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I. INTRODUCTION 

Recently Neumann & Wilson [6] and Shannon & Horadam [8] have discussed the 
sequence of numbers given by the linear recurrence 

Tk = 2*-2 + Tk-3-> To = 3> ^i - °. T2 " 2-
This sequence has the following interesting property: 

If p is a prime, then p\Tp. (1) 

The sequence {Tk} has been discussed several times before; for example, see 
[1]» [2], [3], [4], [5], and [7]. In particular, Perrin [7] asks if the con-
verse to (1) is true, that is: 

Does p\Tp imply that p is prime? 

Neumann & Wilson call a counterexample to the converse a pseudopvime* They 
did not find any pseudoprimes for the sequence {Tk}. 

Unfortunately, the converse is false; the first example being 

271441 = 5212. 

The only other composite n less than 1000000 for which n\Tn is 

904631 = 7 • 13 • 9941. 

These numbers were found using a computer program written in APL and were 
checked independently by John Hughes using a FORTRAN program. 

It can be shown that the sequence {Tk} is, essentially, exponential in 
growth. In particular, for large k we have 

Tk ~ ak, 
where a is the real root of x3 - x - 1 = 0 and a = 1.32, approximately. 

In [8], Shannon & Horadam remark that the sequence {Tk} "is possibly the 
slowest growing integer sequence for which p\Tp for all primes p." This is 
clearly false, as simple examples like 

Ak = k • |log k\ 
or even 

Ak = k 
will show. These examples might be dismissed as trivial. In this note we will 
show that there exist nontrivial sequences {T^} given by a linear recurrence 
having the property (1) that have rates of growth like 

Tk ~ ak, 
where a - 1 is a positive number arbitrarily close to 0. 
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M. SLOWLY-GROWING SEQUENCES 

Let n ) 3 be a positive integer and define 

f(x) = xn - x - 1. 
Let the roots of f(x) = 0 be 

1 ' 25 • • • » ^n 
arid put 

Then it is easy to see that 

Tk * a i + a 2 + " ° + a n -

f̂c ^fe + l-n + ^ - n 5 

where the starting values are given by 

Ta = n, Tx = 0, T2 = 0, .... Tn_z = 0, T _x = n - 1. 

By Theorem 2 of [6], the sequence {T^} has the property of (1). 

We have the following-: 

Theorem 

Let f(x) = xn - x - 1. Then: 

(1) All zeros of / are smaller in magnitude than 31'ne 

(2) All zeros of / are of multiplicity 1. 

(3) f has exactly 1 real zero if n is odd and exactly 2 real zeros if n is 
even. 

(4) / has a real zero a satisfying 2l^n < a < 3ly'n. If n is even, there is 
in addition a real zero 3 satisfying -1 < 3 < 0. 

(5) The positive real zero a is in fact the zero of / largest in magnitude. 

Proof: 

(1) Let a be the zero of / which is largest in magnitude„ Then9 for some 
integer k ^ 0, we have 

k1/n < \a\ < (k + l ) 1 / n . 

Now an - a + 15 so 

. |ot" | = |a + l'| < 1061 + 1 < (k + l) 1 / n + 1, 

whereas k < |an|. Hence 

k < (k + l) 1 / n + 1 

and so certainly k < 3. 
(2) Put g(x) = nf(x) - xff(x)„ Now, if there were a repeated zero of /, it 

would be a zero of fr and hence also a zero of g. But g is linear; in fact5 
g(x) = (1 - n)x - n* 

It is easily verified that the zero of gs namely rc/(l - n) s is not a zero of ff. 
This gives us the desired contradiction. 

(3) Suppose n is even. Then f (n) = 0 has only one real root3 namely 
n-l/(n-l)e 
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It is easily verified that f(x) •>+00 as x -»• ±00. Hence, / attains its minimum 
at x - n'1'^'1'. It is easily verified that this minimum is negative. Hence, 
/ has two real zeros. 

Now suppose n is odd. Then fr(x) = 0 has two real roots, namely 
± n-i/(n-i) e 

Now f(x) -> -°°  as x -> -°°  and f(x) -> °°  as x -*• °°, so / attains a local maximum at 
_n-i/(n-i) an(j stains a local minimum at n"1^n~1K It is easily verified that 
/ is negative at both these points, so / has only one real zero. 

(4) It is easily verified that f(2ljn) < 0, while f(31,n) > 0. Also, if n 
is even, then /(-I) = 1 but f(0) = -1. 

(5) Let yQ = r e^e be a complex zero of /. Then 

Hence, rQ = |i>0ete + l| < P 0 + 1. Thus, f(r0) = r% - r0 - 1 < 0. However, P 0 

is positive; and from parts (3) and (4) above, we see that if rQ is positive and 
f(rQ) < 0, then r0 < a. Hence, \yQ\ < a. 

This completes the proof of our Theorem, a 

This theorem implies that if 

Tk = a\ + a\ + ••• + a£, 
and if ax = a, the positive real zero of xn - x - 1, then the other zeros are 
smaller in magnitude, and hence for large k we have 

Tk ~ ak. 

From p a r t (4) of t h e theorem, we know t h a t 

21/n <a< 3 1 / n , 
so by choosing n sufficiently large, we can make a as close to 1 as desired. 
For example, if we choose n = 4, we get a sequence with property (1) that grows 
approximately like 1.22^. 

The authors thank the referee for detailed comments and a shorter proof of 
part (2) of the theorem. 
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