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C H A P T E R  3 

Conformation, Solutions, and Molecular Weight

Solvents are frequently used during the po-
lymerization process (Chapter 2), during fabrication (e.g., film casting, fiber formation, and
coatings), and for determining molecular weights and molecular-weight distributions. Interac-
tions between a polymer and solvent influence chain dimensions (i.e., conformations) and,
more importantly, determine solvent activities. The measurement of osmotic pressure and
scattered-light intensity from dilute polymer solutions—techniques based upon the principles
of polymer-solution thermodynamics—are the primary methods used to determine number-
average and weight-average molecular weights, respectively. Other solution-property tech-
niques, such as the determination of intrinsic viscosity and gel-permeation chromatography
(GPC), are widely used as rapid and convenient methods to determine polymer molecular
weights and, in the case of GPC, molecular-weight distributions as described in this chapter.
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3.1   POLYMER CONFORMATION AND CHAIN
DIMENSIONS

As briefly discussed in Chapter 1, the configuration of a polymer chain refers to the stereo-
chemical arrangement of atoms along that chain. Examples include tactic and geometric iso-
mers, which are determined by the mechanism of the polymerization and, therefore, cannot
be altered without breaking primary valence bonds. In contrast, polymer chains in solution
are free to rotate around individual bonds, and almost a limitless number of conformations or
chain orientations in three-dimensional space are possible for long, flexible macromolecules.

To describe the conformation of polymer molecules, a model of a random-flight or
freely jointed and volumeless chain is often used as the starting point. Such a hypothetical
chain is assigned n freely jointed links of equal length,   l . If one end of this hypothetical
chain is fixed at the origin of a Cartesian coordinate-system, the other end of the chain has
some finit e proba bility of being  at any other  coord inate posit ion, as illus trated by Figur e
3-1. One of the many possible conformations, and the simplest, for this idealized chain is
the fully extended (linear) chain where the end-to-end distance, r, is

  r = nl . (3.1)

Flory1 was the first to derive an expression for the probability of finding one end of the
freely jointed polymer chain in some infinitesimal volume (dV = dx•dy•dz) around a particu-
lar coordinate (x, y, z) point when one end of the chain is fixed at the origin of a Cartesian
coordinate-system, as illustrated in Figure 3-1. The probability is given by a Gaussian dis-
tribution in the form

x, y,z( )dxdydz =
b

π12
 
  

 
  

3

exp −b2r 2( )dxdydz
(3.2)

where x, y,z( )  is the Gaussian distribution function, r is the radius of a spherical shell
centered at the origin

r 2 = x2 + y2 + z2
, (3.3)

and

b2 =
3

2nl2 .
(3.4)
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Figure 3-1 Illustration of a random conformation of an idealized freely jointed poly-
mer chain having 20 segments of equal length. The end-to-end distance
of this conformation is indicated as r. With one end of the chain fixed at
the origin of the Cartesian coordinate system, the probability of finding
the other end in some infinitesimal volume element (dV = dx•dy•dz) is
expressed by a Gaussian distribution function (eq 3.2).

Alternately, the probability that a chain displacement length has a value in the range r to
r+dr is given as

r( )dr =
b

π12
 
  

 
  

3

exp −b2r 2( ) 4πr 2dr .
(3.5)

where r( )  is the radial distribution function. The radial distribution function for a freely

jointed polymer chain consisting of 104 freely jointed links each of length 2.5 Å is plotted as
a function of the radial distance, r, in Figure 3-2.

The mean-square end-to-end distance is obtained from the second moment of the radial
distribution function as

r 2 =
r2 r( )dr

0

∞

∫
r( ) dr

0

∞

∫
.

(3.6)
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Substitution of the radial distribution function (eq. 3.5) into eq. 3.6 and evaluating the inte-
gral gives the mean-square end-to-end distance of the freely jointed and volumeless chain as

  r
2 = nl2

 . (3.7)

Alternately, the root-mean-square end-to-end distance, 〈r2〉1/2, of the freely rotating chain is
given as

  r
2 1 2

= n1 2l . (3.8)
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Figure 3-2 The radial-distribution function calculated (eq. 3.5) for a hypothetical
polymer chain consisting of 10 4 freely jointed segments of length 2.5 Å.

Real polymer chains differ from the above idealized, freely jointed model in the follow-
ing three significant ways:

•Valence angles of real bonds are fixed. For example, the tetrahedrally bonded C–C
bond angle is 109.5°. Introducing fixed bond angles results in an expansion of the
chain expressed by the mean-square end-to-end distance as (for large n)

  
r 2 = nl2 1 − cos

1 + cos (3.9)
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where  is the valence bond angle, as illustrated for an extended chain conformation
in Figure 3-3. For the tetrahedral angle,  = 109.5°, cos ≈ −13 , and therefore

  r
2 = 2nl2

. (3.10)

Comparison of this result with that of eq. 3.7 indicates that the fixed valence angle
restriction results in a doubling of the mean-square end-to-end distance over that of a
freely rotating chain.

Figure 3-3 Illustration of an extended polymer chain showing the valence bond an-
gle, , and bond-rotation angle, .

•Rotations of polymer chains may be restricted due to interference from bulky sub-
stituent groups. As illustrated by the potential-energy diagram shown in Figure 3-4,
overlap of bulky substituent groups on adjacent carbon atoms results in a high-
energy, unfavorable conformational state. The result of this steric interference is to
further expand chain dimensions over the random-flight model. Equation 3.7 may be
further modified to include the effects of both fixed bond angles and hindered rota-
tions as

  
r 2 = nl2 1 − cos

1 + cos

1 + cos

1 − cos (3.11)

where cos  represents the average cosine of the bond-rotation angle, , identified

in Figure 3-3. This second contribution is much more difficult to evaluate but can
be obtained by statistical-weighting methods, as discussed by Flory.2

•Real chain-bonds have a finite (van der Waals) volume and therefore some volume
is excluded. This means that a real bond cannot occupy the same space of any other
bond—a condition not imposed in the random-flight model. As in the case of re-
stricted rotation, the effect of excluded volume is to increase the spatial dimensions
of the polymer chain over that of the random-flight model.
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Figure 3-4 Newman projections (top) of three lowest energy projections of two adja-
cent bond atoms with substituent group, R. In the case of a polymer
chain, R represents all chain segments before and after the bond in ques-
tion. The potential-energy diagram (bottom) displays the three lowest en-
ergy rotational states — trans  (T) and the two gauche forms, G and G .

Beyond the calculation of mean-square end-to-end distances, the conformations of real-
istic polymer models can be simulated by computer. For example, Figure 3-5 shows the
results of a Monte Carlo simulation of the conformation of a small polyethylene chain hav-
ing 200 skeletal bonds using values of actual bond lengths, bond angles, and the known
preference for trans-rotational states for this polymer.3

As a convenient way to express the size of a real polymer chain in terms of parameters
that can be readily measured, the freely rotating chain model (eq. 3.7) may be modified to
include the effects of fixed bond angles, restricted rotation, and excluded volume on the root-
mean-square end-to-end distance in the following way:

  r
2 1/2

= nC∞( )1/2 l. (3.12)

In this expression,  is called the chain expansion factor which is a measure of the effect of
excluded volume, and C∞  is called the characteristic ratio, which contains the contributions
from both fixed valence angles and restricted chain rotation. For large polymer chains, typi-
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cal values of C∞  range from about 5 to 10. Another way to represent eq. 3.12 is by use of
an unperturbed root-mean-square end-to-end distance, 〈r2〉o

1/2, as

r 2 1/2
= r 2

o

1/2

. (3.13)

Figure 3-5 A three-dimensional computer simulation of a conformation of a small
polyethylene chain (200 bonds) projected on the plane of the graph.
(Reprinted with permission of the publisher from "Rubber Elasticity" by J.
E. Mark. Journal of Chemical Education, 1981, 58 , pp. 2898–2903.)

Comparison of eqs. 3.12 and 3.13 indicates that unperturbed dimensions are those of a
real polymer chain in the absence of excluded-volume effects (i.e., for  = 1). By equating
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eqs. 3.12 and 3.13, the characteristic ratio† is obtained as the ratio of the unperturbed mean-
square end-to-end distance to the mean-square end-to-end distance of the freely jointed model
(eq. 3.7)

C∞ =
r 2

o

nl 2
.

(3.14)

Unperturbed dimensions are realized in the case of a polymer in solution with a ther-
modynamically-poor solvent at a temperature near incipient precipitation. This temperature
is called the theta ( )  temperature. Experiments, using small-angle neutron scattering, have
indicated that the dimensions of polymer chains in the amorphous solid-state are also unper-
turbed.4 In solution with a good solvent (i.e.,  > 1), where polymer–solvent interactions
are stronger than polymer–polymer or solvent–solvent interactions, dimensions of the poly-
mer chain are expanded over those in the unperturbed state (  = 1).

3.2   THERMODYNAMICS OF POLYMER SOLUTIONS

It was recognized in the 1940s that the thermodynamics of polymeric systems needs to be
treated in a special way. In 1942, Gee and Treloar5 reported that even dilute polymer solu-
tions deviated strongly from ideal-solution behavior. In these early experiments, a high-
molecular-weight rubber was equilibrated with benzene vapor in a closed system and the par-
tial pressure of the benzene (the solvent), p1, was measured. The solvent activity, a1, was
calculated as the ratio of p1 to the saturated vapor pressure of pure benzene, p1

o, at the sys-
tem temperature as†

                                                
† The characteristic ratio can be calculated from a knowledge of actual valence angles, , and the
statistical weighting of torsional angles  (see eq. 3.11), as2

C∞ =
1− cos

1+ cos

1+ cos

1− cos
.

† By definition, the activity of the ith component in a mixture is defined as

ai =
ˆ f i
fi

o

where ˆ f i  is the fugacity of that component in the mixture and fi
o  is the standard-state fugacity,

usually the fugacity of the pure liquid component at the system temperature. In the limit of low
pressure at which the vapor mixture becomes ideal, the two fugacities may be replaced by the cor-

responding pressure terms (i.e., ˆ f i = pi = xi p  and fi
o = pi

o ). If the vapor phase is nonideal, the
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a1 =
p1

p1
o

.
(3.15)

Experimental benzene activity is plotted as a function of the volume fraction  of rubber, 2,

in Figure 3-6. These data are compared with predictions of Raoult’s law for an ideal solution
given as

p1 = x1 p1
o

(3.16)

where x1 is the mole fraction of the solvent. Substitution of eq. 3.16 into eq. 3.15 yields the

result that a1 ≡ x1  for an ideal solution. As the experimental data (Figure 3-6) show, poly-

mer-solution behavior follows a strong negative deviation from Raoult’s ideal-solution law.

Figure 3-6 Plot of benzene activity, a1, versus volume fraction of rubber, 2. Dashed
line represents ideal-solution behavior. (Adapted from ref 1 by permission
of the publisher.)

                                                                                                                            
solvent activity can be obtained from the relationship6

a1 =
p1

p1
o exp −

B
RT

p1
o − p1( )  

  
 
 

where B is the second virial coefficient of the pure vapor at the system temperature.
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3.2.1   The Flory–Huggins Theory

In the early 1940s, Paul Flory7 and Maurice Huggins,8 working independently, developed a
theory based upon a simple lattice model that could be used to understand the nonideal nature
of polymer solutions. In the Flory–Huggins model, the lattice sites, or holes, are chosen to
be the size of the solvent molecule. As the simplest example, consider the mixing of a low-
molecular-weight solvent (component 1) with a low-molecular-weight solute (component 2).
The solute molecule is assumed to have the same size as a solvent molecule, and therefore
only one solute or one solvent molecule can occupy a single lattice site at a given time. A
representation of the lattice model for this case is illustrated in Figure 3-7.

Figure 3-7 Representation of two-dimensional Flory–Huggins lattice containing sol-
vent molecules ( ) and a low-molecular-weight solute ( ).

The increase in entropy due to mixing of a solvent and solute, ∆Sm, may be obtained

from the Boltzmann relation

∆Sm = k ln Ω (3.17)

where k is Boltzmann’s constant (1.38 × 10-23 J K-1) and Ω  gives the total number of ways
of arranging n1 indistinguishable solvent molecules and indistinguishable n2 solute mole-

cules, where N = n1 + n2 is the total number of lattice sites. The probability function is

given as

Ω=
N!

n1 !n2 !
.

(3.18)

Use the Stirling approximation

ln n! = n ln n − n (3.19)
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leads to the expression for the entropy of mixing per molecule as

∆Sm = −k n1 ln x1 + n2 ln x2( ). (3.20a)

Alternately, the molar entropy of mixing can be written as

∆Sm = − R x1 ln x1 + x2 ln x2( )
(3.20b)

where R  is the ideal gas constant† and x1 is the mole fraction of the solvent given as

x1 =
n1

n1 + n2

.
(3.21)

Equation 3.20b is the well-known relation for the entropy change due to mixing of an ideal
mixture, which can also be obtained from classical thermodynamics of an ideal solution fol-
lowing the Lewis–Randall law.‡ Equation 3.20 can be written for a multicomponent system
having N components as

                                                
† R = NAk  where NA  is Avogadro's number.
‡ The relationship between the partial-molar Gibbs free-energy and fugacity is given as

dG i ≡ d i = RTd ln ˆ f i .

Integration from the standard state to some arbitary state gives

Gi − Gi
o ≡ ∆Gi = RT ln

ˆ f i
f i

o

where ˆ f i  is the fugacity of component i in a mixture and fi
o  is the standard-state fugacity. Substi-

tution of the Lewis–Randall law

ˆ f i
id = x i f i

o

gives

∆Gi
id

= RT ln xi .

Since the thermodynamic properties of a solution are the sum of the product of the mole fraction
and the partial-molar property of each of m components in the mixture, it follows that the molar
change in Gibbs free energy of an ideal solution is then expressed as
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∆Sm
id = − R xi

i=1

N

∑ ln xi .
(3.22)

The entropy of mixing a low-molecular-weight solvent with a high-molecular-weight
polymer is smaller than given by eq. 3.20 for a low-molecular-weight mixture. This is due
to the loss in conformational entropy resulting from the linkage of individual repeating units
along a polymer chain compared to the less ordered case of unassociated low-molecular-
weight solute-molecules dispersed in a low-molecular-weight solvent. In the development of
an expression for ∆Sm for a high-molecular-weight polymer in a solvent, the lattice is estab-
lished by dividing the polymer chain into r segments, each the size of a solvent molecule,
where r is the ratio of polymer volume to solvent volume (i.e., a lattice site). For n2 poly-
mer molecules, the total number of lattice sites is then N = n1 + rn2. A lattice containing
low-molecular-weight solvent molecules and a single polymer-chain is illustrated in Figure
3-8.

                                                                                                                            

∆Gid = xi ∆G i

id( )
i=1

m

∑ = RT x i ln x i

i=1

m

∑
 .

Since

∆Gi
id

= ∆Hi
id

−T ∆Si
id

and ∆Hi
id

= 0  for an ideal solution, we have

∆Si
id

=−
1
T

∆Gi
id

=− R lnx i

and

∆Sid = xi ∆S
id( )

i=1

m

∑ = −R xi lnx i

i=1

m

∑
 .
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Figure 3-8 Lattice model for a polymer chain in solution. Symbols represent solvent
molecules ( ) and polymer-chain segments ( ).

The expression for the entropy change due to mixing obtained by Flory and Huggins is
given as†

∆Sm = −k n1 ln 1 + n2 ln 2( ) (3.23)

where 1 and 2 are the lattice volume fractions of solute (component 1) or polymer (com-
ponent 2), respectively. These are given as

1 =
n1

n1 + rn2 (3.24a)

and

2 =
rn2

n1 + rn2

.
(3.24b)

For a polydisperse polymer, eq. 3.23 can be modified as

∆Sm = −k n1 ln 1 + ni ln i

i =2

N

∑
  

  
    

  

  
    

(3.25)

where the summation is over all polymer chains (N) in the molecular-weight distribution.
For simplicity, the most commonly used form of the entropy expression, eq. 3.23, will be

                                                
† An excellent review of the development of the lattice model has been given by Flory.9
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used in further discussion. Equation 3.23 provides the entropy term in the expression for the
Gibbs free energy of mixing, ∆Gm, of a polymer solution given as

∆Gm = ∆Hm − T ∆Sm . (3.26)

Once an expression for the enthalpy of mixing, ∆Hm, is known, expressions for the chemical

potential and activity of the solvent can be obtained as

∆ 1 = 1 − 1
o = ∆Gm =

∂∆Gm

∂n1

  

  
  

  

  
  

T, p (3.27)

where ∆Gm  is the partial-molar Gibbs free energy of mixing and the activity is related to the
chemical potential as

ln a1 = ∆ 1

kT
.

(3.28)

For an ideal solution, ∆Hm = 0. Solutions for which ∆Hm ≠ 0 but for which ∆Sm is

given by eq. 3.20 are termed regular solutions and are the subject of most thermodynamic
models for polymer mixtures. The expression that Flory and Huggins gave for the enthalpy
of mixing is

∆Hm = zn1r1 2 ∆ 12 (3.29)

where z is the lattice coordination number or number of cells that are first neighbors to a
given cell, r1 represents the number of "segments" in a solvent molecule for consideration of
the most general case, and ∆ 12  is the change in internal energy for formation of an unlike
molecular pair (solvent–polymer or 1–2) contacts given by the mean-field expression as

∆ 12 = 12 −
1

2 11 + 22( )
(3.30)

where ij is the energy of i–j contacts. It is clear from eqs. 3.29 and 3.30 that an ideal solu-

tion ∆H m = 0( ) is one for which the energies of 1–1, 1–2, and 2–2 molecular interactions

are equal.
Since z and 12  have the character of empirical parameters, it is useful to define a sin-

gle energy parameter called the Flory interaction parameter, 12 , given as
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12 =
zr1∆ 12

kT
.

(3.31)

The interaction parameter is a dimensionless quantity that characterizes the interaction energy
per solvent molecule (having r1 segments) divided by kT . As eq. 3.31 indicates, 12  is in-

versely related to temperature but is independent of concentration.
The expression for the enthalpy of mixing may then be written by combining eqs.

3.29 and 3.31 as

∆Hm = kT 12n1 2 . (3.32)

Combining the expression for the entropy (eq. 3.23) and enthalpy (eq. 3.32) of mixing gives
the well-known Flory–Huggins expression for the Gibbs free energy of mixing

∆Gm = kT n1 ln 1 + n2 ln 2 + 12n1 2( )
 . (3.33)

From this relationship, the activity of the solvent (eq. 3.28) can be obtained from eq. 3.33 as

ln a1 = ln 1− 2( ) + 1 −
1

r
  
  
    

  
  2 + 12 2

2
.

(3.34)

In the case of high-molecular-weight polymers for which the number of solvent-equivalent
segments, r,† is large, the 1/r term within parentheses on the right-hand side of eq. 3.34 can
be neglected to give

ln a1 = ln 1− 2( ) + 2 + 12 2
2

 . (3.35)

The Flory–Huggins equation is still widely used and has been largely successful in d e -
scribing the thermodynamics of polymer solutions; however, there are a number of impor-
tant limitations of the original expression that should be emphasized. The most important
are the following:

•  Applicability only to solutions that are sufficiently concentrated that they have
uniform segment density.

•  There is no volume change of mixing (whereas favorable interactions between
polymer and solvent molecules should result in a negative volume change).

                                                
† For a polymer sample with a distribution of molecular weights, r may be taken to be the number-
average degree of polymerization, X n .
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•  There are no energetically-preferred arrangements of polymer segments and sol-
vent molecules in the lattice.

•  The interaction parameter, 12 , is independent of composition.

There have been a number of subsequent developments to extend the applicability of
the original Flory–Huggins theory and to improve agreement between theoretical and ex-
perimental results. For example, Flory and Krigbaum have developed a thermodynamic the-
ory for dilute polymer solutions, which was described in Flory’s original text.1 Konings-
veld10 and others have improved the agreement of the original Flory–Huggins theory with
experimental data by an empirical modification of 12  to include a composition dependence

and to account for polymer polydispersity. Both of these approaches are presented briefly in
the following section. More recent approaches employ equation-of-state theories such as
those developed by Flory9 and others for which a volume change of mixing can be incorpo-
rated. These are developed later in Section 3.2.3.

3.2.2   Flory–Krigbaum and Modified Flory–Huggins
Theory

Flory–Krigbaum Theory. Flory and Krigbaum11 have provided a model to describe the
thermodynamics of a dilute polymer solution in which individual polymer chains are isolated
and surrounded by regions of solvent molecules. In contrast to the case of a semidilute solu-
tion addressed by the Flory–Higgins theory, segmental density can no longer be considered to
be uniform. In their development, Flory and Krigbaum viewed the dilute solution as a dis-
persion of clouds consisting of polymer segments surrounded by regions of pure solvent. For
a dilute solution, the expression for solvent activity was given as

ln a1 = 1 − 1( ) 2
2

(3.36)

where 1  and 1  are heat and entropy parameters,† respectively. They defined an "ideal" or

theta ( ) temperature as

= 1T

1 (3.37)

from which eq. 3.36 can be written as

ln a1 = − 1 1−
T

  
  
    

  
  2

2
.

(3.38)
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It follows from eq. 3.38 that solvent activity approaches unity as temperature approaches the
 temperature. At the  temperature, the dimensions of a polymer chain collapse to unper-

turbed dimensions (i.e., in the absence of excluded-volume effects), as described in Section
3.1.

Modified Flory–Huggins. In the original lattice theory, 12  was given an inverse

dependence upon temperature (eq. 3.31) but there was no provision for a concentration de-
pendence which experimental studies has shown to be important. Koningsveld10 and others
have introduced an empirical dependence to improve the agreement with experimental data by
casting the Flory–Huggins expression in the general form

∆Gm = RT 1 ln 1 + 2 ln 2 + g 1 2( ). (3.39)

In eq. 3.39, g is an interaction energy term for which the concentration dependence can be
given as a power series in 2  as

  g = g0 + g1 2 + g2 2
2 +  L (3.40)

where each g term, gk (k = 0, 1, 2...), has a temperature dependence that can be expressed in

the form

gk = gk ,1 +
gk ,2

T
.

(3.41)

3.2.3  Equation-of-State Theories

Although the Flory–Huggins theory is still useful as a starting point for describing polymer
thermodynamics, there are a number of weaknesses. For example, the simple lattice model
does not accommodate a volume change of mixing, which can be significant in the case of a
thermodynamically good solution. Such an inability to incorporate a volume change of mix-
ing can lead to particular weakness in the prediction of phase equilibria. Substantial im-
provement in the theoretical treatment of polymer thermodynamics has been obtained by
adopting a statistical-thermodynamics approach based upon an equation of state (EOS) as
first proposed by Flory.12 Other successful EOS theories have been proposed by Sanchez13

and by Simha.14 For the purpose of providing an introduction to the use of EOS theories in
the treatment of polymer thermodynamics, only the Flory EOS theory, which was the first
and is still widely used, is described in this section.

                                                                                                                            
† ∆H1 = RT 1 2

2 ; ∆S1 = R 1 2
2 .
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Flory Equation of State. Thermodynamic variables in statistical thermodynamics
are obtained from a suitable partition function which can be a simple or complex function
depending upon the size and physical state of the molecule being considered. The simplest
partition functions are obtained for monatomic and diatomic gases such as helium and nitro-
gen. The partition function chosen by Flory for the polymer was obtained from contribu-
tions by internal (i.e., intramolecular chemical-bond forces) and external (i.e., intermolecular
forces) degrees of freedom. The internal contribution is dependent upon temperature, while
the external contribution is dependent upon both temperature and volume. The Flory parti-
tion function can be given in reduced form as9

Z = Zcomb g *( )rnc
˜ 1 3 −1( )3rnc

exp rnc / ˜ ˜ T ( ). (3.42)

Here, Zcomb  is a combinatory factor, g is an inconsequential geometric factor, *  is a char-

acteristic (specific) volume per segment (usually called the hard-core or closed-packed vol-
ume), ˜  is a reduced volume per segment defined in terms of the characteristic volume, r is
the mean number of segments per molecule, n is the number of molecules (or mers), c is the
mean number of external degrees of freedom per segment,† and ˜ T  is a reduced temperature as
defined later. The exponential term in eq. 3.42 is related to the configurational or mean po-
tential energy (in van der Waals form), which is inversely proportional to volume.

Statistical thermodynamics provides the following equation to obtain an EOS from the
partition function:

p = kT
lnZ

V
  
  
    

  
  

T . (3.43)

The resulting EOS obtained from the partition function given by eq. 3.42 can be expressed
in reduced form as

˜ p ̃  
˜ T 

=
˜ 1/3

˜ 1/3 −1
−

1
˜ T ˜ (3.44)

where ˜ p  is the reduced pressure. The reduced parameters are defined in terms of the character-
istic parameters (three EOS parameters, * , T * , and p* , for each of the pure components)
as

                                                
† The total number of degrees of freedom in the system is 3rnc.
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˜ = *
(3.45)

˜ T =
T

T * =
2 *cRT

s (3.46)

and

˜ p =
p

p* =
2 p *2

s
.

(3.47)

where c represents the mean number of external degrees of freedom per segment, s is the
number of contact sites per segment, and  is an energy parameter characterizing a pair of
sites in contact. The characteristic parameters can be obtained from experimental PVT data.‡

                                                
‡ Differentiation of the EOS (eq. 3.44) with respect to temperature at constant pressure yields at
zero pressure the characteristic hard-core volume as

* =
3 + 3 T
3 + 4 T

  
  

 
 

3

.

Differentiation of the EOS with respect to temperature at constant volume yields at zero pressure
the characteristic pressure

p* = T ˜ 2 = ( )T ˜ 2

where  is the thermal-expansion coefficient

=
1
V

V
T

  
  

 
 

p ,

 is the compressibility coefficient

=−
1
V

V
p

  
  
   

 
 

T ,

and  is the thermal-pressure coefficient

=
p
T

  
  

 
 

V .
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Representative values for Flory EOS-parameters evaluated at 25°C for four low-molecular-
weight organic compounds and for four polymers are given in Table 3-1. In general, *  and
T*  increase with increasing temperature while p*  decreases.

Table 3-1 Flory Equation-of-State Parameters at 25°C

Polymer v* (cm3 g-1) T*  (K) p* (J cm-3)

Toluene 0.9275 5197 547

Cyclohexane 1.0012 4721 530

Benzene 0.8860 4709 628

Methyl ethyl ketone 0.9561 4555 582

Polystyrene 0.8098 7420 547

Polydimethylsiloxane 0.8395 5530 241

Natural rubber 0.9432 6775 519

Polyisobutylene 0.9493 7580 448

Adaptation of the Flory EOS to mixtures is based upon the following two premises:

1. Core volumes of the solution components are additive.

∗ =
n1 1

∗ + n2 2
∗

n1 + n2 (3.48)

2. The intermolecular energy depends on the surface area of contact between mole-
cules and/or segments.

Since a segment is an arbitrary unit, the segment size can be chosen such that

1
* = 2

* = * . This gives the following mixing rules for the mixture:

1

r
= 1

r1

+ 2

r2 (3.49)

where 1  and 2   are segment (or core-volume) fractions :

                                                                                                                            
Finally, the characteristic temperature is obtained from the EOS by letting ˜ p = 0 :

T* =
T ˜ 4/3

˜ 1/3 –1
.
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1 = 1 − 2 =
n1 1

*

n1 1
* + n2 2

*
 
.

(3.50)

The number of contact sites, s, for the mixture is given as

s = 1s1 + 2s2 (3.51)

where si  is the surface area of a segment of component i. In a similar manner, the mean

number of external degrees of freedom for the mixture can be written as

c = 1c1 + 2c2 . (3.52)

The site fraction is defined as

2 = 1 − 1 = 2s2

s
.

(3.53)

The characteristic pressure for the mixture is given as

p∗ = 1p1
∗ + 2 p2

∗ − 1 2 X12 (3.54)

where X12  is called the exchange interaction-parameter, defined as

X12 =
s1 11 + 22 − 2 12( )

2 *2 =
s1∆
2 *2

(3.55)

where the ij  terms are energy parameters for the i–j segment pairs and ∆ =
11 + 22 − 2 12 . The exchange interaction-parameter is analogous to ∆ 12  in the

Flory–Huggins theory (i.e., eq. 3.30) but has the dimensions of energy density. Finally, the
characteristic temperature for the mixture is given as

T * = 1 p1
∗ + 2 p2

∗ − 1 2 X12

1p1
∗

T1
∗ + 2 p2

∗

T2
∗

.

(3.56)

The EOS of the mixture is given in the same form as that of the pure component (eq.
3.44) except that the reduced parameters refer to those of the mixture. The reduced volume of
the mixture, ˜ , may be obtained from the EOS with ˜ p  set to zero for low pressures and ˜ T 
defined by use of the characteristic temperature given by eq. 3.56 for the mixture. Subse-
quently, other important quantities can be calculated such as the molar enthalpy of mixing as
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∆Hm = 2 x1 1
∗X12

˜ 
+ x1 1

∗ p1
∗ 1

˜ 
1

−
1
˜ 

  

  
  

  

  
  + x2 2

∗ p2
∗ 1

˜ 
2

−
1
˜ 

  

  
  

  

  
  

(3.57)

where

x1 =
n1

n1 + n2

.
(3.58)

An important relationship is the Flory-EOS expression for ∆µ1 given as

∆ 1 = RT ln 1 + 1− 1
∗

2
∗

  

  
  

  

  
  2

  

  
  

  

  
  + 2

2
1
∗ X12

˜ 

          
+ 1

∗ p1
∗ 3 ˜ T 1 ln

˜ 
1
1 3 − 1

˜ 1 3 −1

  
  
  

  
  
  +

1
˜ 

1

−
1
˜ 

  

  
  

  

  
  

. (3.59)

Alternately, eq. 3.59 has been given in the form

∆ 1 = RT ln 1 +
1– r1

r2
2

  

  
  

  

  
  + p1

∗v1
∗ 3 ˜ T 1 ln 

˜ 
1
1/3 –1

˜ 1/3 –1

  
  
  

  
  
  + ˜ 

1
–1 – ˜ –1 + ˜ p 1 ˜ – ˜ 

1( )
  

  
  

  

  
  

+  X12 – TQ12
˜ ( )v1

∗ 2
2

˜ (3.60)

A principal difference between eqs. 3.59 and 3.60 is the appearance of Q12  in the last term of
eq. 3.60. This parameter is called the noncombinational entropy correction and generally is
used as an adjustable parameter. Comparison of the standard Flory–Huggins relationship (eq.
3.34, where ∆ 1 = RT lna1 and 1 = 1− 2 ) with the Flory EOS (eq. 3.59) shows that the
first term within brackets in eq. 3.59 is simply a combinatory term. Despite its cumbersome
form, the Flory EOS theory provides substantial improvement over the earlier lattice theory.
For example, the theory reasonably predicts an excess volume of mixing as

V E

V
=

E

˜ 
= 1– 1

˜ 
1 + 2

˜ 
2

˜ 
.

(3.61)

Furthermore, it is capable of modeling the complete range of the observed phase-behavior of
polymer solutions, as discussed in the next section.
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3.2.4   Phase Equilibria

Whether or not a polymer and solvent are mutually soluble, or miscible, is governed by the
sign of the Gibbs free energy of mixing, ∆Gm , which is related to the enthalpy and entropy

of mixing by eq. 3.26. Three different dependencies of ∆Gm  on solution composition (i.e.,

volume fraction of polymer) at constant temperature are illustrated in Figure 3-9. If ∆Gm  is

positive over the entire composition range, as illustrated by curve I, the polymer and solvent
are totally immiscible over the complete composition range and will coexist at equilibrium
as two distinct phases. Two other possibilities are those of partial and total miscibility, as
illustrated by curves II and III, respectively. For total miscibility, it is necessary that both

∆Gm < 0 (3.62)

and that the second derivative of ∆Gm  with respect to the volume fraction of solvent (com-

ponent 1) or polymer (component 2) be greater than zero over the entire composition range
as formally expressed by eq. 3.63.

Figure 3-9 Dependence of the Gibbs free energy of mixing, ∆Gm , of a binary mix-
ture on volume fraction of polymer, 2 , at constant pressure and tem-
perature. I .  Total immiscibility. I I .  Partial miscibility. I I I . Total miscibil-
ity. In the case of partial miscibility (Curve II), the mixture will separate
into two phases whose compositions ( ) are marked by the volume-
fraction coordinates, 2

A  and 2
B , corresponding to points of common

tangent to the free-energy curve. Spinodal points, compositions 2,sp
A

and 2,sp
A , occur at the points of inflection (×).
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2∆Gm

2
2

  

  
  

  

  
  

p,T

> 0

(3.63)

Both conditions for miscibility are satisfied by curve III but not curve II, which exhibits two
minima in ∆Gm , and therefore the derivative criterion expressed by eq. 3.63 is not satisfied

at all points along the ∆Gm –composition curve. A solution that exhibits such minima will

phase-separate at equilibrium into two phases containing different compositions of both
components. The compositions of the two phases are given by the points of common tan-
gent as illustrated in Figure 3-9, where the composition of the solvent-rich phase is identi-
fied as 2

A  and that of the polymer-rich phase as 2
B .

Phase equilibrium is strongly affected by solution temperature. In fact, any of three
types of phase behavior illustrated in Figure 3-9 may result by a change in the temperature
(or pressure) of the system. Our usual experience with solutions of low-molecular-weight
compounds is that solubility increases with an increase in temperature, as illustrated by the
phase diagram shown in Figure 3-10. In this example, the solution is homogeneous (i.e.,
the two components are totally miscible) at temperatures above the point identified as
UCST, which stands for the upper critical solution temperature as described below. At lower
temperatures (i.e., below the UCST), phase separation may occur depending upon the overall
composition of the mixture. At a given temperature below the UCST (e.g., T1), composi-
tions lying outside the curves are those constituting a homogeneous phase, while those ly-
ing inside the curves are thermodynamically unstable and therefore the solution will phase-
separate at equilibrium. The compositions of the two phases, identified as phases A and B,
are given by points lying along the curve called the binodal. The binodal is the loci of points
that satisfy the conditions for thermodynamic equilibrium of a binary mixture given as

1
A = 1

B
(3.64a)

and

2
A = 2

B
. (3.64b)

As the chemical potential is given by the derivative of the Gibbs free energy with respect to
composition (eq. 3.27), the chemical potentials are obtained graphically from the intercepts
of the common tangent drawn to curve II with the free energy axes as illustrated in Figure  3-
9.

Between the binodal and the unstable region lies the metastable region, which is
bounded by the spinodal. In the metastable region, the system can resist small concentration
fluctuations but will eventually equilibrate to the stable two-phase state given by the bi-
nodal. Points lying along the spinodal correspond to the points of inflection identified in
curve II of the free-energy diagram (Figure 3-9) and satisfy the relationship
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2∆Gm

2
2

  

  
  

  

  
  

p,T

= 0

. (3.65)

Figure 3-10 Representative phase diagrams for a polymer solution showing an up-
per critical solution temperature (UCST) (•), spinodal curve (– – – – ),
and binodal curve (_________).

The binodal and spinodal coincide at the critical point, which satisfies the following
equality for the third derivative of the Gibbs free energy with respect to composition:

3∆Gm

2
3

  

  
  

  

  
  

p,T

= 0
. (3.66)

In the case of the upper critical solution temperature (UCST), the critical point lies at the
top of the phase diagram as shown in Figure 3-10.

Although the UCST behavior of dilute polymer solutions had been observed for many
years, it was not until 1961 that phase separation of polymer solutions was first reported to
occur with an increase in temperature.15 In this case, the binodal and spinodal curves coincide
at a temperature and composition called the lower critical solution temperature or LCST.
One serious limitation of the Flory–Huggins theory (Section 3.2.1) is that it fails to predict
LCST behavior. The more recent equation-of-state theories (Section 3.2.3) are much more
successful in predicting the entire range of phase behavior, as will be discussed in Section
7.2.1.
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3.2.5   Determination of the Interaction Parameter

Experimentally, 12  as well as the exchange interaction parameter, X12 , in the Flory EOS
theory can be determined by a variety of techniques, including several scattering methods as
discussed in the next section and from the melting-point depression of semicrystalline poly-
mers (Section 4.2.2). By far the most commonly used method to determine polymer–solvent
as well as polymer–polymer interaction parameters (Chapter 7) has been inverse gas chroma-
tography or IGC.16

Inverse Gas Chromatography. The term "inverse" is used to indicate that the
substance being characterized constitutes the stationary phase (i.e., the bed packing) rather
than the mobile phase, as is the case in traditional gas chromatography. The stationary phase
is prepared by coating a thin layer of a polymer or polymer blend from a dilute solution onto
a commercial packing material in the form of small beads. A fluidized bed is sometimes used
in the coating process. The coated packing is vacuum-dried to remove all residual solvent and
then packed into a GC column which is heated to approximately 50°C above the glass-transi-
tion temperature (Tg). A solvent probe is then injected into the carrier gas (He or H2), and
the time for the probe to be eluted from the column is measured. During its passage, the
probe is free to be sorbed into the liquid polymer coating of the packed bed. The extent of
solubility (i.e., activity) is directly related to the retention time from which a specific reten-
tion volume, Vg , can be calculated. From this value, the infinite-dilution volume-fraction
activity coefficient is then obtained as17

ln 1
∞ = ln

a1

1

  

  
  

  

  
  

∞

= lim
1→ 0

a1

1

  

  
  

  

  
  = ln

273.16 Rv2

Vg p1
o

  

  
  

  

  
  −

p1
o B11 − V1( )

RT
(3.67)

where 1 is the volume fraction of solvent (probe), p1
o  is the vapor pressure of the probe

(solvent) in the carrier gas, 2  is the specific volume of the polymer, V1 is the molar vol-
ume of the probe, and B11  is the second virial coefficient of the pure probe vapor at the
measurement temperature. From measurement of 1

∞  at different temperatures, the heat of
mixing can be determined as

∆Hm = R
ln 1

∞

1 T( )
  

  
  

  

  
  

. (3.68)

From eq. 3.67 and the Flory–Huggins equation (eq. 3.35), it is easily shown that the
Flory interaction-parameter is obtained directly as

12 = ln
273.16Rv2

Vg p1
oV1

  

  
  

  

  
  −

p1
o B11 − V1( )

RT
− 1.

(3.69)
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In a similar manner, the interaction energy, X12 , in the Flory equation of state also can be

obtained.

3.2.6  Predictions of Solubilities

Solubility Parameters. As discussed in the previous section, there are a number of ex-
perimental methods by which approximate values of 12  can be obtained; however, there is
no theory by which values of 12  can be predicted at the present time. One approach that can
be used to estimate 12  and predict solubility is based upon the concept of the solubility
parameter, , which was originally developed to guide solvent selection in the paint and
coatings industry. The solubility parameter is related to the cohesive energy-density, Ecoh , or
the molar energy of vaporization of a pure liquid, ∆Ev , as

i = Ei
coh =

∆Ei
v

Vi (3.70)

where ∆Ev  is defined as the energy change upon isothermal vaporization of the saturated
liquid to the ideal gas state at infinite dilution† and Vi  is the molar volume of the liquid.

Units of  are (cal/cm3)1/2 or (MPa)1/2. Equation 3.70 can be used to calculate the solubility
parameter of a pure solvent given values of ∆Ev  and Vi . Since it is not reasonable to talk

about an energy of vaporization for solid polymers, the solubility parameter of a polymer
has to be determined indirectly or calculated by group-contribution methods. Experimentally,
the solubility parameter of a polymer can be estimated by comparing the swelling of a
crosslinked polymer sample immersed in different solvents. The solubility parameter of the
polymer is taken to be that of the solvent resulting in maximum swelling.

Alternately, the solubility parameter of a polymer can be estimated by use of one of
several group-contribution methods, such as those given by Small18 and by Hoy.19 An exten-
sive presentation of group-contribution methods for estimating polymer properties, including
those for solubility parameters, is given by van Krevelen.20 Calculation of  by a group-
contribution method requires the value of a molar attraction constant, Fi , for each chemical

group in the polymer repeating-unit. Values of Fi  have been obtained by regression analysis

of physical property data for a large number of organic compounds (640 compounds in the
case of Hoy19). In the case of Small, all compounds (e.g., hydroxyl compounds, amines, and
carboxylic acids) in which hydrogen bonding occurs were excluded. A listing of some impor-
tant molar attraction constants is given in Table 3-2.
                                                
† The energy of vaporization is approximately related to the enthalpy of vaporization as

∆Ei
v ≈ ∆Hi

v − RT .
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Table 3-2 Molar Attraction Constants at 25°C

Molar Attraction Constant, F

(MPa)1/2  cm3 mol-1

Group Small18 Hoy19 Van Krevelen20

–CH3 438 303 420

–CH2– 272 269 280

>CH– 57 176 140

>C< -190 65.5 0

–CH(CH3)– 495 (479) 560

–C(CH3)2– 686 (672) 840

–CH=CH– 454 497 444

>C=CH– 266 422 304

Phenyl 1504 1398 1517

p-Phenylene 1346 1442 1377

–O– (ether) 143 235 256

–OH — 462 754

–CO– (ketone) 563 538 685

–COO– (ester) 634 668 512

–OCOO– (carbonate) — (904) 767

–CN 839 726 982

–N=C=O — 734 —

–NH– — 368 —

–S– (sulfide) 460 428 460

–F (250) 84.5 164

–Cl (primary) 552 420 471

–Br (primary) 696 528 614

–CF3 (n-fluorocarbon) 561 — —

–Si– -77 — —

The solubility parameter of a polymer is then calculated from these molar attraction
constants and the molar volume of the polymer, V  (units of cm3 mol -1), as

=
Fi

i=1
∑

V (3.71)
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where the summation is taken over all groups in the repeating unit. For this purpose,
chemical groups are chosen to be the smallest uniquely identifiable groups in the polymer
repeating unit such as methyl, methylene, phenyl, and halogen corresponding to those in
Table 3-2. Calculated values of solubility parameters for some common solvents and poly-
mers have been tabulated in a number of publications.20–22 Some of these values are collected
in Table 3-3. An example calculation is given next.

Table 3-3 Solubility Parameters of Some Common Solvents and Polymers

Solubility Parameter, 

(MPa)1/2 (cal cm-3)1/2

S o l v e n t s

n-Hexane 14.9 7.28

Carbon tetrachloride 17.8 8.70

Toluene 18.2 8.90

Benzene 18.6 9.09

Chloroform 19.0 9.29

Tetrahydrofuran 19.4 9.48

Chlorobenzene 19.6 9.58

Methylene chloride 20.3 9.92

1,4-Dioxane 20.5 10.0

N-Methyl-2-pyrrolidone 22.9 11.2

Dimethylformamide 24.8 12.1

Methanol 29.7 14.5

Water 47.9 23.4

Polymers

Polysulfone 20.3 9.92

Poly(vinyl chloride) 21.5 10.5

Polystyrene 22.5 11.0

Poly(methyl methacrylate) 22.7 11.1

Polyacrylonitrile 25.3 12.4

*Calculated from Hansen solubility parameters (eq. 3.77) at 25°C.
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Example Problem 3.1

Estimate the solubility parameters, in units of (MPa)1/2, for poly(methyl methacrylate)
(PMMA) by the method of Small. The density of PMMA is reported to be 1.188 g
cm-3 at 25°C.

Solut ion
The structure of PMMA is

 

CH2 C

CH3

O

O

C

CH3

From the available chemical groups listed in Table 3-2, the molar-attraction constant for
the repeating unit of PMMA can be obtained as follows:

Group F Number
of Groups

Fi∑
-CH3 438 2 876

-CH2- 272 1 272

>C< -190 1 -190

-COO- (ester) 634 1 634

1592

The formula weight of a PMMA repeating unit is calculated from atomic weights (Appendix
F) as follows:

C: 5 × 12.01115 = 60.06

O: 2 × 15.9994 = 32.0

H: 8 × 1.00797 = 8.06

100.12

The molar volume, V, is then 100.12/1.188 = 84.28 cm3 mol -1 . The solubility parameter is
then calculated as
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i =
Fi∑

Vi
=

1592
84.28

=18.9 MPa 1 2

Another approach that can be used to calculate  is based upon knowledge of the equa-
tion of state, V(p,T), for the polymer:23

≅
T

(3.72)

where  is the (isobaric) thermal-expansion coefficient,

=
1

V
  
  
    

  
  V

T
  
  
    

  
  

p (3.73)

and  is the (isothermal) compressibility coefficient,†

= −
1

V
  
  
    

  
  

V

P
  
  
    

  
  

T . (3.74)

Equations of state are now available for most commercial polymers.22, 24

From values of the solubility parameters for the solvent and polymer, the heat of mix-
ing can be estimated by the Scatchard25–Hildebrand26 equation as

∆Hm = V 1 − 2( )2
1 2 (3.75)

where V is the volume of the mixture. Making use of eq. 3.32, the interaction parameter can
be estimated from this value of ∆Hm  as†

12 ≅
V1

RT 1 – 2( )2

(3.76)

                                                
† Since volume decreases with increasing pressure, the negative sign in eq 3.74 provides a posi-
tive value for .
† Sometimes, the Flory interaction parameter is considered to have both an enthalpic component,

H, and entropic (or residual) component, S. In this case, we can write

12 =
S

+ H = S +
V1

RT
1 − 2( )2

≈ 0.34 +
V1

RT
1 − 2( )2

.
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where V1  is the molar volume of component 1. As the form of eq. 3.75 indicates, the solu-

bility parameter approach can be used to estimate the heat of mixing when ∆Hm ≥ 0 but not

when ∆Hm < 0 (i.e., for exothermic heat of mixing).

The matching of polymer and solvent solubility parameters to minimize ∆Hm is a use-
ful approach for solvent selection in many cases but often fails when specific interactions
such as hydrogen bonding occur. To improve the prediction, two- and three-dimensional
solubility parameters, which give individual contributions for dispersive (i.e., van d er 
Waals), polar, and hydrogen bonding interactions, are sometimes used. In the case of the
three-dimensional model proposed by Hansen,27 the overall solubility parameter can be ob-
tained as

= d
2 + p

2 + h
2

 (3.77)

where d, p, and h are the dispersive, polar, and hydrogen-bonding solubility parameters,
respectively. Values of  calculated from eq. 3.77 for common solvents and polymers were
given in Table 3-3.

Activity Predictions.  Once a value for the interaction parameter is known or can
be estimated, the activity of a solvent in a polymer solution can be estimated by means of
the Flory–Huggins equation (eq. 3.35). It is also possible to predict activity through a vari-
ety of chemical group-contribution methods.28 The most fully developed of these methods is
UNIFAC-FV.29 The acronym UNIFAC stands for UNIQUAC Functional-group Activity
Coefficients, which had been widely used for the prediction of vapor–liquid equilibria (VLE)
for mixtures of low-molecular-weight components,30 and FV repesents a free-volume contri-
bution originating from the Flory EOS theory. UNIQUAC, itself, is an acronym for Univer-
sal Quasi-Chemical equations, which provides good representation of both vapor–liquid
equilibria (VLE) and liquid–liquid equilibria (LLE) for binary and multicomponent mixtures
of nonelectrolytes using one or two adjustable (energy) parameters per binary pair.31 The
difference between UNIQUAC and UNIFAC or UNIFAC-FV is that UNIFAC uses the solu-
tion-of-functional-groups (SOG) concept32 to obtain group-contribution parameters (the a d-
justable parameters in UNIQUAC) from knowledge of the chemical groups comprising the
mixture components in a manner similar to the way that solubility parameters are calculated
by the methods of Small or Hoy as discussed in the previous section.

According to UNIFAC-FV, solvent activities may be calculated as contributions from
three sources—a combinatorial (entropy) term, a residual (enthalpic term), and a (Flory EOS)
free-volume term as

ln a1 = ln a1
C + ln a1

R + ln a1
FV

. (3.78)

The combinatorial term is given as
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lna1
C ≈ ln ′ 1 + 1 − ′ 1( ) +

z

2
M1 ′ q 1 ln 

′ 1

′ 1
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  
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  − 1+

′ 1

′ 1

 

 
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 

 

 
 
 (3.79)

where ′ 1  is the segment volume fraction, ′ 1  is the surface area fraction, z is the coordina-

tion number of the lattice (taken to be 10), and M1 is the molecular weight of component 1

(i.e., the solvent). The parameter ′ q 1  in eq. 3.79 is related to the van der Waals surface area as

′ q 1 =
1

M1
k
(1)

k =1

N

∑ Qk
 (3.80)

where k
(1)  is the number of functional groups of type k in the solvent and Qk is a group

area parameter obtained from the (Bondi) van der Waals group surface area, Awk, and normal-

ized to a methylene unit of polyethylene as

Qk =
Awk

2.5 × 109
.

(3.81)

The surface area fraction, 1
′ , is calculated from q1

′ , as

′ 1 =
′ q 1 w1

′ q j w j
j =1

N

∑
(3.82)

where the summation in the denominator of eq. 3.82 is taken over all N components of the
mixture. Similarly, the segment volume fraction of the solvent, ′ 1 , is calculated from the

weight fractions and the group volume parameter of each component of the mixture, ′ r j , as

′ 1 =
′ r 1w1

′ r j w j
j =1

N

∑
(3.83)

where the relative van der Waals volume is given as

′ r 1 =
1

M1
k

(1)

k =1

N

∑ Rk
 (3.84)
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and k
(1) is the number of groups (an integer) of type k in the solvent and Rk is the normal-

ized van der Waals group volume, Vwk, evaluated as

Rk =
Vwk

15.17
.

(3.85)

The molar group area parameter, Qk (eq. 3.81), and the molar group volume parameter, Rk,

are available for most structural groups as well as for some common solvents, such as water,
carbon disulfide, and dimethylformamide. These group parameters are continuously updated
and new ones added in the literature.33 Some representative values of Qk and Rk are given in

Table 3-4.
It is noted that the first two terms on the RHS of eq. 3.79 are essentially the combina-

torial terms of the Flory–Huggins (F–H) equation (eq. 3.35) with the exception that segment
rather than volume fractions are used. The remaining two terms serve to correct for the effect
of molecular shape. The difference between the combinatorial activity given by eq. 3.79 and
that of the F–H expression is usually small when segment fractions are used in place of vol-
ume fractions in the F–H expression.

The residual contribution to the activity of the solvent in UNIQUAC is given as

ln a1
R = M1 ′ q 1 1– ln ′ i i1

i =1

N

∑
  

  
    

  

  
    – ′ i 1i ′ j ji

j =1

N

∑
  

  
    

  

  
    

i=1

N

∑
  

  
  
  

  

  
  
  

(3.86)

where the two adjustable parameters, ij and ji, are given as

ij = exp –
uij – u jj

RT

  
  
  

  
  
  

  

  
  

  

  
  

(3.87)

and

ji = exp –
u ji – uii

RT

  
  
  

  
  
  

  

  
  

  

  
  

. (3.88)

The parameter uij is the potential energy of an i–j pair.
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Table 3-4  Molar Group Area (Qk) and Volume (Rk) Parameters*

Main Group Subgroup Rk Qk Sample Group Assignment

CH2 CH3

CH2

CH

C

0.9011

0.6744

0.4469

0.2195

0.848

0.540

0.228

0.000

Hexane

n-Butane

2-Methylpropane

Neopentane

C=C CH2=CH

CH=CH

CH2=C

CH=C

C=C

1.3454

1.1167

1.1173

0.8886

0.6605

1.176

0.867

0.988

0.676

0.485

Hexene-1

Hexene-2

2-Methyl-1-butene

2-Methyl-2-butene

2,3-Dimethylbutene

CH2CO CH3CO

CH2CO

1.6724

1.4457

1.448

1.180

Butanone

Pentanone-3

ACH† ACH

AC

0.5313

0.3652

0.400

0.120

Naphthalene

Styrene

ACCH2 ACCH3

ACCH2

ACCH

1.2663

1.0396

0.8121

0.968

0.660

0.348

Toluene

Ethylbenzene

Cumene

SiO 1.1044 0.4660 Polysiloxane

OH 1.0000 1.200 Propanol-2

CH3OH 1.4311 1.432 Methanol

H2O 0.9200 1.400 Water

CHCl3 2.8700 2.410 Chloroform

HCON(CH3)2 3.0856 2.736 N,N-Dimethylformamide

SiO 1.1044 0.466 Octamethyl cyclotetrasilane
*Supplementary material to ref. 33.
†The prefix A indicates that the group is contained in an aromatic structure.

In UNIFAC, the residual term is replaced by the SOG concept as

ln a1
R = k

(1) ln Γk –ln Γk
(1)[ ]

allgroups
∑

(3.89)
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where Γk is the group residual-activity (or activity coefficient) and Γk
(1) is the group residual-

activity (or activity coefficient) of group k in a reference solution containing only solvent
molecules (for normalization so that a1→ 1 as w1→ 1). The group activation term, Γk or

Γk
(1), is obtained from the expression

ln Γ k = MkQk
′ 1 − ln Θm

′Ψmk
all groups

∑
 

  
 

  −
Θm

′Ψkm

Θn
′Ψnm

all groups
∑all groups

∑

 

 

 
 
 
 

 

 

 
 
 
 

(3.90)

where ′ Θ m  is the area fraction of group m , calculated in a similar way to that of j´:

′ Θ m =
′ Q m Wm

′ Q n Wn

n=1

N

∑
. (3.91)

In eqs. 3.90 and 3.91, Mk is the molecular weight of the functional group k, ′ Q m  is the

group-area parameter per gram such that ′ Q m = Qm M m , and Wm is the weight fraction of

group m  in the mixture. The group interaction parameter, mn, is given by

Ψmn = exp –
Umn – Unn

RT

  
  
  

  
  
  

  

  
  

  

  
  = exp –

amn

T

  
  
  

  
  
  

(3.92)

where Umn is a measure of the energy of interaction between groups m  and n. The group-

interaction parameters, amn and anm (amn ≠ anm), for each pair of groups have been compiled

and continuously revised, principally by fitting experimental VLE or LLE data for low-
molecular-weight compounds. Representative values of the group-interaction parameters d e -
rived from VLE data are given in Table 3-5. In tables of group-interaction parameters, each
major group contains several subgroups with their own Rk and Qk values (Table 3-4), but all

subgroups have identical group-interaction parameters.
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Table 3-5  Representative Values of  the Group-Interaction Parameters, anm and amn (K)*

CH2 C=C ACH ACCH2 OH CH2CO CH3OH SiO

CH2 0.0 86.02 61.13 76.50 986.5 476.4 697.2 252.7

C=C -35.36 0.0 38.81 74.15 524.1 182.6 787.6 n.a.

ACH -11.12 3.446 0.0 167.0 636.1 25.77 637.4 238.9

ACCH2 -69.70 -113.6 -146.8 0.0 803.2 -52.10 603.3 n.a.

OH 156.4 457.0 89.60 25.82 0.0 84.00 -137.1 n.a.

CH2CO 26.76 42.92 140.1 365.8 164.5 0.0 108.7 n.a.

CH3OH 16.51 -12.52 -50.00 -44.50 249.1 23.39 0.0 n.a.

SiO 110.2 n.a. 234.4 n.a. n.a. n.a. n.a. n.a.
*Supplementary material to ref. 33.

For polymer-solvent systems, Oishi and Prausnitz29 have shown that the free-volume
contribution appearing in eq. 3.78 can be a significant positive  contribution to the total ac-
tivity and used the Flory EOS  (where X12  = 0) to obtain

ln a1
FV = 3c1 ln 

˜ 1
1/3 –1( )

˜ 
M

1/3 –1( )
 

 
 
 

 

 
 
 – c1

˜ 1
˜ M

–1
 
  

 
  1–

1
˜ 

1
1/3

 

  
 

  

–1 

 
 
 

 

 
 
 
. (3.93)

In this equation, 3c1 represents the number of external degrees of freedom per solvent (i.e.,

component 1) molecule (c1 is usually set to 1.1), subscript M refers to the mixture, and ˜ 

is the reduced volume as defined earlier (eq. 3.45). Oishi and Prausnitz have suggested calcu-
lating the reduced volume for the solvent as

˜ 
1 = 1

15.17b ′ r 1  (3.94)

where b is a proportionality factor of order unity (often taken as 1.28). The reduced volume
of the mixture, ˜ 

M , is calculated by assuming that the volume of the liquid mixture is addi-

tive. For a binary mixture of solvent and polymer (component 2), ˜ 
M  is given as

˜ 
M = 1w1 + 2w2

15.17b ′ r 1 w1 + ′ r 2 w2( ) .

(3.95)

UNIFAC-FV has been very successful in the prediction of solvent activities for poly-
mer solutions,28 as illustrated for polyisobutylene/benzene in Figure 3-11. Although the
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UNIFAC-FV approach was developed to improve predictions of activities or activity coeffi-
cients for polymeric systems, it also has been used for mixtures of low-molecular-weight
compounds with reasonable success. Free-volume contributions can be important even for
mixtures of low-molecular-weight components if the characteristic temperatures (T * ) differ
significantly, as in the case of gas/hydrocarbon mixtures for example.

JJJJ
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J

BBBBBBBBBBBBBBBB

F
F

F
F

F
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F
F
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F
F
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0.8

1
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0 0.2 0.4 0.6 0.8 1
1

Figure 3-11 Comparison of experimental data (F,H,J,B) for the activity of benzene
(a1) as a function of its weight fraction (w1) in polyisobutylene at 25°C
with predictions (—) of UNIFAC-FV.28

Example Problem 3.2
Using UNIFAC-FV, calculate the activity of benzene in polyisobutylene (PIB)

 

CH2 C

CH3

CH3 n

at 25°C when the weight fraction of benzene is 0.1.
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S o l u t i o n

Component

g mL-3

M Main
Group

Sub-
Group

Rk Qk No.
Groups

Benzene 0.8736 78.11 ACH ACH 0.5313 0.400 6

PIB 0.9169 56.07 CH2 C 0.2195 0.0 1

CH2 CH2 0.6744 0.540 1

CH2 CH3 0.9011 0.848 2

Combinatoria l  contr ibut ion:

′ q 1 =
1

78.11
6 0.400( ) = 0.03073

′ r 1 =
1

78.11
6 0.5313( ) = 0.04081

′ q 2 =
1

56.07
1 0( ) +1(0.540) + 2(0.848)[ ] = 0.03987

′ r 2 =
1

56.07
1 0.2195( ) +1(0.6744) + 2(0.9011)[ ] = 0.04808

′ 1 =
0.03073(0.1)

0.0307(0.1)+ 0.03987(0.9)
= 0.07888

′ 1 =
0.04081(0.1)

0.04081(0.1)+ 0.04808(0.9)
= 0.08618

lna1
c = ln(0.08618) + (1− 0.08618) +

10

2
(78.11)(0.03073) ln

0.0.0788

0.08618
 
 

 
 

− 1+
0.08618

0.07888

 

 
 

 

 
 

        = −1.4831

Residual  contribution:

WACH = 0.1
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WCH3 = 0.9
15.025(2)

56.07
= 0.4823

WCH2 = 0.9
14.0169

56.07
= 0.2250

WC = 0.9
12.001
56.07

= 0.1926

′ Q ACH =
QACH

13.0089
=

0.4
13.0089

= 0.03075

′ Q CH3 =
QCH3

15.025
=

0.848
15.025

= 0.05644

′ Q CH2 =
QCH2

14.0169
=

0.540
14.0169

= 0.03853

′ Q C =
QC

12.001
=

0
12.001

= 0

′ ACH =
′ Q ACHWACH

′ Q ACHWACH + ′ Q CH3WCH3 + ′ Q CH2WCH2 + ′ Q CWC
=

0.003075
0.03897

= 0.07892

′ CH3 =
′ Q CH3WCH3

′ Q ACHWACH + ′ Q CH3WCH3 + ′ Q CH2WCH2 + ′ Q CWC
=

0.02722
0.03897

= 0.6986

′ CH2 =
′ Q CH2WCH2

′ Q ACHWACH + ′ Q CH3WCH3 + ′ Q CH2WCH2 + ′ Q CWC
=

0.008669
0.03897

= 0.2225

′ C =
′ Q CWC

′ Q ACHWACH + ′ Q CH3WCH3 + ′ Q CH2WCH2 + ′ Q CWC
= 0



3.2   Thermodynamics of Polymer Solutions 127

Note that interaction parameters are only between main groups, and in this case there are
only two main groups — ACH (benzene) and CH2 (C, CH2, and CH3 subgroups) in PIB.
This greatly reduces the number of calculations for the residual contribution to the activity
of benzene as follows:

ACH,CH2 = exp −
aACH,CH2

T
 
 
 

 
 
 = exp

11.12
298

 
 

 
 = 1.0380 = ACH,CH3 = ACH,C

CH2,ACH = exp −
aCH2,ACH

T
 
 
 

 
 
  = exp −

61.13
298

 
 

 
 = 0.8145 = CH3,ACH = C,ACH

ln ACH = M ACH ′ Q ACH[1− ln( ′ ACH ACH,ACH + ′ CH3 CH3,ACH + ′ CH2 CH2,ACH +

    ′ C C, ACH)− ′ ACH ACH,ACH

′ ACH ACH,ACH + ′ CH3 CH3,ACH + ′ CH2 CH2,ACH + ′ C C,ACH
−

        
′ CH3 ACH,CH3

′ ACH ACH,CH3 + ′ CH3 CH3,CH3 + ′ CH2 CH2,CH3 + ′ C C,CH3
−

        
′ CH2 ACH,CH2

′ ACH ACH,CH2 + ′ CH3 CH3,CH2 + ′ CH2 CH2,CH2 + ′ C C,CH2
−

        
′ C ACH,C

′ ACH ACH,C + ′ CH3 CH3,C + ′ CH2 CH2,C + ′ C C,C
]=

        0.400[1− ln 0 + 0.2225⋅ 0.8145 + 0.6986⋅ 0.8145 + 0.07892( ) −

      
0.07892(1)

0.07892(1)+ 0.6986(0.8145) +0.2225(0.8145) +0
−

         
(0.6986 +0.2225)(1.0380)

0.0789(1.0380) +0.6986(1) +0.2225 + 0
] = 0.4 1 − ln 0.8292( )− 1.0615[ ] = 0.05036

ln ACH
(1) = 0

lna1
R = 6 0.05036− 0( ) = 0.3022
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Free-volume contribution:

˜ 
1 =

1.145
15.17(1.28)0.04081

= 1.445

˜ M =
1.1447(0.1) + 1.0906(0.9)

15.17(1.28) 0.04081(0.1)+ 0.04808(0.9)[ ] = 1.1920

lna1
FV = 3(1.1)ln

1.4451 3 −1

1.19201 3 −1

 

 
 

 

 
 
 

− 1.1
1.445

1.1920
−1 

 
 
 1 −

1

1.4451 3

 
 
 

 
 
 

−1 

 
 
 

 

 
 
 

= 0.528

Total activity of benzene:
lna1 = −1.483 +0.302 + 0.528 = −0.653
a1 = 0.520

These results indicate that the residual or enthalpic contribution to the activity is relatively
small compared to the combinatorial contribution. This should be expected on the basis of
the non-polar nature of PIB and benzene. As shown by a comparison of experimental activ-
ity data with calculated values in Figure 3-11, UNIFAC-FV very accurately predicts the activ-
ity of benzene in PIB. This extremely good agreement is due to extensive parameterization
of UNIFAC for alkanes and aromatic compounds.

3.3   MEASUREMENT OF MOLECULAR WEIGHT

As discussed in Section 1.3, commercial synthetic polymers have broad distributions of mo-
lecular weight, and it is therefore necessary to report an average molecular weight when char-
acterizing a sample. There are three important molecular-weight averages—number-average
( M n ), weight-average ( M w ), and z-average ( M z ). Absolute values of M n , M w , a nd  M z  can
be obtained by the primary characterization methods of osmometry, scattering, and sedimen-
tation, respectively. In addition to these accurate but time-consuming techniques, there are a
number of secondary methods by which average molecular weights can be determined pro-
vided that polymer samples with narrow molecular-weight distributions are available for ref-
erence and calibration. The most important of these secondary methods is gel-permeation
chromatography (GPC), sometimes called size-exclusion chromatography (SEC). This
method is capable of determining the entire molecular-weight distribution of a polymer sam-
ple from which all molecular-weight averages can be determined. Another widely used secon-
dary method is the determination of intrinsic viscosity from which the viscosity-average mo-
lecular weight can be determined. The viscosity-average molecular weight ( M v ) normally
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lies between M n  and M w . The principles behind both primary and secondary methods for
molecular-weight determination are discussed next.

3.3.1   Osmometry

Membrane Osmometry. The osmotic pressure, Π, of a polymer solution may be ob-
tained from the chemical potential, ∆ 1, or equivalently from the activity, a1, of the solvent
through the basic relationship

∆ 1 = RT lna1 = −ΠV1 (3.96)

where V1 is the molar volume of the solvent. Substitution of the Flory–Huggins expression

for solvent activity (eq. 3.35) into eq. 3.96 and subsequent rearrangement gives

Π = −
RT

V1

ln 1 − 2( ) + 2 + 12 2
2[ ] .

(3.97)

Simplification of this relation can be achieved by expansion of the logarithmic term in a
Taylor series (see Appendix E) and the substitution of polymer concentration, c, for volume
fraction, 2, through the relationship

2 = cv (3.98)

where  is the specific volume of the polymer. Substitution and rearrangement give the ex-
pression

Π
c

=
RT

M
1+

M 2

V1

  

  
  

  

  
  

1

2
− 12

  
  
    

  
  c +

1

3

M 3

V1

  

  
  

  

  
  c

2 +  ...
  

  
  

  

  
  

. (3.99)

The classical van’t Hoff equation for the osmotic pressure of an ideal, dilute solution

Π
c

=
RT

M
,

(3.100)

may be seen as a special or limiting case of eq. 3.99 obtained when 12  = 1/2 and second-
and higher-order terms in c can be neglected (i.e., for dilute solution). For high-molecular-
weight, polydisperse polymers, the appropriate molecular weight to use in eq. 3.99 is the
number-average molecular weight, M n . Equation 3.99 can then be rearranged to give the
widely used relation
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Π = RTc

1

M n
+ A2c + A3c2 +  L

  

  
  

  

  
  

(3.101)

where A2 and A3 are the second and third virial coefficients, respectively. Comparison of eqs.

3.99 and 3.101 reveals the following relations for the virial coefficients:

A2 =
2

V1

1

2
− 12

  
  
    

  
  

(3.102)

and

A3 =
1

3

3

V1

  

  
  

  

  
  

. (3.103)

In the limit of dilute solution (typically less than 1 g dL-1), terms containing second- and
higher-order powers of c can be neglected, and therefore a plot of Π/RTc  versus c yields a
straight line with an intercept, 1 M n , and slope, A2. In Figure 3-12, plots of osmotic data

for different molecular weight fractions of polyisobutylene in a good (cyclohexane) and poor
(benzene) solvent are compared.

As shown by the relation between A2 and 12  given by eq. 3.102, the second virial co-
efficient is a convenient measure of the quality of polymer-solvent interactions. In good sol-
vents in which the polymer chains are expanded (i.e.,  > 1, eq. 3.13), A2 is large and,
therefore, 12  is small (e.g., <0.5). At  conditions (i.e.,  = 1), A2 = 0 and 12  = 0.5.

Experimental procedures to determine osmotic pressure are relatively simple although
often very time consuming. A basic osmometer design is illustrated in Figure 3-13. In op-
eration, pure solvent and a dilute solution of the polymer in the same solvent are placed on
opposite sides of a semipermeable membrane, typically prepared from cellulose or a cellulose
derivative. Regenerated cellulose is an especially good membrane polymer because it is in-
soluble in most organic solvents. Normally, the membrane is first preconditioned in the
solvent used in the measurements. An ideal membrane will allow the solvent to pass
through the membrane but will retain the polymer molecules in solution. The resulting dif-
ference in chemical potential between solvent and the polymer solution causes solvent to
pass through the membrane and raise the liquid head of the solution reservoir. The osmotic
pressure is calculated from the height, h, of the equilibrium head representing the difference
between the height of solvent in the solvent capillary and the height of solution in the oppo-
site capillary at equilibrium as

Π = gh (3.104)

where  is the solvent density.
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Figure 3-12 Plot of Π/c versus c (g cm-3) for polyisobutylene fractions (molecular
weights between 38,000 and 720,000) in benzene ( ) and in cyclohex-
ane ( ). (Adapted with permission from ref. 34. Copyright 1953
American Chemical Society.)

h

Pure solvent

Membrane

Dilute polymer solution

Figure 3-13 Schematic of a simple membrane osmometer.
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One intrinsic problem with membrane osmometry is the performance of the mem-
brane. No membrane is completely impervious to the passage of small molecules, and any
migration of smaller polymer molecules across the membrane during measurement will not
contribute to the osmotic pressure and, therefore, an artificially high value of M n  will be
obtained. For this reason, membrane osmometry is considered to be accurate only for poly-
mer samples with molecular weights above about 20,000. The upper limit for molecular
weight is approximately 500,000 due to inaccuracy in measuring small osmotic pressures.
For the characterization of low-molecular-weight (i.e., <20,000) oligomers and polymers, an
alternative technique called vapor-pressure osmometry (VPO) is preferred, particularly when
molecular weight is less than about 10,000. The basic principles of this technique are d e -
scribed next.

Vapor Pressure Osmometry. When a polymer is a dd ed  to a solvent, the vapor
pressure of the solvent will be lowered due to the decrease in solvent activity. The relation
between the difference in vapor pressure between solvent and solution, ∆p = p1 − p1

o( ) , and
the number-average molecular weight, M n , of the polymer is given as

lim
c →0

∆p

c
  
  
    

  
  = −

p1
oV1

o

M n (3.105)

where p1
o  and V1

o  are, respectively, the vapor pressure and molar volume of the pure sol-
vent. Due to the inverse dependence of ∆p  on M n  given by eq. 3.105, the effect of even a
low-molecular-weight polymer on the lowering of vapor pressure will be very small and,
therefore, direct measurement of the vapor pressure is a very imprecise method of molecular-
weight determination. For this reason, an indirect approach, based upon thermoelectric meas-
urements, is used in commercial instrumentation as described below.

As shown by Figure 3-14, a commercial vapor pressure osmometer uses two matched
thermistors that are placed in a closed, constant-temperature (± 0.001°C) chamber containing
saturated solvent vapor. A drop of solvent is placed by syringe on one thermistor and a drop
of dilute polymer solution on the other. As a result of condensation of solvent vapor onto
the solution, the temperature of the solution thermistor increases until the vapor pressure of
the solution equals that of the solvent. The difference in temperature between the two ther-
mistors is recorded in terms of a difference in resistance (∆R), which is calibrated by use of a
standard low-molecular-weight sample. Extrapolation of ∆R c  over a range of dilute-solution

concentrations to zero concentration yields M n  through

∆R

c
  
  
    

  
  

c →0
=

KVPO

M n (3.106)

where KVPO  is the calibration constant obtained by measuring ∆R  for a low-molecular-
weight standard whose molecular weight is precisely known. As in membrane osmometry,
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the slope of the plot of ∆R c  versus c is related to the second virial coefficient. Criteria for
the selection of calibrants for VPO include high purity (>99.9%) and low vapor pressure
(<0.1% of p1

o ). Examples of calibrant include mannitol and sucrose for aqueous solution
measurements and pentaerythrityl tetrastearate, and low-polydispersity, low-molecular-weight
polystyrene and polyisobutylene standards for organic-solution determinations. Since calibra-
tion by a low-molecular-weight standard is required to obtain KVPO , VPO is considered a
secondary method of molecular-weight determination, in contrast to membrane osmometry
for which no calibrants are necessary.

solvent
syringe

solution
syringe

solvent

solvent
drop

solution
drop

∆R

Figure 3-14 Illustration of basic instrumentation for vapor pressure osmometry.

3.3.2  Light-Scattering Methods

The weight-average molecular weight can be obtained directly only by scattering experi-
ments. The most commonly used technique is light scattering from dilute polymer solution.
It is also possible to determine M w  by small-angle neutron scattering of specially prepared
solid samples. Although this technique has great current importance in polymer research, it
is not routinely used for molecular-weight determination because of the difficulty and ex-
pense of sample preparation and the specialized facilities required. The basic principles of
light-scattering measurements of dilute polymer solutions are described next.

The fundamental relationship for light scattering is given as†

                                                
† It can be shown1 from the thermodynamic theory of fluctuations that the relationship between
scattered light intensity and chemical potential is given as

R( ) =
KcRTV1 1+ cos2( )

− 1 c
=

KcRTV1 1+ cos2( )
Π c

.
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Kc

R( )
=

1

M wP( )
+ 2A2c +  L

(3.107)

In this equation, K is a function of the refractive index, no, of the pure solvent, the specific

refractive increment, dn/dc, of the dilute polymer solution, and the wavelength, , of the
incident light according to the relationship

K =
2π2no

2

NA
4

dn

dc
  
  
    

  
  

2

(3.108)

where NA  is Avogadro’s number (6.023 × 1023 molecules mol-1). The specific refractive
increment is the change in refraction index, n, of dilute polymer solutions with increasing
polymer concentration. The term R( ) appearing in eq. 3.107 is called the Rayleigh ratio,
which is defined as

R( ) =
i( )r 2

IoV
.

(3.109)

In this equation, Io is the intensity of the incident light beam and i( ) is the intensity of the

scattered light measured at a distance of r from the scattering volume, V , and at an angle 
with respect to the incident beam. The parameter P( ) appearing in eq. 3.107 is called the
particle scattering function, which incorporates the effect of chain size and conformation on
the angular dependence of scattered light intensity, as illustrated in Figure 3-15. Spherical
particles smaller than the wavelength of light act as independent scattering centers generating
a symmetrical envelope of scattered light intensity. In this case of small particles, P( ) is
unity, but in the case of polymer chains whose dimensions are > /20, scattering may occur
from different points along the same chain and P( ) <1. For this reason, diminution of scat-
tered light intensity can occur due to interference, and the scattering envelope is no longer
spherically symmetrical, as seen in Figure 3-15. In this case, the angular dependence of scat-
tered light intensity is given by the particle scattering function, which, for a monodisperse
system of randomly-coiling molecules in dilute solution, is given by the expression

P( ) =
2

2 e− − 1 −( )[ ]
(3.110)

where

= 16
πn  

  
    

  
  

2

s 2 sin2

2
  
  
    

  
  

(3.111)
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and 〈s2〉 is called the mean-square radius of gyration. For linear-chain polymers, 〈s2〉 is related
to the mean-square end-to-end distance as

s 2 =
r 2

6
.

(3.112)

0°180°

90°

270°

Io

I ( )

Figure 3-15 Intensity distribution of light scattering at various angles for a small par-
ticle (dashed circle) and a large polymer molecule (solid ellipse).

Basic instrumentation for light-scattering measurements is illustrated in Figure 3-16.
Light from a high-intensity mercury lamp is polarized and filtered before passing through a
glass cell that contains a filtered, dilute polymer solution. Scattered light intensity at an an-
gle  is recorded as a signal from a movable high-voltage photomultiplier tube.

Figure 3-16 Conventional light-scattering instrumentation. (Copyright 1989 From
Principles of Polymer Sys tems, 4 th ed., by F. Rodriguez. Reproduced by
permission of Routledge, Inc., part of The Taylor & Francis Group.)
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To determine M w  from eq. 3.107, it is necessary to know the value of P( ) at each

angle for which R( ) has been measured. When the molecular-weight distribution of a poly-
mer is polydisperse, as it usually is, P( ) is not precisely given by eq. 3.110, but by a
summation of similar equations for polymer chains of different sizes weighted by the amount
of variously sized chains present in the polymer sample. Since this information is generally
not known, it is customary to treat the data in a way that does not require explicit knowledge
of P( ). In practice, two approaches can be used. These are called the Zimm and dissymmetry
methods which are discussed in the following sections.

Zimm Method. The most rigorous approach to determine M w  from light-scattering
data is by means of a Zimm plot. This procedure has the advantage that chain conformation
need not be known in advance; however, Zimm plots require tedious measurements of scat-
tered light-intensity at many more angles than needed by the dissymmetry technique. A dou-
ble extrapolation to both zero concentration and zero angle is used to obtain information
concerning molecular weight, second-virial coefficient, and chain dimensions, as discussed
next.

In the limit of small angles where P( ) approaches unity, it can be shown by means of
a series expansion of 1/P( ) that eq. 3.107 becomes‡

Kc

R( )
=

1

M w
1+

16

3

πn  
  
    

  
  

2

s2 sin2

2
  
  
    

  
  

  

  
  

  

  
  + 2A2c .

(3.113)

As illustrated in Figure 3-17, data is plotted in the form of Kc R( )  versus sin2 2( ) + kc
for different angles and concentrations (where k is an arbitrary constant added to provide spac-
ing between curves). A double extrapolation to  = 0° and c = 0, for which the second and
third terms on the right of eq. 3.113 become zero, yields M w  as the reciprocal of the inter-
cept. As inspection of eq. 3.113 indicates, A2 is then obtained as one-half of the slope of the
extrapolated line at  = 0; the mean-square radius of gyration is obtained from the initial
slope of the extrapolated line at c = 0 as

s2 =
3M 

w

16 πn
  
  
    

  
  

2

×  slope at  c = 0( ) .
(3.114)

One obvious difficulty with the Zimm method is that a large number of time-
consuming measurements  is required; however, the method provides a great deal of informa-

                                                
‡ The Rayleigh ratio used in the scattering of dilute polymer solutions is the excess or reduced Rayleigh ratio,

R = R solution( ) − R solvent( ) .
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tion— M w , A2, and s 2 . The number of experiments is greatly reduced by using the

dissymmetry method; however, chain dimensions are less certain, as discussed next.

Dissymmetry Method. Molecular-weight determination by the dissymmetry
method requires measurement of the scattered intensity at three angles—typically 45°, 90°,
and 135° (see Figure 3-15)—and at several different (dilute) polymer concentrations. A
dissymmetry ratio, z, is defined as

z =
i 45°( )
i 135°( )

.
(3.115)

Since z is normally concentration-dependent, a value at zero concentration is determined by
plotting (z – 1) -1 versus concentration. This value can then be used to obtain P(90°) and also
〈r2〉1/2 from published values if the conformational state (e.g., rods, disks, spheres, or random
coils) of the polymer in solution is known. In the absence of information to the contrary, a
random-coil conformation, typical of flexible-chain polymers, is assumed. Once P(90°) is
known, M w  can be obtained from the intercept and A2 obtained from the slope of a plot of
Kc/R(90°) versus concentration extrapolated to zero concentration.
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Figure 3-17 Idealized Zimm plot of light-scattering data ( ) taken at different angles
( ) and solution concentrations (c). Double extrapolations to zero con-
centration and zero scattering-angle are represented by broken lines.
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Low-Angle  Laser Light-Scattering (LALLS). In recent years, helium–neon
(He–Ne) lasers (  = 6328 Å) have replaced conventional light sources in some commercial
light-scattering instruments. The high intensity of these light sources permits scattering
measurements at much smaller angles (2° to 10°) than possible with conventional light
sources and for smaller samples at lower concentrations. Since at low angles the particle
scattering-function, P( ), approaches unity, eq. 3.107 reduces to the classical Debye equation
for scattering by small spherical particles as

Kc

R( )
=

1

M w
+ 2A2c

. (3.116)

Therefore, a plot of Kc/R(θ) versus c at a single angle gives M w  as the inverse of the inter-

cept and A2 as one-half of the slope.

A representative LALLS plot of Kc R( )  versus c is shown for cellulose acetate (CA)

in acetone at 25°C in Figure 3-18. From the intercept, a value of 150,000 is obtained for
M w  of the CA sample; the second virial coefficient, A2, is obtained from the slope as 7.53

× 10-3 mL mol g-2. One limitation of the LALLS method is that chain dimensions cannot be
obtained since scattering is measured only at a single angle.
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Figure 3-18.  Plot of low-angle laser light-scattering data for cellulose acetate in ace-
tone. 34
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3.3.3   Intrinsic Viscosity Measurements

A method widely used for routine molecular-weight determination is based upon the determi-
nation of the intrinsic viscosity, [ ], of a polymer in solution through measurements of
solution viscosity. Molecular weight is related to [ ] by the Mark–Houwink–Sakurada equa-
tion given as

[ ] = KM v
a

(3.117)

where M v  is the viscosity-average molecular weight defined for a discrete distribution of

molecular weights (see Section 1.3) as

M v = NiMi
1+a

i =1

N

∑ NiM i

i =1

N

∑
  

  
  
  

  

  
  
  

1 a

. (3.118)

Both K and a are empirical (Mark–Houwink) constants that are specific for a given
polymer, solvent, and temperature. The exponent a normally lies between the values of 0.5
for a  solvent and 1.0 for a thermodynamically good solvent. Extensive tables of
Mark–Houwink parameters for most commercially important polymers are available.22 Some
typical values for representative polymers are given in Table 3-6. The value of M v  normally

lies between the values of M n  and M w  obtained by osmometry and light-scattering meas-

urements, respectively. As indicated by eq. 3.118, M v ≡ M w  in the case of a thermodynami-

cally good solvent when a = 1. The relationship between molecular weights is given by the
expression

M n : M v : M w = 1: 1+ a( )Γ 1+ a( )[ ]1 a

:2

where is Γ the gamma function (see Appendix E).
Intrinsic viscosity is implicitly expressed by the Huggins equation36

i

c
= [ ]+ kH[ ]2

c
(3.119)

where kH is a dimensionless parameter (the Huggins coefficient) whose value depends upon

temperature as well as the specific polymer/solvent combination. The parameter i is called

the relative viscosity-increment, which is defined as

i =
− s

s (3.120)
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where  and s are the viscosities of the dilute polymer solution and pure solvent, respec-
tively. The ratio i/c is commonly called the reduced viscosity, red, or viscosity number
according to recommended IUPAC† nomenclature.

Table 3-6 Mark–Houwink Parameters for Representative Polymers at 25°C*

Polymer S o l v e n t K   1 0 3

(mL g -1 )

a

Polystyrene Tetrahydrofuran 14 0.70

Toluene 7.5 0.75

Benzene 9.2 0.74

Poly(methyl methacrylate) Benzene 5.5 0.76

Cellulose acetate† Tetrahydrofuran 51.3 0.69

Polycarbonate Tetrahydrofuran 38.9 0.70

Polydimethylsiloxane Toluene 2.4 0.84

Poly(2,6-dimethyl-1,4-phenylene oxide) Toluene 28.5 0.68
*Values obtained from light-scattering data.
†55.5 wt % acetal content.

As indicated by the form of eq. 3.119, [ ] can be obtained from the intercept of a plot
of red uced vis cosit y ver sus c as sho wn for  cel lulos e ace tate in ace tone at 25° C in Fig ure
3-1 9. In actual practice, reduced viscosity is obtained at different concentrations not by direct
measurement of solution and solvent viscosities but by measurement of the time required for
a dilute solution (t) and pure solvent (ts) to fall from one fiducial mark to another in a small
glass capillary. If these efflux times are sufficiently long (e.g., >100 s), the relative viscos-
ity increment can be obtained as

i =
t − ts

ts

.
(3.121)

Efflux times may be noted visually or more precisely by means of commercially available
photocell devices.

                                                
† International Union of Pure and Applied Chemistry.
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Figure 3-19 Plot of reduced viscosity of a cellulose acetate (intrinsic viscosity of
1.43 dL g-1) in acetone at 25°C.35

Capillary viscometers may be either Ostwald–Fenske or Ubbelohde types as illustrated
in Figure 3-20. The latter have the advantage that different solution concentrations can be
made directly in the viscometer by successive dilutions with pure solvent. During measure-
ment, the viscometer is immersed in a constant temperature bath controlled to within 0.02°C
of the set temperature, typically 25° or 30°C.

Figure 3-20 Ostwald–Fenske (A) and Ubbelohde (B) capillary viscometers.
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In addition to determination of molecular weight, measurement of intrinsic viscosity
can also be used to estimate chain dimensions in solution. The mean-square end-to-end dis-
tance is related to intrinsic viscosity through the relationship37

r 2 =
M[ ]

Φ
 
  
  

  
  
  

2/3

(3.122)

where Φ is considered to be a universal constant (Φ ≈ 2.1 × 1021 dL g-1 cm-3) known as the
Flory constant.

3.3.4   Gel-Permeation Chromatography

One of the most widely used methods for the routine determination of molecular weight and
molecular-weight distribution is gel-permeation chromatography (GPC), which employs the
principle of size-exclusion chromatography (sometimes referred to as SEC) to separate sam-
ples of polydisperse polymers into fractions of narrower molecular-weight distribution. Basic
instrumentation for GPC analysis is shown in Figure 3-21. Several small-diameter columns,
typically 30 to 50 cm in length, are packed with small, highly porous beads. These are usu-
ally fabricated from polystyrene (crosslinked with a small fraction of divinylbenzene as a
comonomer) or the packing may be porous glass beads that are usually modified with an
ether or diol linkage. Pore diameters of the beads may range from 10 to 107 Å, which ap-
proximate the dimensions of polymer molecules in solution. During GPC operation, pure
prefiltered solvent is continuously pumped through the columns at a constant flow rate, usu-
ally 1 to 2 mL min-1. Then, a small amount (1 to 5 mL) of a dilute polymer solution (<0.2
g dL-1) is injected by syringe into the solvent stream and carried through the columns. Poly-
mer molecules can then diffuse from this mobile phase into the stationary phase composed
of solvent molecules occupying the pore volumes. The smallest polymer molecules are able
to penetrate deeply into the interior of the bead pores, but the largest molecules may be
completely excluded by the smaller pores or only partially penetrate the larger ones. As pure
solvent elutes the columns after injection, the largest polymer molecules pass through and
finally out of the packed columns. These are followed by the next largest molecules, then the
next largest, and so on, until all the polymer molecules have been eluted out of the column
in descending order of molecular weight. Total sample elution in high-resolution columns
may require several hours.
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Figure 3-21 Gel-permeation chromatography (GPC). (Harry Allcock and Frederick
W. Lampe, Contemporary Polymer Chemistry, 2nd ed., ©1990, p. 396.
Reprinted by permission of Prentice Hall, Englewood Cliffs, NJ.)

The concentration of polymer molecules in each eluting fraction can be monitored by
means of a polymer-sensitive detector, such as an infrared or ultraviolet device. Usually, the
detector is a differential refractometer, which can detect small differences in refractive index
between pure solvent and polymer solution. A signal from the detector is recorded (either by
a chart recorder or digitally) as a function of time, which for a fixed flow rate is directly pro-
portional to the elution volume, V r. A representative GPC chromatogram for a commercial
polystyrene sample is shown in Figure 3-22.

Figure 3-22 GPC chromatogram of polystyrene in tetrahydrofuran at  2.0 mL min-1.
Vertical marks represent elution counts. The negative peak at high
counts may be due to a low-molecular-weight impurities, such as stabi-
lizer, water, or dissolved air. (Adapted from Introduction to Physical
Polymer Science, L. H. Sperling, Copyright ©1986 John Wiley & Sons.
This material is used by permission of John Wiley & Sons, Inc.)



144 Conformation, Solutions, and Molecular Weight Chapter 3

For a given polymer, solvent, temperature, pumping rate, and column packing and
size, V r is related to molecular weight. The form of this relation can be found only by com-
paring elution volumes with those of known molecular weight and narrow molecular-weight
distribution, under identical conditions. Usually, only polymer standards of polystyrene and a
few other polymers such as poly(methyl methacrylate) that can be prepared by anionic “liv-
ing” polymerization (see Section 2.2.2) are available commercially for this purpose. Such
standards are available with molecular weights ranging from about 500 to over 2 million
with polydispersities as low as 1.06. Since different polymer molecules in the same solvent
can have different dimensions, care must be exercised when using polystyrene standards to
calibrate elution volumes of other polymers for which standards are not available. The most
exact but demanding procedure is to use a universal calibration curve, as illustrated in Figure
3-23.
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Figure 3-23 Universal GPC calibration curve showing data points for polystyrene
(B), poly(vinyl chloride) (H), polybutadiene (F), and poly(methyl meth-
acrylate) (J) standards in tetrahydrofuran. Line gives best fit of poly-
styrene data.38

The universal calibration approach is based on the fact that the product [ ]M is propor-
tional to the hydrodynamic volume of a polymer molecule in solution (see eq 3.122). This
hydrodynamic volume is the effective molecular volume as seen by the pore sites. Universal
calibration can be used if the Mark–Houwink constants (see eq. 3.117) are known for both
the standard and unknown polymer samples in the same solvent and at the same temperature.

In the calculation of molecular-weight averages, the signal strength (i.e., peak height
in Figure 3-21) is proportional to W i (eq 1.2). Once a proper calibration curve is available to

relate V r to the molecular weight (M i) of the calibration standard, direct calculation of all
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molecular weights— M n , M w , M z , and even M z+1 —and, therefore, polydispersities

( M w M n  or M z M n ) is possible, typically by commercially available software. Recently,

on-line coupling of GPC with low-angle light-scattering instrumentation (Section 3.3.2) has
enabled rapid on-line computation of molecular weight without the need for separation cali-
bration of the elution curve.
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Problems

3 . 1 Polyisobutylene (PIB) is equilibrated in propane vapor at 35°C. At this temperature, the
saturated vapor pressure (p1

o) of propane is 9050 mm Hg and its density is 0.490 g cm-3. Poly-

isobutylene has a molecular weight of approximately one million and its density is 0.915 g cm-3.
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The concentration of propane, c, sorbed by PIB at different partial pressures of propane (p1) is

given in the following table. Using this information, determine an average value of the Flory

interaction-parameter, 12 , for the PIB–propane system.

p 1 (mm Hg) c  (g  propane/g PIB)

496 0.0061

941 0.0116

1452 0.0183

1446 0.0185

3 . 2 The following osmotic pressure data are available for a polymer in solution:

c  (g dL-1) h  ( cm o f  so lvent )

0.32 0.70

0.66 1.82

1.00 3.10

1.40 5.44

1.90 9.30

Given this information and assuming that the temperature is 25°C and the solvent density is 0.85
g cm-3

(a) Plot Π/RTc versus concentration, c.

(b ) Determine the molecular weight of the polymer and the second virial coefficient, A2, for the

polymer solution.

3 . 3 (a) What is the osmotic pressure (units of atm) of a 0.5 wt % solution of poly(methyl

m3thacrylate) ( M w  = 100,000) in acetonitrile (density, 0.7857 g cm-3) at 45°C for which [ ] =

4.8 × 10 -3
 M0.5?

(b ) What is the osmotic head in units of cm?

(c ) Estimate the Flory interaction parameter for polysulfone in methylene chloride solution.

(d ) Based upon your answer above, would you expect methylene chloride to be a good or poor sol-
vent for polysulfone?

3 . 4 The osmotic pressure of two samples, A and B, of poly(vinyl pyridinium chloride)
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N

CHCH2

Cl
n

were measured in different solvents, The following data were obtained:

Osmotic Pressure Data in Distilled Water

Sample c (g mL -1)  (atm  1 0 3)

A 0.002 29

A 0.005 50

B 0.002 31

B 0.005 52

Osmotic Pressure Data in 0.01 N  Aqueous NaCl

Sample c (g mL -1)  (atm  1 0 3)

A 0.002 5

A 0.005 13

B 0.002 2

B 0.005 5.5

Discuss these results and account for any features that you consider anomalous.

3 . 5 The following viscosity data were obtained for solutions of polystyrene (PS) in toluene at
30°C:

c  (g dL -1) t  ( s )

0 65.8

0.54 101.2

1.08 144.3

1.62 194.6

2.16 257.0

Using this information:

(a)  Plot the reduced viscosity as a function of concentration.

(b)  Determine the intrinsic viscosity of this PS sample and the value of the Huggins constant, k H.
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(c )  Calculate the molecular weight of PS using Mark–Houwink parameters of a = 0.725 and K =

1.1 × 10 -4  dL g-1 .

3 . 6 Given that the molecular weight of a polystyrene (PS) repeating unit is 104 and that the
carbon-carbon distance is 1.54 Å, calculate the following:

(a) The mean-square end-to-end distance for a PS molecule of 1 million molecular weight assuming
that the molecule behaves as a freely rotating, freely jointed, volumeless chain. Assume that each
link is equivalent to a single repeating unit of PS.

(b) The unperturbed root-mean-square end-to-end distance, 〈r2〉 o
1/2, given the relationship for in-

trinsic viscosity, [ ], of PS in a  solvent at 35°C as

[ ] = 8 ×10−4
M

0.5

where [ ] is in units of dL g-1  and the Flory constant (Φ) is 2.1 × 10 21  dL g-1  cm-3 .

(c ) The characteristic ratio, CN, for PS.

3 . 7 The use of universal calibration curves in GPC is based upon the principle that the product
[ ] M, the hydrodynamic volume, is the same for all polymers at equal elution volumes. If the
retention volume for a monodisperse polystyrene (PS) sample of 50,000 molecular weight is 100
mL in toluene at 25°C, what is the molecular weight of a fraction of poly(methyl methacrylate)
(PMMA) at the same elution volume in toluene at 25°C? The Mark–Houwink parameters, K and a,
for PS are given as 7.54 × 10 -3  mL g -1  and 0.783, respectively; the corresponding values for
PMMA are 8.12 × 10 -3  mL g-1  and 0.71.

3 . 8 Using the values of molar attraction constants given by van Krevelen in Table 3-2, calcu-
late the solubility parameters, (MPa)1/2 at 25°C, for the following polymers:

(a) Polyisobutylene (  = 0.924 g cm-3)

(b ) Polystyrene (  = 1.04 g cm-3)

(c ) Polycarbonate (  = 1.20 g cm-3)

3 . 9 Show that the most probable end-to-end distance of a freely jointed polymer chain is given

as 
  2nl2 3( )1 2

.

3 . 1 0 The (reduced or excess) Rayleigh ratio ( R ) of cellulose acetate (CA) in dioxane was deter-
mined as a function of concentration by low-angle laser light-scattering measurements. Data are
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given in the following table. If the refractive index (no ) of dioxane is 1.4199, the refractive-index
increment (dn dc ) for CA in dioxane is 6.297 × 10 -2  cm3 g-1 , and the wavelength ( ) of the light
is 6328 Å, calculate the weight-average molecular weight of CA and the second virial coefficient
( A2 ).

c   1 0 3

(g mL -1)
R ( )   1 0 5

(cm -1)

0.5034 0.239

1.0068 0.440

1.5102 0.606

2.0136 0.790

2.517 0.902

3 . 1 1 Using UNIFAC-FV, estimate the activity of toluene in a 50 wt % solution of polydimeth-
ylsiloxane in toluene at 298 K.

3 . 1 2 Chromosorb P was coated with a dilute solution of polystyrene in chloroform, thoroughly
dried, and packed into a GC column. The column was then heated in a GC oven and maintained at
different temperatures over a range from 200°C to 270°C under a helium purge. At each tempera-
ture, a small amount of toluene was injected and the time for the solute to elute the column was
recorded and compared to that for air. From this information, the specific retention volume was
calculated as given in the table below. Using this data, plot the apparent Flory interaction parame-
ter as a function of temperature.

T

°C

V g

mL/g-coat ing

200 6.55

210 5.58

220 4.66

230 4.07

240

250

260

270

3.38

2.87

2.88

2.38

3 . 1 3 Derive eq. 3.69 and develop an expression that can be used to obtain the exchange interac-
tion parameter, X12 , appearing in the Flory equation of state from inverse gas chromatography

measurements.


