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Box-Cox Transformation: An Overview

Introduction

Since the seminal paper by Box and Cox(1964), the Box-Cox type

of power transformations have generated a great deal of interests,

both in theoretical work and in practical applications. In this

presentation, I intend to go over the following topics:

• What are the Box-Cox power transformations?

• The inference on the transformations parameter.

• Some cautionary notes on using the Box-Cox transformations.
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What are the Box-Cox power transformations?

◮ The original form of the Box-Cox transformation, as appeared in

their 1964 paper, takes the following form:

y(λ) =






yλ−1
λ

, if λ 6= 0;

log y, if λ = 0.

◮ In the same paper, they also proposed an extended form which

could accommodate negative y’s:

y(λ) =






(y+λ2)
λ1−1

λ1

, if λ1 6= 0;

log(y + λ2), if λ1 = 0.

Here, λ = (λ1, λ2)
′. In practice, we could choose λ2 such that

y + λ2 > 0 for any y. So, we could only view λ1 as the model

parameter.
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◮ The aim of the Box-Cox transformations is to ensure the usual

assumptions for Linear Model hold. That is, y ∼ N(Xβ, σ2In)

◮ Clearly not all data could be power-transformed to Normal.

Draper and Cox (1969) studied this problem and conclude that

even in cases that no power-transformation could bring the

distribution to exactly normal, the usual estimates of λ will lead to

a distribution that satisfies certain restrictions on the first 4

moments, thus will be usually symmetric.

◮ One example in Draper and Cox(1969) is the following: Suppose

that the raw data are from an Exp(1000) distribution. The

estimate of λ is 0.268. 3 values that are close to 0.268 are chosen to

perform the transformation: λ1 = 0.2, λ2 = 0.275, λ3 = 0.35.

Such transformations result in 3 Weibull distributions:

Weib(5,1000), Weib(3.64,1000) and Weib(2.86,1000).
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◮ The following are Q-Q Normal plots for a random sample of size

500 from Exp(1000) distribution.

−3 −2 −1 0 1 2 3

0
10

00
30

00
50

00

Q−Q Normality plot for original data

Exp(1000)

Sa
m

ple
 Q

ua
nt

ile
s

−3 −2 −1 0 1 2 3

2
3

4
5

Q−Q Normality plot for lambda=0.2

Weibull(5,1000)

Sa
m

ple
 Q

ua
nt

ile
s

−3 −2 −1 0 1 2 3

2
4

6
8

10

Q−Q Normality plot for lambda=0.275

Weibull(3.64,1000)

Sa
m

ple
 Q

ua
nt

ile
s

−3 −2 −1 0 1 2 3

5
10

15
20

Q−Q Normality plot for lambda=0.35

Weibull(2.86,1000)

Sa
m

ple
 Q

ua
nt

ile
s

Pengfei Li Apr 11,2005



Box-Cox Transformation: An Overview

Since the work of Box and Cox(1964), there have been many

modifications proposed.

◮ Manly(1971) proposed the following exponential transformation:

y(λ) =






eλy−1
λ

, if λ 6= 0;

y, if λ = 0.

• Negative y’s could be allowed.

• The transformation was reported to be successful in transform

unimodal skewed distribution into normal distribution, but is

not quite useful for bimodal or U-shaped distribution.
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◮ John and Draper(1980) proposed the following modification

which they called “Modulus Transformation”.

y(λ) =





Sign(y) (|y|+1)λ−1

λ
, if λ 6= 0;

Sign(y) log(|y| + 1), if λ = 0,

where

Sign(y) =





1, if y ≥ 0;

−1, if y < 0.

• Negative y’s could be allowed.

• It works best at those distribution that is somewhat symmetric.

A power transformation on a symmetric distribution is likely

going to introduce some degree of skewness.
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◮ Bickel and Doksum(1981) gave the following slight modification

in their examination of the asymptotic performance of the

parameters in the Box-Cox transformations model:

y(λ) =
|y|λSign(y) − 1

λ
, for λ > 0,

where

Sign(y) =





1, if y ≥ 0;

−1, if y < 0.
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◮ Yeo and Johnson(2000) made a case for the following

transformation:

y(λ) =






(y+1)λ−1
λ

, if λ 6= 0, y ≥ 0;

log(y + 1), if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2 , if λ 6= 2, y < 0;

− log(1 − y), if λ = 2, y < 0.

When estimating the transformation parameter, they found the

value of λ that minimizes the Kullback-Leibler distance between

the normal distribution and the transformed distribution.
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The inference on the transformation parameter

◮ The main objective in the analysis of Box-Cox transformation

model is to make inference on the transformation parameter λ, and

Box and Cox(1964) considered two approaches.

◮ The first approach is to use the Maximum Likelihood method.

This method is commonly used since it’s conceptually easy and the

profile likelihood function is easy to compute in this case. Also it’s

easy to obtain an approximate CI for λ because of the asymptotic

property of MLE.
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◮ We assume that transformed responses y(λ) ∼ N(Xβ, σ2In). We

observe the design matrix X and the raw data y, and the model

parameters are (λ, β, σ2).

◮ The density for the y(λ) is

f(y(λ)) =
exp(− 1

2σ2 (y(λ) − Xβ)′(y(λ) − Xβ))

(2πσ2)
n
2

.

Let J(λ, y) be the Jacobian of the transformation from y to y(λ),

then the density for y (which is also the likelihood for the whole

model) is

L(λ, β, σ2|y,X) = f(y) =
exp(− 1

2σ2 (y(λ) − Xβ)′(y(λ) − Xβ))

(2πσ2)
n
2

J(λ, y).
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◮ To obtain the MLE from the last likelihood equation, we observe

that for each fixed λ, the likelihood equation is proportional to the

likelihood equation for estimating (β, σ2) for observed y(λ). Thus

the MLE’s for (β, σ2) are

β̃(λ) = (X′X)−Xy(λ),

σ̂2(λ) =
y(λ)′(In − G)y(λ)

n
,

where G = ppo(X) = X(X′X)−X′.

◮ Substitute β̃(λ) and σ̂2(λ) into the likelihood equation, and note

that for the original form of the Box-Cox transformation,

J(λ, y) =
∏n

i=1 yλ−1
i , we could obtain the profile log likelihood(i.e.,

the likelihood function maximized over (β, σ2)) for λ alone.
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◮

lP (λ) = l(λ|y,X, β̃(λ), σ̂2(λ))

= C −
n

2
log(σ̂2(λ)) + (λ − 1)

n∑

i=1

log(yi)

◮ Let g be the geometric mean of the response vector(i.e.,

g = (
∏n

i=1 yi)
1

n ), also let y(λ, g) = y(λ)
gλ−1 . Then it’s easy to see

lP (λ) = C −
n

2
log(s2

λ),

where s2
λ is the residual sum of squares divided by n from fitting

the linear model y(λ, g) ∼ N(Xβ, σ2In). So to maximize the profile

log-likelihood, we only need to find a λ that minimizes

s2
λ = y(λ,g)′(In−G)y(λ,g)

n
.
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◮ Without any further effort and just use the standard likelihood

methods, we could easily give a likelihood ratio test. For test

H0 : λ = λ0, the test statistic is W = 2[lP (λ̂) − lP (λ0)].

Asymptotically W is distributed as χ2
1. Carefully note that W is a

function of both the data (through λ̂) and λ0.

◮ A large sample CI for λ is easily obtainable by inverting the

likelihood ratio test. Let λ̂ be the MLE of λ, then an approximate

(1 − α)100% CI for λ is

{λ | n × log(
SSE(λ)

SSE(λ̂)
) ≤ χ2

1(1 − α)},

where SSE(λ) = y(λ, g)′(In − G)y(λ, g). The accuracy of the

approximation is given by the following fact:

P (W ≤ χ2
1(1 − α)) = 1 − α + O(n− 1

2 ).
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◮ It’s also not hard to derive a test using Rao’s score statistic.

Atkinson(1973) first proposed a score-type statistic for test

H0 : λ = λ0, although the derivation were not based on likelihood

theory. Lawrence(1987) modified the result by Atkinson(1973), by

employing the standard likelihood theory.

Pengfei Li Apr 11,2005



Box-Cox Transformation: An Overview

◮ The second approach outlined in Box and Cox(1964) is to use

Bayesian method. In this approach, we need to first ensure that the

model is fully identifiable. If X is not of full column rank, then β is

not estimable(or more accurately identifiable). So we further

assume X is n × p matrix and rank(X) = r(r ≤ p). Now using the

full-rank factorization to write X = AR(Nalini and Day, p40,

result 2.2.1), it’s easy to reparameterize the model as

y(λ) ∼ N(Aθ, σ2In), where A : n × r is of full column rank and

θ = Rβ is itself estimable.
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◮ We now consider the prior distribution for the parameters

(λ, θ, σ2). Box and Cox(1964) propose the following prior

π1(λ, θ, σ) ∝ π(λ) ×
1

σ
×

1

g(λ−1)r
,

where g is the geometric mean of response vector y, and π(λ) is

some prior distribution for λ only.

◮ Pericchi(1981) considered another joint prior distribution

π2(λ, θ, σ) ∝ π(λ) ×
1

σr+1
,

again π(λ) is some prior distribution for λ only.

◮ So what’s the rationale of choosing such prior distributions?
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◮ When λ = 1(i.e., no transformation performed), the θ is a

location parameter and σ is a scale parameter, so the natural

non-informative prior for θ and σ should be uniform and 1
σ

respectively. This implies

π1(λ = 1, θ, σ) = p(θ, σ|λ = 1) × π(λ = 1) ∝ π(λ = 1) ×
1

σ
.

Box and Cox(1964) then assumes that the transformation is

approximately linear over the range of observations, that is

E(yi(λ)) ≈ aλ + bλE(yi),

where bλ is some representative of the gradient dy(λ)
dy

. This implies

that when λ 6= 1, each element of θ is multiplies by a scale of bλ.

So the prior for θ when λ 6= 1 should be 1
|bλ|r

.
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◮ Box and Cox(1964) chose bλ = J(λ, y)
1

n = gλ−1, which they

admitted that such choice was “somewhat arbitrary”. This gives

the Box-Cox version of the prior distribution.

◮ Pericchi(1981) followed exactly the same argument, with the

exception that the use of Jefferys’ prior for (θ, σ) instead of

invariant non-informative prior.

◮ Clearly the Box and Cox’s prior is “outcome-dependent”, which

seems to be an undesirable property.
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◮ It’s not hard to see that the posterior distribution for Box and

Cox prior is

π1(λ, θ, σ|y,A) ∝
1

σn+1
×exp(−

Sλ + (θ − θ̂)′A′A(θ − θ̂)

2σ2
)×g(λ−1)(n−r)×π(λ),

where Sλ = (y(λ) − Aθ̂)′(y(λ) − Aθ̂).

The posterior distribution for Pericchi’s prior is

π2(λ, θ, σ|y,A) ∝
1

σn+r+1
×exp(−

Sλ + (θ − θ̂)′A′A(θ − θ̂)

2σ2
)×g(λ−1)n×π(λ).
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Box-Cox Transformation: An Overview

◮ Integrating out (θ, σ), we can then get the posterior log

likelihood for λ alone. For Box and Cox’s prior,

l1(λ) = C −
1

2
(n − r) log(

Sλ

n − r
×

1

g2(λ−1)
),

and for Pericchi’s prior,

l2(λ) = C −
1

2
n log(

Sλ

n
×

1

g2(λ−1)
).

◮ One may note that the posterior log likelihood based on

Pericchi’s prior is the same as the profile log likelihood from the

maximum likelihood method. So, they will lead to identical

inference about λ.
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◮ Using the normal approximation to posterior density, we can

derive the approximate 100(1 − α)% HPD credible set as follows:

HPD1 = {λ | (n − r) × log(
SSE(λ)

SSE(λ̂)
) ≤ χ2

1(1 − α)},

HPD2 = {λ | n × log(
SSE(λ)

SSE(λ̂)
) ≤ χ2

1(1 − α)},

where SSE(λ) = y(λ, g)′(In − G)y(λ, g).

• Note the HPD2 is the same as the confidence interval we

derived using the maximum likelihood mathod.

• HPD2 ⊆ HPD1.
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◮ A transformation parameter could also be estimated on the basis

of enforcing a particular assumption of the linear model.

◮ For example, if we want to ensure the additivity(or linearity) in

the linear model, we could select a transformation parameter that

will minimize the F-value for the degree of freedom for

non-additivity. This idea was firstly expressed in Tukey(1949).
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◮ As a particular example, consider the example in Professor

Chen’s class notes for Stat321, note 8, p41. Suppose that we face

two competing models E(y) = β0 + β1x1 + β2x2, and

E(y) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2, the latter clearly

being non-linear. An estimate of λ, based the above argument,

should be the one that minimize the F-statistic that associated

with the following model comparison test(which is a likelihood

ratio test):





H0 : E(y(λ)) = β0 + β1x1 + β2x2,

H1 : E(y(λ)) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2,

not all β3, β4, β5 are 0.

◮ Professor Chen’s illustration is based on the scaled Box-Cox

transformation, but it’s equivalent to using our version of

transformation.
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Some cautionary notes on using the Box-Cox transformations

◮ The usual practice when using Box-Cox transformation is to first

estimate λ. Then the estimated λ is viewed as known, and analysis

(points estimates, confidence intervals) are carried out in the usual

fashion.

◮ In the original paper of Box and Cox(1964), their suggestion was

to “fix one, or possibly a small number, of λs and go ahead with the

detailed estimation”. In their examples, they used what’s usually

called “snap to the grid” methods to choose the estimate of λ.

◮ In this approach, we are essentially making inference about

(β, σ) conditioning on λ = λ̂.
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◮ Bickel and Doksum(1981) studied the joint estimation of (λ, β).

They proved, and illustrated through numerical example, that the

asympototic marginal(unconditional) variance of β̂ could be

inflated by a very large factor over the conditional variance for

fixed λ.

◮ Much research have been done after Bickel and Doksum(1981),

either on a philosophical or on a technical level. Although there

does not appear to be any definite result, most research agree that

while there is an effect on not knowing the true value of λ, it’s cost

may not be large enough to discredit the conventional application

based on conditioning.

Pengfei Li Apr 11,2005



Box-Cox Transformation: An Overview

◮ One partial remedy to the problem is to use the scaled form of

Box-Cox transformation:

y(λ) =






yλ−1
λ

1
gλ−1 , if λ 6= 0;

log y × g, if λ = 0,

where g, as before, is the geometric mean of the response vector.

• Such scaling can effectively control the size of transformed

responses, and can also reduce the conditional variance for β.

• The t,F statistic on the scaled responses will be the same as

those from unscaled responses.
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◮ In the most recent paper by Chen, Lockhart and Stephens(2002),

they claim that the ratio parameter φ = β
σ

is the one that is

“physically meaningful” in the Box-Cox transformation model.

They showed, in particular, that the MLE of the ratio of slope to

residual standard deviation is consistent and relatively stable.

◮ We now consider a simple data set in Chen, Lockhart and

Stephens(2002) that contains 107 pairs of observations (y, x). y

measures the distance driven(in Km) and x measures the amounts

of gas consumed(in litres). They applied the Box-Cox

transformation to y’s and fitted a simple linear regression of

transformed y on x.

◮ We first obtain a profile log-likelihood plot. It’s clear that a

sensible estimate for λ should be 1.5, and a 95% CI for λ could be

from approximately 0.7 to 2.4.
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◮ Estimates for selected λ.

λ 0.7 1.0 1.46 1.5 2.0

β̂ 1.90 11.09 167.30 211.93 4097.98

σ̂ 4.85 29.78 486.75 620.98 13114.89

β̂
σ̂

0.392 0.373 0.344 0.341 0.312

Table 1: Estimates for selected λ.
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◮ Fitted model information for λ = 1.5.

> summary(fit.boxcox)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -636.87 686.25 -0.928 0.356

liter 211.93 21.07 10.058 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 621 on 105 degrees of freedom

Multiple R-Squared: 0.4907, Adjusted R-squared: 0.4858

F-statistic: 101.2 on 1 and 105 DF, p-value: < 2.2e-16
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◮ Model diagnostic plots.
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◮ We now repeated the same analysis for the scaled Box-Cox

transformation.

λ 0.7 1.0 1.46 1.5 2.0

β̂ 11.81 11.09 10.17 10.10 9.30

σ̂ 30.14 29.78 29.59 29.59 29.78

β̂
σ̂

0.392 0.373 0.344 0.341 0.312

Table 2: Estimates for selected λ for scaled transformation.
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◮ Fitted model information for λ = 1.5, scaled.

> summary(fit.boxcox.scale)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -30.346 32.699 -0.928 0.356

liter 10.098 1.004 10.058 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 29.59 on 105 degrees of freedom

Multiple R-Squared: 0.4907, Adjusted R-squared: 0.4858

F-statistic: 101.2 on 1 and 105 DF, p-value: < 2.2e-16
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◮ Model diagnostic plots.
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◮ So what can we learn from this example?

◮ For unscaled transformation, the estimates seemingly vary

greatly with the very minor change of choice of λ. But this is not

as bad as it may look like!

◮ By choosing λ = 1.46 and λ = 1.5, we end up with two fitted

equations:

ŷ(Km1.46) = −406.35(Km1.46) + 167.30(
Km1.46

liter
)x(liter),

ŷ(Km1.50) = −636.87(Km1.50) + 211.93(
Km1.50

liter
)x(liter).

Thus you can compare 167.30 to 211.93 but not 167.30(Km1.46

liter ) to

211.93(Km1.50

liter ).
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Box-Cox Transformation: An Overview

◮ This idea is one of the major arguments of Box and Cox(1982)

and Hinkley and Runger(1984) in their rebuttal of Bickel and

Doksum(1981). They call this consideration “scientific relevance”.

◮ If we consider the proposal by Chen, Lockhart and

Stephens(2002) using the ratio parameter φ = β

σ
, we can see that

the physical scale of φ is invariant under transformation.

◮ If we are using scaled Box-Cox transformation, the fitted model

(for λ = 1.46 and λ = 1.5) would be

ŷ(Km) = −24.701(Km) + 10.170(
Km

liter
)x(liter),

ŷ(Km) = −30.346(Km) + 10.098(
Km

liter
)x(liter).

Thus comparing the coefficients now makes practical sense.
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Box-Cox Transformation: An Overview

◮ However, such scaling has not much effect other than producing

comparable estimates. The test statistic remain the same as if

unscaled. Thus it may not be useful for ANOVA model.
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Box-Cox Transformation: An Overview

What’s beyond this overview?

• Other methods of estimation: e.g., robust estimator,

non-parametric estimator.

• Estimation procedure on more structured data: e.g., mixed

models, missing data.

• Continued examination of what’s the most appropriate way to

conduct post transformation analysis.
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