
DIGITAL PRESERVATION EUROPE

DIGITAL PRESERVATION CHALLENGE
1st edition

SOLUTIONS

WALKTHROUGH REPORT

José Miguel Araújo Ferreira
Department of Information Systems

University of Minho
4800-058 Guimarães, Portugal

mferreira@dsi.uminho.pt

July 2007

2

Table of contents

1 INTRODUCTION 3

2 SOFTWARE TOOLS 3

2.1 Operating systems 3

2.2 Format identification tools 4

2.3 Readers/viewers 5

2.4 Enabling applications 7

2.5 Emulators 7

3 PRESERVATION STRATEGIES 8

3.1 Emulation 8

3.2 Encapsulation 8

3.3 Migration 9

3.4 Refreshment 9

4 TASK DESCRIPTIONS AND SOLUTION WALKTHROUGHS 10

4.1 File Format Identification 10

4.2 Proprietary File Format 14

4.3 Client Server Database Application 17

4.4 Legacy Emulator 22

4.5 Legacy File Preservation Strategy 24

4.6 Digital Preservation of Multimedia Art 34

5 SUMMARY 39

5.1 Digital objects 39

5.2 Accompanying files 39

6 SUMMARY AND CONCLUSIONS 40

REFERENCES 41

3

1 Introduction

The Digital Preservation Challenge is an initiative of the Digital Preservation Europe
(DPE) consortium that invites individual participants to overcome the barriers that
hinder the access to the content of digital objects. The challenge is composed of six
real-life preservation scenarios that the applicant is supposed to overcome in order to
gain access to the information carried within the objects. These scenarios intend to
make the challenge more accessible to participants from all backgrounds while not
trivialising the serious nature of the digital preservation challenges that currently face
society.

This report attempts to describe all the steps undertaken to solve the six preservation
scenarios promoted by the Digital Preservation Europe (DPE) in its first Digital
Preservation Challenge. The report includes a description of the relevant software
applications used during the problem-solving steps of this challenge, a description of
the most cited digital preservation strategies and solution walkthroughs for all the
proposed preservation scenarios. In the end some conclusions are drawn by the
author.

This report is organised as follows: section 2 provides a brief description of all the
software tools that were used to resolve the proposed preservation problems. Section
3 provides a description of the most relevant preservation strategies in practice.
Section 4 depicts all the steps taken to solve the proposed scenarios. And finally,
section 4 draws some conclusions on this challenge.

2 Software tools

This section describes the assortment of software tools that were used to solve the
proposed digital preservation scenarios. Tools are grouped by type, such as,
operating systems, format identification tools, readers/viewers, enabling applications
and emulators.

Note: Most of the descriptions included in this section were quoted directly from
Wikipedia1 with a few minor edits.

2.1 Operating systems

Three different operating systems were used thoroughly throughout the digital
preservation challenge: Mac OS X2, Ubuntu Linux3 and Windows XP4. The reason

1 http://www.wikipedia.org
2 http://www.apple.com/macosx/
3 http://www.ubuntu.com/
4 http://www.microsoft.com/windows/products/windowsxp

4

for this was that although we had a base operating system (i.e. Mac OS X), some of
the problems claimed the use of tools only available in other operating systems.

Mac OS X

Mac OS X is a proprietary, graphical operating system developed, marketed and sold
by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh
computers. Mac OS X is the successor to the original Mac OS, which had been
Apple's primary operating system since 1984. Unlike its predecessor, Mac OS X is a
Unix-like operating system built on technology that had been developed at NeXT
through the second half of the 1980s and up until Apple purchased the company in
early 1997. Because Mac OS X is based on UNIX, most software packages written
for BSD or Linux can be recompiled to run on it [1].

Windows XP

Windows XP is a proprietary operating system developed by Microsoft for use on
general-purpose computer systems, including home and business desktops, notebook
computers and media centres. Windows XP is the successor to both Windows 2000
and Windows Me, and is the first consumer-oriented operating system produced by
Microsoft to be built on the Windows NT kernel and architecture. Windows XP was
first released on October 25, 2001, and over 400 million copies are in use, according
to a January 2006 estimate by an IDC analyst [2].

Ubuntu Linux

Ubuntu is a widely used Linux distribution predominantly targeted at personal
computers. Based on Debian GNU/Linux, Ubuntu concentrates on usability, regular
releases, ease of installation, and freedom from legal restrictions. Ubuntu is
sponsored by Canonical Ltd., a private company founded by South African
entrepreneur Mark Shuttleworth [3].

2.2 Format identification tools

Droid

DROID5 (Digital Record Object Identification) is a software tool developed by The
UK’s National Archives to perform automated batch identification of file formats. It

5 http://droid.sourceforge.net

5

is one of a planned series of tools utilising PRONOM to provide specific digital
preservation services. DROID uses internal (byte sequence) and external (file
extension) signatures to identify and report the specific file format versions of digital
files. These signatures are stored in an XML signature file, generated from
information recorded in the PRONOM technical registry. New and updated
signatures are regularly added to PRONOM, and DROID can be configured to
automatically download updated signature files from the PRONOM website via web
services [4].

Unix file

file is a standard Unix program for determining the type of data contained in a file [5].

The Single Unix Specification (SUS) specifies that a series of tests are performed on
the file specified on the command line [5]:

• if the file cannot be read, its status undetermined, or its type undetermined, file
will indicate that the file was processed and its type was undetermined.

• file must be able to determine directory, FIFO, socket, block special and
character special types

• zero files are identified as such

• an initial part of file is considered and file is to use position-sensitive tests

• the entire file is considered and file is to use context-sensitive tests

• the file is identified as a data file

file's position-sensitive tests are normally implemented by matching various locations
within the file against a textual database of magic numbers. This differs from other
simpler methods such as file extensions and schemes like MIME. [5]

2.3 Readers/viewers

ChessBase Light 2007

ChessBase6 is a company that markets chess software, maintains a chess news Web
site, and operates a server for online chess playing [6].

ChessBase 2007 (the current version) is a popular commercial database program for
storing and searching records of chess games which runs under Microsoft Windows.
ChessBase uses a proprietary format for storing games, but can also handle games in

6 http://www.chessbase.com/

6

portable game notation (PGN). The proprietary format uses less hard drive space
and manages information that is not possible in PGN. The software converts files
from PGN to ChessBase format or from ChessBase to PGN [6].

ChessBase also has a free version of its ChessBase program called ChessBase Light.
The free version is a pared down version of ChessBase 6 that has a limit of only 8000
games per database - too few for accessing the one million game database that comes
with a comprehensive database, such as ChessBase Mega (currently containing
approximately three million games), but adequate for storing one's own games and
other specialized collections, such as the weekly instalments of The Week in Chess
[6].

Framework III

Framework7, launched in 1984, was the first office suite to run on the PC 8086 with
DOS operating system. An even earlier integrated suite, actually comparable to the
original Macintosh of 1984 and Lisa of 1982 was produced by Epson, a complete
integrated work station based on the previous Z80 processor and CPM operating
system with GUI interface and WYSIWYG ("what you see is what you get")
typography on the monitor and printing. Framework offered all this however in the
first all-in-one package to run on any PC platform. Framework was not separate
products with similar look and feel that could share or import or "plug-in" other
modules or files, but was a single workspace construct that could contain any
combination of word processor, outliner, mini-database and spreadsheet "frames."
The spreadsheet program was superior in its day, offering true 3D capability, where
any cell could be "opened" to reveal a separate spreadsheet -- a feat of sheer
convenient function never again seen [7].

In 1983 Robert Carr and Marty Mazner founded Forefront Corporation to develop
Framework. In July of that year, they approached Ashton-Tate to provide the
venture capital and to later market the product. Together with a team of six other
individuals, Carr and company released the original Framework. The product proved
successful enough that in 1985, Ashton-Tate bought Forefront, a year sooner than
planned [7].

Ashton-Tate continued to enhance the product by producing Framework II,
Framework III, and finally Framework IV in 1989. Beginning with Framework III,
the company also produced Framework III Runtime and Framework III Developer's
Toolkit. These products allowed application developers to create business
applications using the internal FRED programming language, and to hide the user
interface from the end-users [7].

While it remains a DOS program, Framework also works on most versions of
Windows. More specifically, Framework 7 (which is still supported) was the last

7 http://www.framework.com/

7

version which can be run on Windows 95/98/ME or on DOS. Framework 8 and 9
only run on Windows XP although they still run in a separate box within WinXP and
provide access to DOS functionality such as batch commands [7].

2.4 Enabling applications

Tomcat 5

Apache Tomcat8 is a web container developed at the Apache Software Foundation
(ASF). Tomcat implements the servlet and the JavaServer Pages (JSP) specifications
from Sun Microsystems, providing an environment for Java code to run in
cooperation with a web server. It adds tools for configuration and management but
can also be configured by editing configuration files that are normally XML-
formatted. Tomcat includes its own internal HTTP server [8].

Hexadecimal editor

A hex editor (or binary file editor or byte editor) is a type of computer program that
allows a user to manipulate binary (normally non-plain text) computer files [9].

By using a hex editor, a user can see or edit the raw and exact contents of a file as
opposed to the interpretation of the same content that other, higher level application
software may associate with the file format. For example, this could be raw image
data, in contrast to the way image editing software would interpret the same file [9].

In most hex editor applications the data of the computer file is represented as
hexadecimal values grouped in two groups of 8 bytes and one group of 16 ASCII
characters, nonprintable characters normally represented by a dot (".") in the ASCII
part [9].

2.5 Emulators

VisualBoyAdvance

The VisualBoyAdvance (also known as VBA for short) is a free software emulator
distributed under the terms of the GNU General Public License. It emulates
software targeted for the Game Boy, Super Game Boy, Game Boy Color, and Game
Boy Advance handheld game consoles sold by Nintendo. As of 2006, the

8 http://tomcat.apache.org/

8

VisualBoyAdvance is the most popular such emulator for Microsoft Windows, and is
one of the most widely-distributed Game Boy-compatible emulators [10].

Besides the DirectX version for the Windows plattform there is also one that is
based on the free platform independent graphics library Simple DirectMedia Layer
(SDL). This is available for a variety of operating systems like Linux, BSD, Mac OS
X, Windows older BeOS [10].

DOSBox

DOSBox is an x86 emulator which creates a DOS-like environment intended for
running MS-DOS-based IBM PC compatible programs, especially computer games,
which may not run properly on newer PCs and may not run at all on non-IBM PC
compatibles (e.g. PowerPC Macintosh). It also allows such games to be run on other
operating systems that do not normally support DOS programs or run them too fast
with normal compatibility layers. DOSBox is open source and available for many
operating systems, such as Linux, OpenBSD, FreeBSD, Windows 9x, Windows NT
4.0, Windows 2000, Windows XP (32-bit and 64-bit), Windows 2003, Windows
Vista, Mac OS X, OS/2, Palm OS, RISC OS, and BeOS [11].

3 Preservation strategies

This section describes the most cited strategies for digital preservation: emulation,
encapsulation and migration.

3.1 Emulation

The emulation strategy consists in the use of special software to reproduce the
behaviour of a given hardware/software platform in a different technological
environment [12]. This strategy allows the user to interpret digital objects by running
the same software that was used in their creation [12, 13]. Emulation plays an
important role in preservation, especially in the interpretation of highly dynamic
and/or interactive objects, such as software [14, 15].

3.2 Encapsulation

The encapsulation strategy aspires to solve the problem of digital preservation by
storing together with the object, enough information about how it should be
interpreted [16]. This information may consist of a formal specification of the
object’s format which will enable the future development of viewers, emulators or
converters. Lorie argues that this formal specification could be expressed in some
sort of machine language compiled for a virtual machine [17, 18]. If the virtual

9

machine is sufficiently well documented, it should be possible to recreate it in a
future platform. The encapsulation strategy is usually applied to collections of objects
which are expected to remain unused for long periods of time. Using encapsulation
on such collections may reduce the number of preservation interventions leading to a
generalised reduction in preservation costs [15].

3.3 Migration

The migration strategy consists of a “(…) set of organized tasks designed to achieve
the periodic transfer of digital materials from one hardware/software configuration
to another, or from one generation of computer technology to a subsequent
generation.” [19]. Contrary to other preservation strategies, migration does not
intend to maintain the digital object in its original format. Alternatively, it converts
the object from a near obsolete format to a format that users are able to interpret
with their up-to-date computers. The main disadvantage of this approach relies on
the fact that when an object is migrated, some of its properties may not be
completely or adequately transferred to the target format, i.e. some sort of data loss
may be experienced. The reason for this is twofold: there may be structural
incompatibilities between the source and the target formats or the converter may be
faulty and therefore incapable of performing its task appropriately.

There are a considerable number of migration variants such as normalisation or
migration on-request. Normalisation consists in the conversion of digital objects
from a wide range of distinct formats to a smaller and more manageable set of
formats. The rationale behind it is based on the idea that by reducing the number of
formats in custody, subsequent preservation interventions will eventually be
simplified as the same strategy may be applied to a higher number of objects.
Normalisation is usually performed by the digital archive during ingest of new
material or by the material’s producer before any archival process is initiated [20, 21].

Migration on-request aims at reducing the data loss problem usually associated with
migration strategies by applying all the necessary transformations to the original
object instead of converting any of its derivatives that have resulted from previous
migrations [22]. In this strategy the focus is not on the preservation of the digital
object but in making sure that the migration tool remains usable over time [13, 15].

3.4 Refreshment

Refreshment consists of the transference of information from its original physical
medium to another one, usually more recent, before the first reaches a state of
irreparable deterioration or obsolescence. If the medium becomes corrupt or
obsolete, the information inscribed on it will be lost forever [19, 23, 24].

10

Refreshment should not be understood as a preservation strategy per se. Instead, we
should see it as a fundamental requisite to enable any of the other previously
described preservation strategies to be applied [25].

4 Task descriptions and solution walkthroughs

The following sections include detailed descriptions of all the steps taken to solve the
problems depicted on each of the preservation scenarios of this challenge. The
sections are organised as follows: first, a short description of the scenario is given.
Each description is then followed by a list of tasks that the applicant is required to
address. For each preservation scenario there is a detailed report on all the actions
undertaken.

4.1 File Format Identification

Scenario description

You have met someone online and instant messaging has been your only form of
contact. You agree to meet and your friend sends you a sound file using instant
messaging to provide you with the details of where and when this meeting will occur.
Unfortunately your computer crashes before the file transfer is complete and most of
your hard drive is destroyed. You find the sound file that was being transferred in a
temporary folder but all of the contact information you had for your friend is lost.
The only way you can contact your friend again is to recover this file and meet them
in person as agreed - can you do it?

Task

1. Identify the file format. 2. Fix its header. 3. Show that you are able to play/decode
the file by stating when and where the meeting should take place. 4. Decide if the
processing of such files could be automated and if so whether this processing would
also be applicable for hundreds of files. 5. Explain why the file format chosen was
appropriate or inappropriate for the task of sending this information online. 6. If you
decide the file format was inappropriate explain which format would have been more
suitable.

Solution walkthrough

To identify format of the transmitted message we used the UK’s National Archives
Droid application. However, Droid was unable to identify the object’s format,
probably due to fact that the file header had been corrupted during the file transfer
(i.e. the magic number embedded in the file was ruined). We attempted to use the

11

Unix file command as well, but again we got unsuccessful results - it would only
suggest that the file was of data type.

As last resort, a hexadecimal editor was used to open file and attempt to manually
identify its format by looking for clues within the file itself. Fortunately, the format
revelled it self quite easy to identify. Several references to the Ogg format and the
Speex encoder could easily be distinguished from the overall data. For example, the
following string of text could be seen very close to the beginning of the file: “[…]
OggS […] Encoded with Speex 1.1.7 […] OggS […]”

There were 4 bytes of data at the beginning of the file that looked quite suspicious.
These bytes were represented by the string of text “XXXX”. In order to reconstruct
the header, we searched the Web for the common Ogg header. We found that
information on Wikipedia as follows [26]:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1| Byte
+-+
| capture_pattern: Magic number for page start "OggS" | 0-3
+-+
| version | header_type | granule_position | 4-7
+-+
| | 8-11
+-+
| | bitstream_serial_number | 12-15
+-+
| | page_sequence_number | 16-19
+-+
| | CRC_checksum | 20-23
+-+
| | page_segments | segment_table | 24-27
+-+
| ... | 28-
+-+

Capture Pattern - 32 bits: The capture pattern or sync code is a magic number used to
ensure synchronisation when parsing ogg files. Every page starts with the four byte sequence
'OggS'. This assists in resynchronising a parser in cases where data has been lost or is
corrupted, and is a sanity check before commencing parsing the page structure. [26]

The following sequence of data “0x4F 0x67 0x67 0x53” (“OggS” in ASCII) was
therefore placed at the beginning of the file, replacing the original “XXXX” string.
This proved effective in making the file valid and interpretable.

After restoring the file, a common music player (i.e. iTunes) was used to render the
audio file and decipher the recorded message: “I’m gonna meet you in London on
Tuesday at ten. See you then. Bye!”

Its curious to notice that after restoring the file, Droid was still unable to detect the
object’s format, while Unix file command would clearly identify it as a “Ogg data,
Speex audio”.

12

If one would have to process/restore in an automated fashion hundreds of files with
the same issue as the file presented in this scenario, one would have to make sure
that the following two conditions were in place: first, all the files must be of the same
format, i.e. an Ogg file, and secondly the corrupted sequence of bytes should be in
the same place as they were in the presented message file.

Detecting the format of a corrupted file, especially when the corruption takes place
in the header section (where all the relevant information for detecting the file format
is usually placed) is an extremely complex task. Some formats include information
about its encoding (such as magic numbers) both at the beginning and at the end of
the file. This makes file format identification easier in the event of file corruption.

In the particular case of the Ogg type, there was information about its format in
more than one place within the file, which helped us to identify it. One could try to
automatically determine if a given file is an Ogg file by running the following Unix
command: grep “OggS” <filename>. However, this would not attest, at least in
an irrefutable way, that the file format was in fact an Ogg, it would just provide a
very naïve method of trying to guess if the digital object was in fact an Ogg. More
complex format identification methods such as the one provided by the JHove [27]
tool could eventually be used.

In the event of a successful format identification, one could pass on to the file
recovery procedure. This task is surely more complex. Corruption of the file could
occur any place within the file. Distinguishing the corrupted bytes from the correct
data is actually a very difficult task. In some cases this could be considered
impossible. Some applications might attempt to fix an audio file by forcing the
portions of the file that were not corrupted to be playable, however, the corrupted
parts could never be appropriately restored. Nevertheless, depending on the level of
corruption, the message could eventually be grasped by a human being. Humans
have incredible brains that are “ebla to rd prty mch anthng”.

In what concerns the aptness of the Ogg format for transmitting the information of
the time and place were both friends were supposed to meet, we would have to say
that since they were communicating via instant messaging why didn’t they agree on
the rendez vous place by solely using the instant messaging tool itself, i.e. by
exchanging a line of text? This way the receiver would not have to save the file, find
an appropriate player, decode the message and interpret it. He or she could easily
read the message right off the screen. The message was short enough for the receiver
to memorize it.

Still, if the message to be transmitted had, in fact, to be an audio file (e.g. if the two
friends were to exchange an audio song or if both friends were visually impaired) we
would have to argue that the Ogg format comes with both pros and cons. Ogg is an
open standard for digital multimedia, unrestricted by software patents and designed

13

for efficient streaming and manipulation [26]. This means that finding a free player
for a particular operating system is fairly easy9.

Additionally, Ogg is a compressed file format. Compression is usually a good asset
when exchanging information in a networked environment as it shortens the time
necessary to transmit the digital information. On the other hand, a compressed file is
composed by an additional interpretation layer. A human willing to interpret a
compressed file faces an additional step before getting contact with the actual
information carried within the object. First, the object must be decompressed, and
then decoded into something intelligible to the human receiver (Figure 1).

Additionally, compressed files that have been corrupted are more difficult to fix than
uncompressed ones. If a single bit of information in a compressed file gets
scrambled, the whole file can become unreadable, whilst in an uncompressed format,
if some bytes get accidentally changed, that doesn’t necessarily mean that the
information will be imprisoned in it. Usually, only the portions affected by
corruption will become unreadable.

Figure 1 - Steps involved in the interpretation of a compressed digital object.

We have tested this hypothesis with two different files in distinct formats: the
provided Ogg and a Wave version of it. We took the two files and deliberately
scrambled four bytes of information (using an hexadecimal editor) at approximately
half the length of the file. We then used the iTunes application to play both of files
and assess the amount of damage we had imposed on to them.

In the case of the Ogg file, the audio file would play up to the scrambled bytes.
Silence would come out of the speakers from that point on. In the case of the Wave

9 The following Web site contains links for tens of applications capable of reading and producing Ogg files:

http://vorbis.com/software/

14

file, a barely noticeable high pitched glitch could be heard half way through the
playing the file. The file would continue to play correctly after the event.

In sum, even though the Ogg format comes some disadvantages we are led to believe
that it would be a good choice in the given context. The compressed audio file is
small enough to be transmitted online and the fact that the Ogg is open and patent
free makes it a good candidate for an interchange format as the receiver would not
have to go through a great deal of trouble to find an appropriate player.
Furthermore, the audio stream inside the Ogg was encoded in Speex, a codec whose
design goals have been to make it optimized for high quality speech at low bit rates.
Additionally, Speex was designed to cope with lost packets although not corrupted
ones (i.e. adequate for UDP transmissions) [28].

4.2 Proprietary File Format

Scenario description

A friend contacts you asking for your help to access two files which she has been
given by her PhD supervisor. She urgently needs to access these files so that she can
complete her dissertation. She has been unable to open the files as they appear to
have been created using a proprietary format that is not recognised by her operating
system. She tried to contact her supervisor for additional information but
unfortunately her supervisor is attending a conference and is not contactable for a
week. Your friend needs these files before then to meet her deadline - can you help
her?

Task

1. Recover the content of the files and describe it. 2. Find out which software they
were created with. 3. Restore the files. 4. Find a free viewer and open the files. Show
that you are able to do this by providing a Screenshot.

Solution walkthrough

The proposed problem includes two files: “wchwom04.cbh” and “problem”. Our
first action consisted in identifying the format of both files in order to determine
which application was use in their creation.

For this purpose, we used Unix file command and Droid. However, both applications
were unable to determine the format of the files. We then used the extension of the
first file (i.e. cbh) and searched the Pronom database to check if it was a known
extension. Unfortunately, Pronom did not recognise the extension. Our final attempt
was to look for other format registries. We found the FILExt web site10. Searching its

10 http://www.filext.com

15

database enabled us to realise that the file was associated with a software application
called ChessBase.

The next step consisted in downloading ChessBase Light 2007, a free version of the
application to see if we could render the files. However, ChessBase could not open
the files as they were. It displayed the error message “filename is not a database”.

After browsing through the application menu we discovered that there was Backup
database functionality. We have tested this option and it produced a file called “CB
Light Database.cbv”. We edited this file with a hex editor and realised that its
structure was very similar to the one of the “wchwom04.cbh” file. Our next attempt
to open the file was to change its extension to .cbv and see if the application could
now open the file. To our surprise, it did!

Double-clicking the file icon lead the application to open and restore the backed up
chess database. After the restoration process 11 new files were created in the
directory were the backup was. One of those files was called “wschwom04.cbh”.
This file could now be adequately opened in ChessBase (Figure 2).

Figure 2 - Screen shot of the ChessBase application showing the contents of
the “wchom04.cbh” file.

A similar procedure was tried for the “problem” file. We begun by adding a .cbv
extension to the file, and see if it restored appropriately. However, during restoration
the following error was displayed by the application: “c:\…\pm is not a database”.

16

“pm” was in fact one of the files created during the restoration. We attempt to open
the “pm” database by adding a “.cbh” extension to it. This allowed the application to
appropriately load the “pm” database (Figure 3).

Figure 3 - Screenshot of the ChessBase application showing the contents of
the "problem" file.

However, the last procedure seemed strange. Why didn’t the restore functionality
work correctly? Something was obviously wrong with the “problem.cbv” file. Using a
hex editor we compared “problem.cbv” with “wschwom04.cbv”.

By inspecting the file we realised that the name of the files created during the
restoration procedure were clearly visible within the file. We then decided to include
the correct extension close to the “pm” statement at the beginning of the
“problem.cbv” file (Figure 4). We tested the restoration procedure again and
everything worked correctly. Twelve files were created in the same directory as the
backup file.

17

Figure 4 - Change done to the "problem.cbv" file.

4.3 Client Server Database Application

Scenario description

You work for a small company that manufactures grand pianos. The company is
currently facing financial difficulties due to low sales. A customer, named Mr. Miller,
calls you asking for a quote for a large order. As a previous customer of your
company, Mr Miller assumes that you already have all his contact details on record,
and therefore he hangs up without providing any.

When you check the company's records however, you cannot find these details. He
bought his piano during the month that your company trialled a new database
application for managing customer relations. However, you still have a file from this
trial and an accompanying note stating that the application has to be 'set up' and
contains the 'current database'. You must recover Mr. Miller's contact details in order
to make this important sale - can you obtain them?

18

Task

1. Identify the file format. 2. Set up a feasible environment to handle the file. 3.
Perform any steps necessary to properly access and set up the provided object. 4.
Identify Mr. Miller's address. 5. Migrate the data records to a relational database
system (include the sources of your migration system in your submission – in zipped
form).

Solution walkthrough

The third scenario included a file called “dpc.ace”. Using Unix file application, we
could identify the file format as being a Zip archive file11. Following that, we used the
Unix unzip command to decompress the object and gain access to its contents.

For someone who has already worked with the Servlet/JSP technology is quite easy
to recognise the folder structure that was created during the decompression step. The
contents of the “dpc.ace” file consisted of a Servlet application.

We have installed Apache Tomcat 512, an open-source application server, in order to
run the servlet application. By copying the entire content of “dpc.ace” to
TOMCAT_HOME/webapps/dpc and pointing our browser to
http://localhost:8080/dpc we have managed to get a glimpse of the web
application (Figure 5).

Figure 5 - Screenshot of the opening Web page produced by the Servlet.

Following the first link on the opening web page, we found a second screen, which
displayed the following message: “Welcome to our customer database! Don't forget
to configure the environment first, there is no life before setup :)” (Figure 6).

11 file’s output was “Zip archive data, at least v2.0 to extract”.
12 http://tomcat.apache.org

19

Figure 6 - Screenshot of the Struts Welcome page.

Examining the files that comprised the Servlet application, we could detect a file
called “setup.jar”. Executing the file, by running the command “java –jar setup.jar”,
would render the following exception “Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0" at setup.Setup.main (Setup.java:59)”.

This usually happens when we do not provide all the necessary parameters to the
application. So we tried to append a parameter to the previously executed command
(e.g. “java –jar setup.jar test”. This forced the application to print out a syntax
instructions message:

“Usage: setup.Foo writeyap <path>”

We then executed the following command-line:
“java –jar setup.jar writeyap $TOMCAT_HOME/WEB-INF/dpc/dpc.yap”

This action produced the message “Don't forget to put all files in the correct(!) locations to be
able to run the web application!” and created a file called “db4o.config”.

Rerunning the Web application generated an exception that suggested that the
application was not able to find the configuration file. After some experimentation in
moving the configuration file around the application folder structure, we finally
realised where it should be present: $TOMCAT_HOME/webapps/dpc/WEB-
INF/classes/at/tuwien/dpc.

Moving the configuration file to the appropriate folder rendered an additional
exception: “java.lang.NoClassDefFoundError: com/db4o/Db4o”. Searching the web for
“Db4o”, we found that it was an open-source object database13. At the Db4o Web

13 db4o is the open source object database that enables Java and .NET developers to slash development time and

costs and achieve unprecedented levels of performance. The unique design of db4o's native object database
engine makes it the ideal choice to be embedded in equipment and devices, in packaged software running on
mobile or desktop platforms, or in real-time control systems - in short: in all Java and .NET environments,
where no database administrator (DBA) is present.

20

site we could find some developer tools14, including the library that was missing in
our application. After downloading the development tools, we copied the db4o-6.1-
java5.jar15 library to the appropriate folder in our Web application (i.e.
$TOMCAT_HOME/webapps/dpc/WEB-INF/lib) and managed to correctly
present the Result page where Mr Miller’s address could be visualised: “72 Hudson
St., Hoboken, NJ 07030” (Figure 7).

Figure 7 - Screenshot of the database listing.

In order to export the Db4o database to a relational database we have adapted the
“result.jsp” JSP to reproduce the entire contents of the object database as SQL
statements that could be used to regenerate the database in a standard Relational
Database Management System (RDBMS) (e.g. MySQL). The source code of the
adapted java server page is depicted next:

<%@page contentType="text/plain"%>
<%@page pageEncoding="UTF-8"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

CREATE TABLE customers(givenname varchar(100), surname
varchar(100), address varchar(500));

<c:forEach var="b" items="${sessionScope.GoForm.list}">
INSERT INTO customers(givenname, surname, address) VALUES
('${b.vorname}', '${b.nachname}', '${b.address}');
</c:forEach>

Figure 8 - Source code of the exportToSQL.jsp.

14 http://www.db4o.com/community/
15 We opt for this file among all the other provided with the developer tools, because we were using JDK 1.5.

21

To recreate the original database in a relational database, save the resulting Web page
to a file called, for example, “customers.sql” and run the following command on a
Linux machine with a previously installed version of MySQL:

mysql -u username -p dbname < customers.sql

After executing the previous command, if the following SQL statement is executed
within the MySQL shell environment, the following output would be produced:

mysql> select * from customers;

+-----------+---------+----------------------------------+
| givenname | surname | address |
+-----------+---------+----------------------------------+
Brad	Mehldau	Mulholland Drive 24, LA
Markus	Miller	72 Hudson St., Hoboken, NJ 07030
Evgeny	Kissin	Kreml 4, Moscow
Michael	Kane	Xanadu, US
+-----------+---------+----------------------------------+
4 rows in set (0.00 sec)

Additionally, we have developed a more portable and generic solution to tackle the
problem of migrating Db4o databases. An accompanying java application called
“db4o2xml” (jar and source are provided with this report) is provided that is able to
traverse any Db4o database and save its contents as XML.

The structure of the produced document is simple enough so that a stylesheet may
easily be developed to transform the XML into SQL statements or any other textual
format that one might require (e.g. comma-separated values).

Running the “db4o2xml” application on the provided “dpc.yap” database produces
the following output:

22

Table 1 - Output produced by running the Db4o to XML application.

<?xml version="1.0" encoding="UTF-8"?>
<db4o>
 <at.tuwien.dpc.Bean>
 <attribute name="vorname">Brad</attribute>
 <attribute name="nachname">Mehldau</attribute>
 <attribute name="address">Mulholland Drive 24, LA</attribute>
 <attribute name="kinder">0</attribute>
 </at.tuwien.dpc.Bean>
 <at.tuwien.dpc.Bean>
 <attribute name="vorname">Markus</attribute>
 <attribute name="nachname">Miller</attribute>
 <attribute name="address">72 Hudson St., Hoboken, NJ
07030</attribute>
 <attribute name="kinder">0</attribute>
 </at.tuwien.dpc.Bean>
 <at.tuwien.dpc.Bean>
 <attribute name="vorname">Evgeny</attribute>
 <attribute name="nachname">Kissin</attribute>
 <attribute name="address">Kreml 4, Moscow</attribute>
 <attribute name="kinder">0</attribute>
 </at.tuwien.dpc.Bean>
 <at.tuwien.dpc.Bean>
 <attribute name="vorname">Michael</attribute>
 <attribute name="nachname">Kane</attribute>
 <attribute name="address">Xanadu, US</attribute>
 <attribute name="kinder">0</attribute>
 </at.tuwien.dpc.Bean>
</db4o>

4.4 Legacy Emulator

Scenario description

You are a first year Computer Science student. For one assignment, you are set the
task of recreating a computer game from your childhood for use on mobile
platforms. You must incorporate as many of the game's original features as possible
within your project including audio samples. Although you cannot remember the
exact name of the particular game you have chosen to recreate, you have found a file
relating to it on your hard drive. Can you find the application to run the game and
retrieve the sound file?

Task

1. Identify the file format. 2. Name the game the file was saved from. 3. Run the
emulator and game. 4. Record the sound that is played and save it in an open format
that can be embedded into a presentation.

23

Solution walkthrough

To solve this scenario, we begun by using the Unix file command to identify the
format of the included digital object. file identified the object as being a “rzip
compressed data - version 2”. We used the Linux command rzip to decompress the
object as follows:

$ rzip –d bullethellshmups.rz

This created a new file called “bullethellshmups”. Running the file command again
would reveal that the recently created file was a “gzip compressed data” file. After
decompressing the new file with the Linux command gunzip we obtained a file called
“bullethellshmups”. Now file could not identify its format.

We then used a hexadecimal editor to see if the entrails of the file would reveal any
clues on application that was used to generate it. Fortunately, it was quite clear that
an application called Vulcanon 2.0 was somehow related to the object (Figure 9).

Figure 9 - Hexadecimal view of the entrails of the mistery file.

Searching the Web revealed that Vulcanon 2.0 was a game for the Nintendo’s Game
Boy Advance16. A game ROM was available for download at the Web site as well as a
Game Boy Advance emulator called “Visual Boy Advance 1.8.0 Beta 3.

We run the game using the emulator and recorded (Figure 10) the initial screen music
using the Windows Sound Recorder.

16 http://gba.pqrs.org/~tekezo/gba/vulkanon/

24

Figure 10 - Screenshots of Vulcanon 2.0.

The resulting audio file was encoded in the Ogg format and is provided together with
this report (see accompanying files on page 39).

4.5 Legacy File Preservation Strategy

Scenario description

Your company is going through a certification process and requires access to
business reports for the last ten years. You have discovered that many of these legacy
files are partially incompatible with the company's modern applications and that
there are many other files like these in the company's archive. You have been
provided with representative samples of the files in question and have eventually
been able to recover all of the information from the legacy files. However, it has
taken a lot of time and effort to access these files and your boss is keen to avoid this
kind of scenario in the future. She has asked you to design an appropriate
preservation strategy that will facilitate access to such records. How will you do it?

Task

1. Display the given files in their original format, or the closest available format to
this. 2. Propose a suitable preservation strategy. 3. Implement a preservation strategy
capable of mass handling of files of this type. Your strategy should, as a minimum,
be able to handle all the example files. 4. Provide a thorough description of your
ideas about preservation strategies and an in-depth explanation of the file format.

25

Solution walkthrough

To solve this scenario we begun by querying PRONOM17 and the FILExt18 Web site
to check if the extension “.fw3” was somehow a known as a common file format
extension. It turns out that both Web sites identified the extension as being a
Framework III file.

Searching the Web for that particular application, we realised that it was one of the
earliest office suites and that it was still being maintained by a company called
Selections & Functions, Inc.19. Unfortunately, a free version of the software could
not be found at the company Web site.

We continued to look for an application that would be able to render the contents of
the .fw3 files. We found two plausible applications:

• FW3 to TXT converter20 – is DOS based converter application written in 1999
by an anonymous programmer. However, the converter does not always
produce good results as the contents of the fw3 files are not always text based.
In 2004, that very same programmer created a version 2.0 of the converter and
made it compatible with Win32. It also added the capacity to handle
documents in different codepages. We tested this application and the results
were still very poor. The text produced by the application was mostly
gibberish.

• Framework IV or Framework III to MS Word converter21 – is an add-on for
Microsoft Office Word developed by R&L Software GmbH which enables the
user to import FW3 files to Microsoft Word. The files can then be saved in
any Word compatible format (e.g. Word format, RTF, ASCII text, etc.). We
have installed the trial version of this add-on, freely available at the company’s
Web site, and opened the files provided with this scenario. The results seemed
acceptable (text and style seemed to be imported), however the software
deliberately replaced some of the text paragraphs due to the fact that it was a
trial version (Figure 11).

17 http://www.nationalarchives.gov.uk/PRONOM
18 http://filext.com/
19 http://www.framework.com/
20 http://visualcpp.net/index.php?qID=56
21 http://www.rl-software.com/converter/framework-to-word-e.htm

26

Figure 11 - Screenshot of "1.fw3" file opened on Microsoft Word.

Yet, we were not yet satisfied. We wanted to try the original Framework office suite
to make sure that the Word add-on was working correctly, i.e. that the significant
properties of the original object were being adequately tranferred. However, in order
to identify the significant properties of the objects produced in Framework III we
needed to fully understand the possibilities and functionalities offered by the
application.

Obtaining a working copy of Framework III was everything but easy. We have
established contact with José Maria Fernandes Almeida, the main responsible for the
Virtual Museum of Informatics22, an initiative of the Department of Information
Systems of the University of Minho, to see if among all the hardware and software
that was being kept at the museum one could find a working copy of Framework III.
Unfortunately, the museum did not maintained that particular application. Our next
step was to contact the IT manager of our department to see if he, by any change,
would have a copy of the application. As it so happens, he did!

We installed Framework III using a DOS emulator called DOSBox under Mac OS X
and opened all the files with the original software (Figure 12 to Figure 19).

22 http://www.dsi.uminho.pt/museuv

27

Figure 12 – Screenshot of “1.fw3” file opened on Framework III original
software.

Figure 13 - Screenshot of “2.fw3” file opened on Framework III original
software.

28

Figure 14 - Screenshot of “3.fw3” file opened on Framework III original
software.

Figure 15 - Screenshot of “4.fw3” file opened on Framework III original
software.

29

Figure 16 - Screenshot of “5.fw3” file opened on Framework III original
software.

Figure 17 – Screenshot of “5.fw3” sub frame 1 opened on Framework III
original software.

30

Figure 18 - Screenshot of “5.fw3” sub frame 2 opened on Framework III
original software.

Figure 19 - Screenshot of “5.fw3” sub frame 3 opened on Framework III
original software.

Opening the objects using their original software enabled us to better understand
what in reality were the contents of those files. Framework supports several types of
objects, as an office suite usually does, however, instead of storing each type into a
different file format (as current office suites do), Framework stores all sorts of object
types in a single file format – the FW3. We could identify at least 5 types of

31

Framework objects are called frames and are of the following types: word-processing,
graph, database, spreadsheet and outline (some sort of index type of frame that can
link to other frames). The following table categorizes each of the objects provided in
this scenario:

File

name
Type Observations

1.fw3
Word-processing
frame

This object was composed of text with embedded
style information such as bold, italic or underline.
Justification of text, such as centred or right
alignment, may also be present in this type of
frame. Page breaks are also a possible feature
(Figure 12).

2.fw3 Graph frame
This object was constituted by a bar graph. The
information carried by this object was mostly
graphical (Figure 13).

3.fw3 Database frame
This object contained simple implementation of a
database with three attributes (Name, Vorname
and Wohnort) and three records (Figure 14).

4.fw3 Spreadsheet frame
This object was a spreadsheet frame. The
spreadsheet was composed of several cells with
values and formulas (Figure 15).

5.fw3 Outline frame

This object can be considered a compound object
composed of 4 different frames: an outline frame
that provided links to the rest of the frames, a
word-processing frame, a spreadsheet frame and a
graph frame (Figure 16 to Figure 19).

Comparing the objects rendered with the original software with the output produced
by the Word add-on we would argue that for the word-processing frames, the add-on
performed fairly well. The text was converted accordingly, as well as style. However,
other types of objects were not property converted by the Word add-on: spreadsheet
formulas were not converted correctly, graph frames were not converted at all. The
outline frame was not converted, but its constituents were (except the graph frame).

R&L Software GmbH also provides a Framework III to Microsoft Excel Converter,
however, our tests led us to conclude that although the results of importing a
spreadsheet to Excel produced better results than importing it to Word, the results
were not perfect - formulas were imported with many errors such as cyclic
references.

In order to implement an appropriate preservation strategy for this type objects we
would have to find/develop a better conversion application. In alternative, we could
use the original Framework III software under an emulator such as DOSBox to

32

render the objects and get a grasp of its contents. However, we feel that this
approach embeds some disadvantages for the common user, such as:

• The need to understand and be able to operate long-gone operating systems
and applications.

• The necessity to preserve together with the original object an assortment of
applications such as viewer application, its operating system and an emulator
capable of setting an adequate environment to run them.

• The ability to reuse information is not guaranteed.

Furthermore, automating an emulation-based preservation strategy in a way that
access to the information ca be made easy for all types of users is not a
straightforward task.

We feel that the best preservation strategy for this particular scenario would be a
migration-based strategy. The objects should be converted to easy to interpret
formats, such as ASCII text (or annotated text such as XML), comma separated
values (for the spreadsheet objects assuming that the formulas were not a significant
property) and raster images for the generated charts (uncompressed TIF for
example). However, in order to do that, we would need an appropriate conversion
application.

Selections & Functions, Inc. sells a Windows version of Framework suite. In their
Web site they state that the Windows version of the office suite (Framework IX)
works seamlessly with other windows applications and is able to correctly open
objects produced with previous versions of the Framework application suite:

Framework is a continuation of Ashton-Tate's Framework (Framework, II, III, and IV)
and the FRED computer language. The Framework software and trademark were taken
over by Selection & Functions Inc. from Borland after Ashton-Tate was taken over by
Borland. Selection & Functions Inc. with the stated goal of protecting the significant
investment made by Framework users and FRED programmers in this unique technology
and concepts. The current Windows versions of Framework which are available to
Framework users are fully compatible with the original Framework methods and user
interface, files, macros, FRED programs, libraries and dictionaries, while providing
transparent compatibility with Windows programs and data.

Copying between Framework and Windows MS Word, Excel, HTML, Internet e-mail,
and most other programs preserves text style and format as well as spreadsheet cell and
database field values. Images cut by Framework, including pictures opened in Framework
(JPG, GIF, BMP, etc.) can be pasted into Windows graphic programs such as MS Paint
and Photoshop.23

23 Text taken from http://www.framework.com.

33

Additionally, Framework comes with a programming language called FRED. This
language can be used to develop small programmes that can interact with any of
Framework’s internal objects (something we would now call a Macro).

Our suggestion for a wide-scale preservation strategy for Framework III objects
would be to develop a conversion Macro using FRED programming language that
could open the original “.fw3” object and save it in a format more adequate for long
term preservation. The Macro should be able to be executed from the command-line
by some sort of batch file, or shell script, that would pass the name of the file to be
converted, and eventually the destination directory where the results of conversion
should be saved.

The shell script should be able to open Framework and execute the correct Macro
script (with the correct parameters). The Macro programme should also be able to
determine the type of frame included in the object (e.g. word-processing document,
spreadsheet, graph, database or outline) and save then in an appropriate preservation
format.

A suggestion for preservation formats would be:

• Word-processing frames - As far as we could tell from the original application,
Framework III could not mix graphic data with text. However, text could have
style associated with it, such as bold, underline, strike-through or italic.
Furthermore, we can have page breaks and text may be aligned in several
different ways: left, centred, right and justified. We feel that style and
alignment should be preserved with the text it self. Therefore, we would
suggest a preservation format such as XML. XML would be both easy to
decode and easy to convert to any presentation format. XHTML would be a
good candidate for this purpose. Only page breaks could not be represented in
this format. Additionally, TEI24 could be considered as a preservation format.

• Spreadsheet frames – a spreadsheet frame is usually composed of a two-
dimensional matrix of cells that typically contain numeric data. Each cell also
contains a unique identifier (usually its X and Y co-ordinates) and may contain
a formula to execute a mathematical function and formatting for the
presentation of the cell content [29]. Some cells contain text that serves as
label for the numeric values included. Framework spreadsheets include the
possibility to have three-dimensional data, i.e. a single cell may be clicked to
open an entirely new spreadsheet. To preserve this type of frame we could
export each worksheet to an ASCII or UNICODE delimited text file (tabs or
pipe delimiters are preferred over commas). Each additional worksheet (3D
effect) could be saved separately and adequately referenced from the original
pointing cell. The Formulas used to calculate data values may be extracted as
separate objects if their explanatory value is considered worth preserving [30].

24 http://www.tei-c.org

34

• Database frames – database frames created with Framework III are composed
of simple tabular data. The first row contains the name of the record fields.
The subsequent rows constitute the records of the database. No relational
information could be found on the originial application. As a preservation
format, we would suggest exporting all tabular data to a delimited text file (tabs
or pipe delimiters are preferred over commas).

• Graph frames – graph frames are rendered by Framework as graphical entities.
We would suggest preserving this type of object in a raster image format such
as uncompressed TIF. JPEG 2000 is often cited as the preservation format to
be used in the near future for this type of objects, but its adoption is still low.
We would advise to wait a little longer and evaluate how the community has
embraced this recent format.

• Outline frames – Outline frames are composed by frames of the previously
described types. We would suggest storing the index file in a METS file
keeping the links to all its constituents and convert each of them to the
previously described preservation formats accordingly.

4.6 Digital Preservation of Multimedia Art

Scenario description

A large international art network has provided an interdisciplinary platform for
developing digital art works since 1984. The rapid pace of change in software tools
and frameworks used for multimedia authoring has meant that its archived artworks
are in danger of becoming inaccessible and unusable. You have been asked to
preserve two of these historical digital artworks for future generations and to develop
appropriate digital preservation strategies. How will you achieve this?

Task

1. Develop preservation strategies for the two pieces of multimedia art provided. 2.
Decide which aspects of the artwork to preserve and which to lose. 3. Point out the
differences in the strategies between to two artworks. 4. (Optional) Implement the
preservation strategies you have developed and submit code for this.

Solution walkthrough

Scenario 6 included two folders. The first contained the installation package of a
children’s music application called DoremiBox (Figure 20). The other, contained a
Windows executable file produced with Macromedia Director 7.0.1G that when run,
displayed a simple animation of a wobbling rounded-corner rectangle over a black
canvas (Figure 21).

35

Figure 20 - Screenshot of the “DoremiBox” application.

Both of these objects are dynamic and/or interactive in nature. Furthermore, they are
software applications which means that they have embed functionality that does not
depend of any particular application to render them besides the operating system.
The technological context that is required to render these files is therefore an
operating system, which in this particular case is a 32 bits Windows operating system,
such as Windows XP or Vista.

DoremiBox, however, possesses some further dependencies. To use this application
correctly, one would need a MIDI compatible soundcard.

Since these are software applications, the identification of their significant properties
is more complex than for other types of digital objects. These objects are interactive
and dynamic. One of them is able to play sound. So “behaviour” and “aesthetics” (or
“look and feel”) are fundamental properties that should be preserved. The ability to
reproduce “sound” is also relevant in the case of the “DoremiBox” application.

36

Figure 21 – Screenshot of the "mund.exe" animation.

To preserve these objects we would recommend an emulation strategy (see
Emulation on page 8). In order to fully implement this strategy the following steps
should be taken:

1. Preserve the original bits – store the original bits of the application in a safe
medium (CD-ROM, hard disk, etc.). Make enough replicas of the data to
make sure that at least one copy of the object survives in the event of hazard.
Refresh the media whenever necessary, i.e. before the media gets corrupted
or as soon as a new technology invades the market to replace the current
media.

2. Save a working copy of the rendering environment – make a clean installation
of all the software and hardware necessary (including the operating system) to
render the objects and make a bitwise image of that environment25. Preserve
the image of your technological environment as it will be used in the future
to recreate the original setting.

3. Add sufficient metadata – together with your original object and image of the
rendering environment keep enough metadata to describe both the object
(descriptive metadata) and the technological setting including both software
and hardware (technical metadata). This will be useful later on to discover
your original objects and to identify an appropriate emulator to run the
preserved image.

During the time that the hardware is still compatible with the operating system that
originally supported the objects under preservation no special treatment has to be

25 Several tools are available that allow the user to perform this task. Under Unix-based operating systems one

may use the dd command to accomplish this.

37

done to gain access to the files. One must only copy the bitwise image of the
technological setting to a location were a regular computer will be able to boot from.

When current hardware is no longer compatible with the operating system stored
within the image, an emulator should be used. A special type of emulator called
virtual machine [31, 32] is becoming trendy nowadays for many purposes other than
digital preservation. This type of software has some interesting features such as the
capacity to setup your own hardware configuration. For example, you may specify
the amount of memory that will be available to your virtual machine, the size of the
hard disk, the number of external drives, etc. (here we begin to understand the
importance of technical metadata). It will also let you specify an image file to boot
from. If the hardware is set correctly, the OS image will boot appropriately within the
previously set virtual machine.

There are at least two decent products on the market today: VMWare Workstation
[32] and Parallels Desktop [31] (Figure 22). Both offer enough virtual hardware to
run most of the operating systems of the last 10 years, e.g. Windows (from version
3.11 to Vista), Linux, FreeBSD, OS/2, Solaris and Ms-DOS.

Figure 22 - Screenshot of Parallels Desktop.

Figure 23 presents a screenshot of the “DoremiBox” application running on a Mac
Os X inside a Windows Vista emulator (i.e. Parallels). The application requires a
sound card to play the songs included in the package. The emulator is capable of
transferring the audio from the virtual sound card to the physical card on the
computer so the user can hear whatever audible information is being produced.

38

Figure 23 – “DoremiBox” application running on an emulator.

The “mund.exe” application, albeit dynamic, is not interactive. When executed it
simply plays an animation of a wobbling rectangle. A shallow inspection of the
animation led us to believe that the rectangle changes its shape in a non-repetitive
way as if the movement and size of the rectangle were being calculated in real-time.
Nevertheless, and given the nature of this particular multimedia object, one could
attempt to preserve it by recording a few minutes of its animation and preserve the
video file instead of the executable application. Access to the object would be much
simpler for the majority of consumers, as no additional artefacts such as emulators
would be necessary to render the file.

We are tempted to say that by proceeding with this strategy we are preserving
enough significant properties to ensure a correct interpretation of the artwork by
future art consumers. The uniqueness of this particular multimedia artwork would be
preserved (at least partially) at an acceptable cost, i.e. loosing its randomness and
unpredictability. This are, of course, our own thoughts. If possible, the artist should
be consulted in order to assess its opinion regarding the importance of the
randomness-associated properties.

The video file with the recording should be encoded in a format adequate for long
term preservation, e.g. MPEG-4 at a high bit rate [33].

CamStudio26 application was used to record a 54 seconds video of “mund.exe”
activity.

26 http://sourceforge.net/projects/camstudio/

39

5 Summary

This section provides a summary of all the digital objects included in this Digital
Preservation Challenge together with information regarding its format and a
suggestion of a rendering/enabling application. This section also includes a
description of all the files that accompany this report.

5.1 Digital objects

Scenario File name Format Rendering application Observations

1 message Ogg Apple iTunes 7 None

2
problem
wchwom04.cbh

ChessDatabase
Backup

ChessBase Light 2007 None

3 dpc.ace Servlet Jakarta Tomcat 5

The provided object was a
compressed package with various
files inside. After decompression, the
resultant file structure was a Servlet
application.

4 bullethellshmups.rz Save game
Visual Boy Advance
1.8.0 Beta 3

The object was compressed. After
decompression the object was
identified as possibly being a save
game from Vulanon 2.0 for
Nintendo Game Boy Advance.

5

1.fw3
2.fw3
3.fw3
4.fw3
5.fw3
6.fw3

Fw3 Framework III None

DoremiBox Windows
installation
package

Windows Operating
System (32 bits) None

6
Mund.exe Windows

application
Windows Operating
System (32 bits)

None

5.2 Accompanying files

Folder name File name Description

message-fixed.ogg The fixed audio message.

message corruped.ogg A corrupted ogg file used in our compression experiment. Scenario 1

message corrupted.wav A corrupted wav file used in our compression experiment.

exportToSQL.jsp
A JSP application that can be placed with the Servlet of scenario 3 to convert the
original object database to SQL statements. Scenario 3

db4o2xml A java application and respective source-code for a generic Db4o to XML converter.
Vulkanon-audio.ogg The song of the initial screen of the game Vulkanon 2.0 for the Game Boy Advance.

Scenario 4
vulkanon-2.0.rom.gba The Vulkanon 2.0 game ROM for the Game Boy Advance.

Scenario 6 Mund.avi A video recording of the “mund.exe” animation.

40

6 Summary and conclusions

This section includes a summary of the most common steps involved in each
walkthrough of the six preservation scenarios proposed in this challenge. It also
outlines some conclusions we have drawn from this experience.

Lets first summarize the steps that composed each of the solution walkthroughs:

1. Format identification – this is fundamental step before any preservation
action can be applied. It consists in determining the file format of the object
we intend to preserve. Without information about an object’s format, it is
impossible to make sense of the bytes that compose it. Format identification
throughout the challenge was accomplished using three distinct methods:

a. Internal identification (file and Droid) – attempts to determine an
object’s file format by looking at its internal byte structure, especially,
looking for known sequences of bytes usually called magic numbers.

b. External identification (Droid and FILExt) – an attempt to determine
an object’s file format by looking at its extension.

c. Manual (hexadecimal editor) – if the previous methods fail to
determine the object’s format, one may attempt to open the object in
a hexadecimal editor and manually attempt to identify a byte
sequence that might suggest a file format or a rendering application.

2. Fixing corrupted objects – some objects in the challenge contained errors in
its byte stream, which prevented rendering applications from adequately open
them. Before we could open such objects, we had to find the corrupted bytes
and correct them. This usually involves looking at technical documentation
about the given format or comparing the headers of corrupted objects with
valid ones. After fixing an object, it is generally good practice to check if our
format identification tools are able to determine the object’s format.

3. Rendering the objects – getting access to the information embedded in a
digital object usually implies using a software application that is capable of
rendering the given object. This application can be the original software used
in the creation of the object (e.g. opening a Word document in Microsoft
Word) or a compatible application (e.g. opening an image produced in
Photoshop in Picasa). It can also mean converting the object to a different
format that is compatible with other viewing applications (e.g. converting a
Word document to PDF to make it readable in Linux).

4. Preserving the object – to preserve a digital object we have fundamentally
two approaches at our disposal. We may convert the object from its original
encoding to a format more suitable for long-term preservation (i.e.
normalisation) or we may preserve the entire technological context that is
necessary to render that object in the future and make use of an appropriate
emulator to recreate that environment.

41

In what concerns the preservation tools that were used thoroughly throughout this
challenge we are led to draw the following conclusions. Droid, as a format
identification tool, has proved to be ineffective in determining most of the file
formats included in the challenge. Although we consider it to be a very useful tool
for digital preservation, especially in what concerns format naming conventions, the
format detection tool must be improved to cope with:

1. a larger spectrum of formats;

2. objects without extensions (a large part of Droids inner workings is dedicated
to guessing a file’s format based on its extension);

3. handle incomplete information, such as files with broken headers.

PRONOM should cooperate with FILExt web site and probably with some others
such as Wotsit's Format27 to collect format and decoding information.

Additionally, we believe it would be useful to assemble a Web site an assortment of
useful applications for digital preservation. Examples of such applications could be
hex editors, emulators, free viewers and converters for all kinds of file formats.

An online conversion service such as the ones provided by CRiB [34-37], TOM [38],
Panic [39-41] or Media Convert28 with comprehensive graphical user interfaces,
programmable APIs and a large number of converters available would greatly
simplify the migration of digital objects from obsolete file formats to more up-to-
date encodings.

To conclude, we must congratulate all the people involved in the elaboration of this
first Digital Preservation Challenge, as all the proposed problems were indeed quite
challenging and very close to real life digital preservation scenarios.

References

[1] Wikipedia contributors, "Mac OS X," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=Mac OS X&oldid=137150102.
[Accessed 12 June 2007 09:45 UTC]

[2] Wikipedia contributors, "Windows XP," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=Windows XP&oldid=137418815.
[Accessed 12 June 2007 09:53 UTC]

[3] Wikipedia contributors, "Ubuntu (Linux distribution)," in Wikipedia, The Free
Encyclopedia. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Ubuntu_%28Linux_distribution%29&oldid=13
7567263. [Accessed 12 June 2007 09:52 UTC]

[4] Wikipedia contributors, "PRONOM technical registry," in Wikipedia, The Free
Encyclopedia. [Online]. Available:

27 http://www.wotsit.org/
28 http://media-convert.com/

42

http://en.wikipedia.org/w/index.php?title=PRONOM_technical_registry&oldid=12249934
7. [Accessed 12 June 2007 09:55 UTC]

[5] Wikipedia contributors, "File (Unix)," in Wikipedia, The Free Encyclopedia. [Online].
Available:
http://en.wikipedia.org/w/index.php?title=File_%28Unix%29&oldid=129554926.
[Accessed 12 June 2007 09:56 UTC]

[6] Wikipedia contributors, "ChessBase," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=ChessBase&oldid=137056687.
[Accessed 12 June 2007 09:58 UTC]

[7] Wikipedia contributors, "Framework (office suite)," in Wikipedia, The Free Encyclopedia.
[Online]. Available:
http://en.wikipedia.org/w/index.php?title=Framework_%28office_suite%29&oldid=13528
7221. [Accessed 12 June 2007 09:59 UTC]

[8] Wikipedia contributors, "Apache Tomcat," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=Apache Tomcat&oldid=136380369.
[Accessed 12 June 2007 10:01 UTC]

[9] Wikipedia contributors, "Hex Editor," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=Hex editor&oldid=137068890.
[Accessed 12 June 2007 10:02 UTC]

[10] Wikipedia contributors, "VisualBoyAdvance," in Wikipedia, The Free Encyclopedia.
[Online]. Available:
http://en.wikipedia.org/w/index.php?title=VisualBoyAdvance&oldid=136747226.
[Accessed 12 June 2007 10:03 UTC]

[11] Wikipedia contributors, "DOSBox," in Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/w/index.php?title=DOSBox&oldid=135337263.
[Accessed 12 June 2007 10:09 UTC]

[12] J. Rothenberg, Commission on Preservation and Access and Council on Library and
Information Resources, Avoiding technological quicksand: finding a viable technical foundation for
digital preservation: a report to the Council on Library and Information Resources. Washington, DC:
Council on Library and Information Resources, 1999.

[13] K.-H. Lee, O. Slattery, R. Lu, X. Tang and V. McCrary, "The State of the Art and Practice in
Digital Preservation," Journal of Research of the National Institute of Standards and Technology, vol.
107, no. 1, pp. 93-106, 2002.

[14] D. Woodyard, "Digital Preservation: The Australian Experience," presented at Third
Conference Digital Library: Positioning the Fountain of Kowledge, Malaysia, 2000.

[15] M. Ferreira, "Automatic Evaluation of Migration Quality in Distributed Networks of
Converters," Bulletin of the IEEE Technical Committee on Digital Libraries (TCDL), vol. 2, no. 2,
2006.

[16] Digital Preservation Testbed, "Migration: Context and Current Status," The Hague, White
Paper, 2001.

[17] R. A. Lorie, "Long Term Preservation of Digital Information," presented at First
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'01), Roanoke, Virginia, USA,
2001.

[18] R. A. Lorie, "A Methodology and System for Preserving Digital Data," presented at Second
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'02), Portland, Oregon, 2002.

43

[19] Task Force on Archiving of Digital Information, Commission on Preservation and Access
and Research Libraries Group, Preserving digital information: report of the Task Force on Archiving of
Digital Information. Washington, D.C.: Commission on Preservation and Access, 1996.

[20] G. Hodge and E. Frangakis, "Digital Preservation and Permanent Access to Scientific
Information: The State of the Practice," International Council for Scientific and Technical
Information & CENDI, Report 2004-3: Rev. 05/04, 2004.

[21] M. Hedstrom, "Digital Preservation: A time bomb for digital libraries," Computers and the
Humanities, vol. 31, pp. 189-202, 1998.

[22] P. Mellor, P. Wheatley and D. M. Sergeant, "Migration on Request, a Practical Technique for
Preservation," presented at ECDL '02: 6th European Conference on Research and Advanced
Technology for Digital Libraries, London, UK, 2002.

[23] T. Hendley, "Comparison of Methods & Costs of Digital Preservation," British Library
Research and Innovation Center, West Yorkshire 106, 1998.

[24] D. Bearman, "Archival Methods," Archives and Museum Informatics, Pittsburgh, Techical
Report 1, 1989.

[25] H. Besser, "Digital Preservation of Moving Image Material?," The Journal of the Association of
Moving Image Archivists, vol. 1, no. 2, pp. 39-55, 2001.

[26] Wikipedia contributors, "Ogg," in Wikipedia, The Free Encyclopedia. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Ogg&oldid=138051728. [Accessed 14 June 2007
10:55 UTC]

[27] JSTOR and Harvard University Library, "JHove - JSTOR/Harvard Object Validation
Environment." [Online]. Available: http://hul.harvard.edu/jhove.

[28] Wikipedia contributors, "Speex," in Wikipedia, The Free Encyclopedia. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Speex&oldid=135706302. [Accessed 22 June
2007 14:51 UTC]

[29] R. Ruusalepp, "The taxonomy of data types and file formats in the AHDS collection,"
AHDS and Estonian Business Archives, Ltd., 2002.

[30] AHDS History, "Preservation Handbook - Spreadsheets," Arts and Humanities Data
Service, London, 2005.

[31] Parallels, "Parallels Desktop Web site," 1995. [Online]. Available: http://www.parallels.com.
[Accessed 2006-10-12]

[32] VMWare, "VMWare Workstation Web site," 1998. [Online]. Available:
http://www.vmware.com/.

[33] Library of Congress, "Sustainability of Digital Formats - Planning for Library of Congress
Collections - Moving Image." [Online]. Available:
http://www.digitalpreservation.gov/formats/content/video_preferences.shtml. [Accessed
2007-07-10]

[34] M. Ferreira, "CRiB: Migration Workbench," 2006. [Online]. Available:
http://digitarq.di.uminho.pt/MigrationWorkbench.

[35] M. Ferreira, A. A. Baptista and J. C. Ramalho, "CRiB: A service oriented architecture for
digital preservation outsourcing," presented at XATA - XML: Aplicações e Tecnologias
Associadas, Portalegre, Portugal, 2006.

[36] M. Ferreira, "CRiB - Conversion and Recommendation of Digital Object Formats Web site,"
2006. [Online]. Available: http://crib.dsi.uminho.pt.

44

[37] M. Ferreira, A. A. Baptista and J. C. Ramalho, "An intelligent decision support system for
digital preservation," International Journal on Digital Libraries, 2007.

[38] J. M. Ockerbloom, "TOM Conversion Service," 2003. [Online]. Available:
http://tom.library.upenn.edu/convert/.

[39] J. Hunter and S. Choudhury, "A Semi-Automated Digital Preservation System based on
Semantic Web Services," presented at Joint ACM/IEEE Conference on Digital Libraries
(JCDL'04), 2004.

[40] J. Hunter and S. Choudhury, "Preservation webservices Architecture for Newmedia and
Interactive Collections (PANIC)," 2005. [Online]. Available:
http://metadata.net/newmedia/.

[41] J. Hunter and S. Choudhury, "PANIC: an integrated approach to the preservation of
composite digital objects using Semantic Web services," International Journal on Digital
Libraries, vol. 6, no. 2, pp. 174-183, 2006.

