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1. INTRODUCTION

Recently Neumann & Wilson [6] and Shannon & Horadam [8] have discussed the
sequence of numbers given by the linear recurrence

Ty =Ty p, + Ty 33 Ty =3, 7, =0, T, = 2.
This sequence has the following interesting property:
If p is a prime, then pITp. (1)

The sequence {T,} has been discussed several times before; for example, see
[11, [2], [3], [41, [5], and [7]. 1In particular, Perrin [7] asks if the con-
verse to (1) is true, that is:

Does p|T, imply that p is prime?

Neumann & Wilson call a counterexample to the converse a pseudoprime. They
did not find any pseudoprimes for the sequence {T:}.

Unfortunately, the converse is false; the first example being
271441 = 5212,
The only other composite 7 less than 1000000 for which n[Tn is
904631 = 7 « 13 - 9941.

These numbers were found using a computer program written in APL and were
checked independently by John Hughes using a FORTRAN program.

It can be shown that the sequence {Tk} is, essentially, exponential in
growth. In particular, for large k we have

Tk ~ O(.k,
where o is the real root of 2% — 2 - 1 =0 and o = 1.32, approximately.

In [8], Shannon & Horadam remark that the sequence {7} "is possibly the

slowest growing integer sequence for which pITp for all primes p." This is
clearly false, as simple examples like

Ak = k' log kl
or even

Ak = k

will show. These examples might be dismissed as trivial. In this note we will
show that there exist nontrivial sequences {T4} given by a linear recurrence
having the property (l) that have rates of growth like

Tk ~ uk,

where o - 1 is a positive number arbitrarily close to O.
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Il. SLOWLY-GROWING SEQUENCES

Let n 2 3 be a positive integer and define
flx) =2 -2 - 1.
Let the roots of f(x) = 0 be

Qs Oys ey Oy
and put
Tk = u§ + u§ + .. + uﬁ.
Then it is easy to see that
Tk = Tk+1-n + Tk—n’

where the starting values are given by

Ty =n, T, =0, 7, =0, ..., r,.,=0,7 , =n-1.
By Theorem 2 of [6], the sequence {Tk} has the property of (1).

We have the following:
Theorem

Let f(x) = " - x - 1. Then:
(1) All zeros of f are smaller in magnitude than 31/,
(2) All zeros of f are of multiplicity 1.

(3) f has exactly 1 real zero if n is odd and exactly 2 real zeros if »n is
even.

(4) f has a real zero o satisfying 2/" < o < 3/*. If #n is even, there is
in addition a real zero B satisfying -1 < g < 0.

(5) The positive real zero o is in fact the zero of f largest in magnitude.

Proof:

(1) Let o be the zero of f which is largest in magnitude. Then, for some

integer k > 0, we have
kML ol <k + DY

Now a” = o + 1, so
la?| = Jo+ 1] < |a| + 1 < (k + DY" + 1,
whereas k < |a"|. Hence
k< (k+ 1Y 41
and so certainly k < 3.

(2) Put g(x) = nf(x) - xf'(x). Now, if there were a repeated zero of f> it
would be a zero of f' and hence also a zero of g. But g is linear; in fact,

g(x) = (1 - n)x - n.

It is easily verified that the zero of g, namely n/(1-n), is not a zero of f’.
This gives us the desired contradiction.

(3) Suppose 7 is even. Then f’(n) = 0 has only one real root, namely
n—ll(n-l).
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It is easily verified that f(x) - +o as x + *o, Hence, f attains its minimum
at x = n~ YD, 1t is easily verified that this minimum is negative. Hence,
f has two real zeros.

Now suppose 7 is odd. Then f'(x) = 0 has two real roots, namely

ip "M -1)

Now f(x) + - as £ > ~» and f(x) + © as &£ - », so f attains a local maximum at
~-n~ /(-1 and attains a local minimum at n~ Y"1 It is easily verified that
f is negative at both these points, so f has only one real zero.

(4) It is easily verified that £(2%/") < 0, while £(3'/") > 0. Also, if n
is even, then f(-1) = 1 but f(0) = -1.

(5) Let y, = Poeie be a complex zero of f. Then
Flyy) = (2,e®)" - re® -1 =0.

Hence, ry = |rye®® + 1| <r; + 1. Thus, f(r,) = r§ - r, - 1 < 0. However, r,
is positive; and from parts (3) and (4) above, we see that if r, is positive and
f(ry) <0, then ry < a. Hence, |y,| < a.

This completes the proof of our Theorem. O

This theorem implies that if
= gk K ces k
I, = oy +o, + + 0,

and if o, = 0, the positive real zero of x” - & - 1, then the other zeros are
smaller in magnitude, and hence for large kX we have

Tk ~ ak.
From part (4) of the theorem, we know that
21/n &g < 34,

so by choosing n sufficiently large, we can make o as close to 1 as desired.
For example, if we choose n = 4, we get a sequence with property (1) that grows
approximately like 1.22%,

The authors thank the referee for detailed comments and a shorter proof of
part (2) of the theorem.
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