Thus, we see that in user time, the allocator is the faster
allocator just as the data ihable VIl would lead us to believe. The added overhead
of Sis yix IS caused by additional time being spent in the operating system. From
our measurements we have determined that this overhead is not directly attributable
to increased page faults in thg,, allocator, as one might think. Unfortunately we
currently do not have the tools necessary to definitively determine the cause of the
added system overhead.

Table IX shows the maximum size of the heap for each program/allocator, as
measured by calls to the Unix operating system sbrk system call. To measure this
value, an instrumented version of sbrk that maintained a high-water mark was used.
As is clear from the tableg,,’ ¢++, and o are all quite space efficient, whereas
urix and especially BW 2.6, require more space.

Finally, Table X shows the maximum amount of fragmentation that occurred in
each program/allocator combination. In this case, fragmentation was measured as the
ratio between the maximum heap size (as shownTable IX) and the maximum
bytes that were alive in each program at any time (showrTable Il). Although
the average heap expansion of the BW+,8;, allocator is almost 2.5 times that
of the 4ix allocator, we also note that three programs, namely Perl, Gawk, and
Cfrac, contribute significantly to this average. All of these programs require a
relatively small heap as indicated ihable Il (i.e. 116, 41, and 21 thousand bytes,
respectively). Because the BW Z{,;, allocator allocates space in units of 64
kilobytes, the fragmentation of these programs is somewhat exaggerated. If these
programs are not considered in the average, the average heap expansion of the BW
2.6+ s allocator is only 1-53 times that of thg,, allocator.

d. detlefs, a. dosser and b. zorn

536

Ge'T 716 80T e 9 ov-¢ 6¢°LT €T-1T 0t-9¢ 00T 169 abelany
160 €81 850 LTT 09-¢ €¢S 0L1T IR % 00T T1-0¢C Jeld
L0°T S-vT 880 6'TT L¢ 9-€¢ 28y S-G9 00T 9-€T Jmeo)
180 71 6T'T 6T 88T 0-€ 76°8 eVl 00T 9T J1d
90T €9 ve1 ¢'9 9G-¢ A 14° 0% ¢€c 00T 0S ossaids3
00T 9-¢ SeT S-€ 8e-¢ 29 0SS el 00T 9-¢ e
7AN} G-0T 80T S9 GS-¢ eqT €16 817G 00T 09 1soyo
€51 6V 60T g€ 90-¢ 99 8/.-0T GveE 00T ¢€ Bux
ST-T 8:0T 080 S/ 8¢ T-9¢ 6G°€ L€E 00T V-6 [Hed
05T 6-0 0S'T 6-0 192 9T €8'T19 T-.€ 00T 9-0 pil
€80 €a G6'0 79 l¢¢ S vl 90-€ 961 00T 79 Asepoen
LT-€ 0-9¢ 0¢'1 86 [AAYA 281 Sv-8 €69 00T Z'8 SIS
OAle[dY QINosqy 9ANR|IaY 2INjosqy SAR|aY 9Injosqy SAR|aY dInjosqy dANR|eY 2Injosqy

(swn -0axa %) (own -o9xa %) (owmn -oaxe %) (swn -0axa %) (ewn -209xs %)

1 ++9 e Wt9z Mg xn weiboid

T 81’8/ hejal SI aAne|ay ‘suononisul uoiedljdde/suononnsul uoneooje abelols 1Usdlad ‘|IA d|qel

537

memory allocation costs

10T 68V 00T 60V S0'T 14974 12T ¥T19 00T ey abelany
S6°0 0L 060 9-9 6T'T L8 €T T €8 00T €L Jeljo
¥8:0 9-/¢ S6-0 [ANR 860 T-c€ LS'T 6:T1S 00T 0-€€ Jmeo)
10T 6'TT (45" ¢€l 70T €T €11 €€l 00T 8Tl J1d
10T S-¢L 20T 9-¢L €0'T 0-¥. STT T-28 00T S 1. ossalds3
L0'T 0-¢ 260 81 €0'T 0-¢ TT'T T-C 00T 6T e
70T 08 00T [A:1%4 8T'T 0-.S 1740 8-69 00T [As:1%4 1soyo
70T €L S0'T €L 20T T-L 960 L9 00T 0-L Bux
€60 evy 70T 8-6V S0'T T-09 9¢'T €09 00T LYy [Hed
20T 6-GL 10T €G.L €01 T-9. 20T 9-GL 00T A2 pIl
960 T-v6v 860 €-¥0S 00T ¢'8TS 10T 8-0¢S 00T T-9TS Asapoag
0cT Z'18sY 960 T-269¢ €01 0-cc6€ €51 €-1985 00T G-€€8E SIS
aAlle|loY aInjosqQy 9ANR|I9Y 8INjosqy 9AR|eY 9INjosqQy dANedY dINjosqy dANe|dY aInjosqy
(spuo2as) (spuodas) (spuo2as) (spuodas) (spuodas)
10 ++mu nuo n_,mEn_u@.N \sm XN _.CM._@O._n_

*#NaANR|a) SI BANR|aY "alWIil uonnoaxa weiboid [e1o0l ‘||IA 3|qel

d. detlefs, a. dosser and b. zorn

538

G6-0 1602 110 L09T 080 8GST 812 9862 00'T 666T abriany
00T 9 G0 2174 00T 9 181 05 00T 9 oelD
18:0 9 18:0 9 S0'T €8 evv zs€e 00T 6. nmes

160 A% 860 09¢€¢g 660 vIve 00-T sve 00-T 8eve o1d

Z50 801 ot-0 0ze €0 ove 05T 88TT 00T Z6L ossaids3
980 9ee ¥8-0 8z¢e 8.0 90€ 05T 785 00T 06€ e

890 8012 .0 2e92 080 1€82 611 8925 00T TvGe 1soyo
88-0 9/6GT /80 ZGST 68-0 Z8ST LT 9ere 00T v8LT Bux
¥9:0 T #9-0 T 2.0 291 €LC 919 00T 92z led
18-0 96T ¥8-0 0ZST 1.0 Z6€T 86T z.5¢ 00T 008T plI

S0 7981 9.0 8z6v 1.0 G651 €T'T 8veL 00T 18V9 Assposo

52 8098 280 9/12 0.0 €9€2 zze zes. 00T 18€€ SIS

aAle|dY 8INosSqy dANe|IoY dINjosgyY OANe|I9Y 8Injosqy OAlReY dInjosqy aAleleYy 8Injosqy
(se1hgy) (sarhay) (sa1hgy) (serhay) (se1hay)
10 ++mu nuo n_,mEn_u@.N \sm XN _.CM._@O._n_

T = B annejal sI annejey 'azis deay wnuwixe "X| a|qel

539

memory allocation costs

S6°0 ¢8'1T 1.0 1T 080 9G'T 8v-¢ 0S-S 00T 96T abeiany
00T 90-¢ G0 6¢:¢ 00T 90-€ 181 60-1¢ 00T 90-€ Jeld
180 09T 180 09T S0'T 80'¢ ey 08'8 00T 86'T Jmeo)
160 ge1T 860 vl 660 LT 00T 81 00T 8T d
¢S50 61T (0)7410] LT T ev-0 ve1T 0S'T 1495% 00T 06-¢ ossaids3
980 99T ¥8:0 19T 8.0 16T 0S'T 18C 00T 26T e
890 9T'T .0 121 080 9¢T 671 €5-¢ 00T 0T 1soyo
880 evT /80 T 680 v LET 1¢-¢ 00T 9T Bux
79-0 LCT ¥9-0 LCT ¢L0 [4740" €L¢ s 00T 66T |[4ad
180 /T-T 780 [44n" 1.0 TT'T 86'T 98-¢ 00T 1 pIl
G0 8¢'T 9.0 0eT 1.0 1¢T ETT 76'T 00T LT Asspoao
¥S-¢ 9G¥ ¢80 JAAN" 0.0 S¢'1T [4Ar4 66-€ 00T 6L'T SIS
OAIle[dY QINosqy 9ANR|IaY QINjosqy 9AR|aY 9Injosqy SANR|aY dInjosqy dANe|eY 21njosqy
‘Beiq ‘Beiq ‘Beiq ‘Beiq ‘Beiq
1 +49 e w19z Mg xan weiBoid

T =Of8hiejal sI aAne|ay ‘uoneiuswbel) o) anp uoisuedxs desH "X a|gel

540 d. detlefs, a. dosser and b. zorn

Fragmentation, as measured Trable X is the result of many different causes.
Some of these causes are summarized below:

1. Overhead from the allocator data structures. For example, many allocation
algorithms require additional words of storage per object to store information
such as the object’s status (allocated or free) and the object’s size.

2. Internal fragmentation. This fragmentation results from rounding up allocation
request sizes to common sizes (e.g., some algorithms round requests up to
sizes that are powers of two).

3. External fragmentation. This fragmentation results from the available free space
being split into pieces that are too small to satisfy most requests, thus making
the space unusable. Clearly if request sizes are rounded up, then the result is
more internal fragmentation and less external fragmentation.

In addition to the forms of fragmentation that are common to all allocation
algorithms, the BW 2.6, allocator incurs additional sources of fragmentation
summarized below:

1. Storage required to prevent frequent garbage collections. The CPU overhead of
the BW 2.6+, allocator is reduced if garbage collections occur less fre-
quently. However, since no storage is reclaimed between collections, less
frequent collections result in a larger heap. Another way to view this form of
fragmentation is to observe that the collector only reclaims inaccessible storage
when the algorithm runs, and as such unreachable objects are not available for
reuse until the collector is invoked.

2. Additional storage that is retained due to collector conservatism. The BW
2.6+ s allocator will preserve any object in the heap that ‘appears’ to have
a pointer pointing to it. Sometimes integer variables contain values that appear
to be pointers and the collector conservatively preserves such objects.

3. Additional storage allocated due to the heap-expansion granularity. As mentioned
above, the BW 2.6, allocator grows the heap in units of 64 kilobytes,
even when all the storage allocated may not be used. The other allocators
typically have a smaller unit of expansion (e.g., 8 kilobytes).

4. Black-listed blocks in the heap. The BW 2.§;, allocator uses a heuristic
called ‘black-listing’ to reduce the amount of incorrectly retained garbage. As
a result, some of the blocks in the heap are deemed inappropriate for heap-
allocation and contribute to overall storage usage.

5. Storage that is ‘freed’ but remains accessible. In some cases, a programmer
will correctly free an object that still has pointers pointing to it. In such cases,
the conservative collector (as used in this paper) will ignore the free and
reclaim the object only after the last pointer to the object has been removed.

Unfortunately, we were not able to identify the specific sources of fragmentation
in the programs and allocators measured. In the future, we may instrument the
allocators to collect more specific information about the sources of fragmentation.

SUMMARY

This paper presents detailed measurements of the cost of dynamic storage allocation
(DSA) in 11 diverse C and €+ programs using five very different dynamic storage

memory allocation costs 541

allocation implementations, including a conservative garbage collection algorithm.
The measurements include the CPU overhead of storage allocation and the memory
usage of the different allocators. All of the DSA implementations we measured
are highly efficient, well-crafted programs. Furthermore, four out of five of these
implementations are publicly available on the Internet and we provide Internet sites
and the contact persons who are responsible for them. Likewise, seven of the eleven
programs measured are also available on the Internet, and we provide their location
as well. It is our hope that when other researchers implement new algorithms, they
will use the programs, allocators, and techniques used in this paper to provide
comparable measurements of the new algorithm. We see these programs and allocators
not as the final word in allocator benchmarking, but as a first small step along
the way.

The data presented in this paper are a subset of data available in a textual form
on the Internet. These data are available via anonymous FTP from the machine
ftp.cs.colorado.edu in the file pub/cs/misc/malloc-benchmarks/SPE-MEASUREMENTS.txt.

Further results will be added to this file as they become available. Please feel
free to use these data but we would appreciate your sending one of us e-mail
(zorn@cs.colorado.edu) indicating that you intend to use the data and how you intend
to use it.

acknowledgements

We would like to thank Hans Boehm, Michael Haertel, and Doug Lea for all
implementing very efficient dynamic storage allocation algorithms and making them
available to the public. We also thank them for their comments on drafts of this
paper. We would also like to thank the anonymous reviewers for their insightful
comments. This material is based upon work supported by the National Science
Foundation under Grant No. CCR-9121269 and by Digital Equipment Corporation
External Research Grant No. 1580.

REFERENCES

1. Donald E. Knuth,Fundamental Algorithms, volume 1 of The Art of Computer Programniuiglison
Wesley, Reading, MA, 2nd edn, 1973, chapter 2, pp. 435-451.

2. David G. Korn and Kiem-Phong Vo, ‘In search of a better mall&®’oceedings of the Summer 1985
USENIX Conferencel985, pp. 489-506.

3. Benjamin Zorn and Dirk Grunwald, ‘Evaluating models of memory allocatié’@M Trans. Modeling
and Computer Simulatior4, (1), (1994).

4. Thomas Ball and James R. Larus, ‘Optimally profiling and tracing progra@shference Record of
the Nineteenth ACM Symposium on Principles of Programming Langudgesary 1992, pp. 59-70.

5. Digital Equipment Corporationnix Manual Page for pixie ULTRIX V4.2 (rev 96) edition, Sep-
tember 1991.

6. Benjamin Zorn. ‘The measured cost of conservative garbage collec8oftware—Practice and Experi-
ence, 23, 733-756 (1993).

7. Hans-Juergen Boehm and Mark Weiser, ‘Garbage collection in an uncooperative enviroigogware—
Practice and Experiencel8, 807—820 (1988).

8. Dirk Grunwald and Benjamin Zorn, ‘CustoMalloc: efficient synthesized memory allocatoffyware—
Practice and Experience?3, 851-869 (1993).

9. Dirk Grunwald, Benjamin Zorn and Robert Henderson, ‘Improving the cache locality of memory
allocation, SIGPLAN'93 Conference on Programming Language Design and Implementatibn-
querque, June 1993, pp. 177-186.

10Hans-Juergen Boehm, Alan Demers and Scott Shenker, ‘Mostly parallel garbage colldutim®edings

of the SIGPLAN'92 Conference on Programming Language Design and ImplemenfBtiomto, Canada,

June 1991, pp. 157-164.

542 d. detlefs, a. dosser and b. zorn

REFERENCES

11. Han-Juergen Boehm, ‘Space efficient conservative garbage collecB6BPLAN'93 Conference on
Programming Language Design and Implementatiétbuquerque, June 1993, pp. 197-206.

12. Thomas StandistData Structures Techniquesddison-Wesley Publishing Company, 1980.

13. Charles B. Weinstock and William A. Wulf, ‘Quickfit: an efficient algorithm for heap storage allocation’,
ACM SIGPLAN Notices23, (10), 141-144 (1988).

14. James R. Larus and Thomas Ball, ‘Rewriting executable files to measure program befadbriical
Report 1083 Computer Sciences Department, University of Wisconsin-Madison, Madison, WI, March
1992.

15. Susan L. Graham, Peter B. Kessler and Marshall K. McKusick, ‘An execution profiler for modular
programs’, Software—Practice and ExperiencE3, 671-685 (1983).

	SUMMARY
	INTRODUCTION
	PROGRAMS
	ALLOCATORS
	RESULTS
	SUMMARY

