A Simple Proof of ${ }_{3} F_{2}(1,1,1 ; 2,2 ; \rho)=\frac{\operatorname{dilog}(1-\rho)}{\rho}$

Çag̃atay Candan*

June 27, 2012

$$
\begin{aligned}
& { }_{3} F_{2}(1,1,1 ; 2,2 ; \rho) \stackrel{(1)}{=} \sum_{k=0}^{\infty} \frac{(1)_{k}(1)_{k}(1)_{k}}{(2)_{k}(2)_{k}} \frac{\rho^{k}}{k!} \quad \text { (definition of hypergeometric func.) } \\
& \stackrel{(2)}{=} \sum_{k=0}^{\infty} \frac{k!k!k!}{(k+1)!(k+1)!} \frac{\rho^{k}}{k!} \quad \text { (definition of Pochhammer symbol) } \\
& \stackrel{(3)}{=} \sum_{k=0}^{\infty} \frac{\rho^{k}}{(k+1)^{2}} \quad \text { (clean up) } \\
& \stackrel{(4)}{=} \frac{1}{\rho} \sum_{k=0}^{\infty} \frac{\rho^{k+1}}{(k+1)^{2}} \quad \quad \text { (multiply and divide by } \rho \text {) } \\
& \stackrel{(5)}{=} \frac{1}{\rho} \sum_{k=0}^{\infty} \frac{\int_{0}^{\rho} t^{k} d t}{k+1} \quad \text { (invent an integral!) } \\
& \stackrel{(6)}{=} \frac{1}{\rho} \int_{0}^{\rho}\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k+1}\right) d t \quad \text { (do the exchange) } \\
& \stackrel{(7)}{=} \frac{-1}{\rho} \int_{0}^{\rho} \frac{\ln (1-t)}{t} d t \quad \text { (recognize the power series) } \\
& \stackrel{(8)}{=} \frac{1}{\rho} \int_{1}^{1-\rho} \frac{\ln \left(t^{\prime}\right)}{1-t^{\prime}} d t^{\prime} \quad\left(t^{\prime}=1-t\right) \\
& \stackrel{(9)}{=} \frac{\operatorname{dilog}(1-\rho)}{\rho} \quad \text { (definition of dilog function) } \\
& \stackrel{(10)}{=} \frac{\operatorname{Li}_{2}(\rho)}{\rho} \quad\left(\operatorname{dilog}(1-x)=\operatorname{Li}_{2}(x)\right)
\end{aligned}
$$

Remember that $|\rho| \leq 1$, which is the standard assumption for the hypergeometric series.

