
Problem Statement
Bob Metcalfe, then at Xerox PARC, invented Ethernet in  
1973, over forty years ago. One of Ethernet’s key strengths 
leading to its longevity has been its capacity to evolve. 
Metcalfe could not have possibly envisioned all the  
developments in computing that happened over the  
subsequent four decades. But he, and all the other early 
Ethernet pioneers, including Digital Equipment, Intel, and 
Xerox (the “DIX” group that developed the first specification 
submitted to the IEEE), laid a foundation solid enough and 
flexible enough to support Ethernet’s dramatic evolution.

The problem that Metcalfe was trying to solve was how to 
interconnect multiple Xerox Alto “individual computers” 
(pre-PCs) and also connect them to shared Xerox laser 
printers. It was the latter requirement that drove Metcalfe  
to a 10 Mbps solution, staggeringly more bandwidth than 
anyone could envision using in 1973 for networking  
computers, but this headroom for the future was yet another 
factor making Ethernet solutions attractive. Key here is  
that Metcalfe’s original problem was getting data packets 
between computers and to laser printers. Once the packets 
arrive at the Ethernet endpoint, Ethernet is done. 

For about three decades this packet delivery model worked 
just great (as other aspects of Ethernet evolved). This is 
actually pretty remarkable, given the pace of technological 
change. But this model became challenged in the first 
decade of the 21st century with the mainstream deployment 
of multi-core processors from Intel and others. Now you 

have a problem. The Ethernet packet arrives at the Ethernet 
controller endpoint. Ethernet is done. But which core should 
receive the packet? In a nutshell, that is the problem that 
Intel® Ethernet Flow Director was designed to solve.

The details of how system software (operating systems or 
hypervisors) deal with this problem will vary, but typically an 
incoming block of data is DMA’d into host memory (actually, 
the data goes first to the top-level processor cache with 
Intel® Direct Data I/O (DDIO)-architected CPUs like the  
Intel® Xeon® processor families E5 and E7) by the Ethernet 
controller. When finished, the Ethernet controller, potentially 
after some delay for interrupt moderation, then interrupts a 
processor to say, “I just DMA’d a block of data into your host 
memory.” In response, system software will then pick a 
single core to service the I/O interrupt, perform protocol 
processing, e.g., TCP/IP. However, in general, the core system 
software selects will not be the core where the consuming 
application resides. When the core servicing the Ethernet 
controller’s interrupt has completed its tasks, it interrupts 
the core where the consuming application resides. That core, 
in turn, will then restart or continue the protocol processing 
(depending on system software) and deliver the data to the 
consuming app. Obviously, this is not a very efficient data 
transfer processor especially because an extra interrupt is 
required to get the incoming data to the application that 
wants it and potentially some duplication in protocol 
processing. But the problem is worse than that. Obviously, 
with any significant LAN traffic at all, the receiving core will 
get overloaded, choking incoming LAN traffic. 

Introduction to Intel®  
Ethernet Flow Director and 
Memcached Performance

White Paper 
Intel® Ethernet Flow Director  
and Memcached Performance



2

Intel® Ethernet Flow Director  
and Memcached Performance

System software can change the destination corresponding 
to, say, index 4 to queue 13 if the core associated with queue 
15 is overloaded. Note that only system software has access 
to the RSS Indirection Table. It is not user programmable. 

The RSS Intelligent Offload will place the first packet for each 
distinct hash/index into its assigned RSS queue as directed 
by the Redirection Table. Subsequent packets received with 
the same hash (and therefore, index) will be directed by this 
process to the same core, thereby assuring packets remain 
ordered. (If the packets from the same flow were spread 
across multiple cores, there would be no assurance that 
packet sequence order would be preserved.) The index is 
effectively a “filter” of network traffic into queues of data 
headed for the same destination. The index may not be 
unique for all the incoming flow, i.e., there may be collisions 
with multiple distinct flows going to the same RSS queue 
which system software sorts out later. 

Receive Side Scaling:  
A Good Solution for Core Overload
Receive Side Scaling (RSS) is a technology defined by Microsoft 
and first implemented in their NDIS 6.0. It is now broadly 
supported in all major system software including Linux* and 
VMware’s ESX. Intel has implemented RSS as an Intelligent 
Offload hardware acceleration for Intel® Ethernet Controllers 
and Converged Network Adapters. RSS doesn’t solve the 
problem of getting incoming packets to the right consuming 
core, but at least RSS addresses the problem of a single core 
becoming the bottleneck to network performance. 

The RSS Intelligent Offload in an Intel controller inspects 
every packet and computes a 32-bit hash using the Toeplitz 
algorithm. The information going into the hash calculation 
comes from the packet’s header fields, including source and 
destination IP addresses, and source and destination TCP 
ports (96 bits for IPv4) for Windows*. For Linux, the 8-bit 
Ethertype is also included as input to the hash calculation. 
Some number of the Least Significant Bits (LSBs) of the 
computed hash becomes an index. (For Windows this must 
be at least 7 bits.) An index lookup in a redirection table will 
specify a queue for that index. Intel® Ethernet Converged 
Network Adapters X520 and X540 support a 128-entry RSS 
Indirection Table per port. A single MSI-X interrupt will be 
associated with each RSS queue that specifies a distinct  
core as the intended recipient of the data in the queue. 
Actually, at this point Windows only supports 16 queues.  
The reason the Indirection Table has so many entries, more 
than supported queues, is that it allows system software to 
actively load-balance between cores.

An example may help clarify how an Indirection Table  
larger than the number of available queues provide system 
software with the granularity to load-balance incoming traffic 
should a particular core become overloaded. In this example, 
indices 0 and 4 both go to queue 15.

CPU UTILIZATION PER CORE

CORE 1 CORE 2 CORE 3 CORE 4

CPU UTILIZATION PER CORE

CORE 1 CORE 2 CORE 3 CORE 4

WITHOUT RSS WITH RSSVM VM VM VM

VTEP / VIRTUAL SWITCH

XEON E5-2600

CACHE

CORE 1 CORE 2

CORE 3 CORE 4

CORE 5 CORE 6

CORE 7 CORE 8

VM VM VM VM

VTEP / VIRTUAL SWITCH

XEON E5-2600

CACHE

CORE 1 CORE 2

CORE 3 CORE 4

CORE 5 CORE 6

CORE 7 CORE 8

INDEX DESTINATION 
QUEUE

0 15

1 2

2 8

3 11

4 15

5 7

6 5

… …

127 2

LSBs of hash

Packet goes 
to queue 7

RSS DIRECTION TABLE



3

Intel® Ethernet Flow Director 
and Memcached Performance

The important point here is that the RSS Redirection Table 
will spread the various queues with distinct hashes across the 
available cores, solving the problem of overloading a single 
core with incoming traffic.  

It is possible to accomplish something functionally equivalent 
to Intel’s RSS hardware-based Intelligent Offload in software 
in Linux with Receive Packet Steering (RPS) for controllers 
that lack hardware-based RSS support. As you would expect 
RPS does not deliver the performance of RSS because the 
actions performed by RSS have to be managed in software 
executing from code running in, most likely, yet another core. 
For this reason, all modern Ethernet controllers support RSS.

So RSS solves the problem of the overloaded core receiving 
all network traffic. Improvement in peak network bandwidth 
can be dramatic by enabling RSS. Where RSS falls short,  
however, is that RSS has no way of knowing anything about 
application locality. In general, RSS will send the data to the 
wrong core. RSS may have consistently sent all the data that 
an application in core 7 wants—to core 3. System software 
will have to interrupt core 7 to inform it that it needs to claim 
its data.

Intel® Ethernet Flow Director to the Rescue
Intel® Ethernet Flow Director is an Intelligent Offload intended 
to help solve the problem of getting incoming packets 
directly to the core with the application that will consume 
them. Flow Director has two fundamental operating modes 
using the same hardware: Externally Programmed (EP) and  
an automated Application Targeting Routing (ATR). EP mode 
might be preferred when a system administrator knows in 
advance what the primary data flows are going to be for the 
network. ATR, the default mode, implements an algorithm 
that samples transmit traffic and learns to send receive traffic 
with the corresponding header information (source and 
destination reversed) to the core where the transmitted data 

came from. ATR is the best solution when flows are  
unpredictable and the key action the user wants from Flow 
Director is simply pinning the flow to a consistent core.

Besides adding intelligence, Flow Director differs from RSS in 
several key respects starting with the nature of their tables. 
The values in an RSS indirection table are queue numbers. 
The values in a Flow Direct Perfect-Filter table are actions, 
only one of which is routing to a specific queue. Though  
that is the most frequently used action, there are others.  
For example “drop packet” could be useful in managing a 
denial of service attack. Incrementing the count in one of  
512 packet counters can be useful in Externally Programmed 
mode. Other examples include tuning interrupt moderation 
for either low latency or high bandwidth and copying a 
software-defined value to a receive descriptor, also both 
potentially useful in Externally Programmed mode.

The second key difference stems from what each technology 
is trying to accomplish. RSS is trying to spread incoming 
packets across cores while directing packets from common 
flows to the same core. Unlike RSS, Intel Ethernet Flow 
Director is trying to establish a unique association between 
flows and the core with the consuming application. Indexing 
solely by a hash won’t do that. Distinct flows must be  
uniquely characterized with a high probability which cannot 
be accomplished by a hash alone. And the Intel® Ethernet 
Flow Director Perfect-Match Filter Table has to be large 
enough to capture the unique flows a given controller would 
typically see. For that reason, Intel Ethernet Flow Director’s 
Perfect-Match Filter Table has 8k entries.

The basic idea is to intelligently select fields from the  
incoming packets and, in ATR mode, fields from outgoing 
packets that are likely to uniquely identify that packet’s flow. 
The fields selected will depend on the packet type, e.g., 
different fields will be extracted from TCP/IP and UDP 
packets. A “Perfect-Match” value will be distilled from each 
packet: 12-bytes in the current generation of Intel Ethernet 
controllers, going to 48 bytes in future Intel Ethernet  
controllers. To populate the table in ATR mode, each sampled 
outgoing packet’s Perfect-Match value will be hashed to 
create an index into the Filter Table. The full Perfect-Match 
value and identifier to the sending core will be placed in the 
Filter Table.

The hash from incoming packets will index into the  
Perfect-Match Filter Table. However, a hit to a populated 
entry does not guarantee uniqueness. Each incoming packet’s 
Perfect-Match value will be compared to the Perfect-Match 
value pointed to by its hash into the Filter Table. Only if the  
Perfect-Match values are an exact match will the action 
specified in the Filter Table be taken. If there is an exact 
match, it is extremely likely that the incoming packet’s 
consuming application resides in the core that corresponds 

CORE 1

CORE

SINGLE CORE THEN CAME MULTICORE RSS
LOAD
BALANCING

WRONG PLACE
CORE 1 CORE 1 CORE 1



4

Intel® Ethernet Flow Director  
and Memcached Performance

to the routing (or other) action specified in the Perfect-Match 
Filter Table. If the match fails, packet processing will revert to 
RSS mode. (Actually, Intel Ethernet Flow Director is a bit more 
sophisticated than this and can test against multiple Perfect-
Match values corresponding to a common hash, but how this 
works is beyond the scope of this paper.) The only difference 
for Externally Programmable mode is that the user or 
software (e.g., OpenFlow) takes control of populating the 
Filter Table. 

Just as Linux offers a software-based version of RSS (RPS), it 
also offers a software-based version of Application Targeting 
Routing-mode Flow Director called Receive Flow Steering 
(RFS). Though functionally equivalent, RFS cannot offer the 
performance of Intel Flow Director because it has to do its 
dispatching and steering from a core, and likely not in either 
the receiving core or in the core with the consuming app. 
ATR-mode Flow Director can be thought of as an Intelligent 
Offload hardware acceleration of RFS.

Where does Intel Ethernet Flow Director deliver the most 
value? Intel Ethernet Flow Director is not currently supported 
by VMware or by Microsoft. Intel Ethernet Flow Director  
delivers the most benefit in “bare metal” Linux applications 
where small packet performance is important and network 
traffic is heavy.

Memcached: An Application that Demonstrates the 
Power of Intel Ethernet Flow Director

Memcached is an open-source technology that uses the 
pooled DRAM from a server cluster as a storage cache, 
dramatically reducing latency. Specifically, “Memcached is an 
in-memory key-value store for small chunks of arbitrary data 
(strings, objects) from results of database calls, API calls, or 

page rendering.1” Memcached is used by many cloud and 
web-services companies, including Facebook, Reddit, Twitter, 
and YouTube. The important point here is that Memcached is 
an excellent stress test that shows what peak loads a network 
can handle. Memcached is effectively “networked DRAM.” 
Memcached performance results are valuable even if you are 
not running Memcached because they illustrate what Flow 
Director can do to increase network peak performance.

The following graph shows how Intel Ethernet Flow Director 
delivers superior Memcached throughput and latency. Tested 
are the Intel Ethernet CNA X520 (“NNT”), the Mellanox 
ConnectX-3* (MLNX), and the Mellanox ConnectX-3 with RPS 
and RFS enabled.

Memcached is requesting packets at increasing rates. What 
you see is that the Intel® X520 can respond handily to up to 
5M requests per second. Only when the request rate gets up 
around 4 Mps does the latency start increasing. In contrast, 
the ConnectX-3 never gets above 3M responses per second, 
and its latency “goes up a wall” before it gets to 1.5M  
requests per second. RPS and RFS help the ConnectX-3, but 
it still cannot get above 4M responses per second, and it hits 
its latency wall before it gets to 1.5M requests per second. 
Even with the help of RPS and RFS, the Mellanox ConnectX-3 
does not even come close to what Intel Ethernet can do with 
Flow Director.

In sum, Intel Ethernet Flow Director is a technology that 
successfully accelerates getting incoming packets to their 
consuming application. In applications that stress network 
performance, like Memcached, Intel Ethernet Flow Director 
offers a significant performance enhancement to an Ethernet 
network in terms of increased bandwidth and lower latency. 
Concomitant benefits include reduced CPU utilization and 
power consumption.

Intel Ethernet Flow Director is supported in the recently 
launched Intel® Ethernet Controller XL710 family that 
supports up to two ports of 40GbE, in addition to the Intel 
Ethernet Converged Network Adapters X520 and X540.

Xeon®
Processor

Intel® Ethernet

LOWER LATENCY � HIGHER BANDWIDTH
LOWER CPU UTILIZATION

BETTER TOGETHER



5

Intel® Ethernet Flow Director 
and Memcached Performance

8,000,000

7,000,000

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

0

1000

900

800

700

600

500

400

300

200

100

0
 500,000 1,000,000 1,500,000 2,000,000 2,500,000 31,000,000 4,000,000 5,000,000 6,000,000

RECEIVED PACKETS/SEC AND LATENCY AS A FUNCTION OF REQUEST RATE

RECEIVED PACKETS/SEC REQUESTED

AV
ER

A
G

E 
LA

TE
N

C
Y

 (U
SE

C
)

M
LN

X
 L

at
en

cy
 W

al
l

M
LN

X
-R

P
S-

R
FS

La
te

nc
y 

W
al

l

N
N

T 
La

te
nc

y 
W

al
l

PA
C

K
ET

S/
SE

C

NNT MLNX MLNX-RPS-RFS

NNT MLNX MLNX-RPS-RFS

Software and workloads used in performance tests may have been optimized 
for performance only on Intel  microprocessors. Performance tests, such as 
SYSmark  and MobileMark, are measured using specific computer systems, 
components, software, operations and functions.  Any change to any of those 
factors may cause the results  to vary. You should consult other information 
and performance tests to assist you in fully evaluating your contemplated  
purchases,  Intel does not control or audit the design or implementation of 
third party benchmark data or Web sites referenced in this document. Intel  
encourages all of its customers to visit the referenced Web sites or others 
where similar performance benchmark data are reported and confirm whether 
the referenced benchmark data are accurate and reflect performance of 
systems available for purchase. including the performance of that product 
when combined with other products.

TEST CONFIGURATION

Memcached v1.4.15, 32-thr
10 Clients, Mcblaster
Record Size = 64 Bytes (TCP)
Number of keys = 500,000
Threads per client (-t) = 12
Connections per thread (-c) = 1
Nagles Disabled
SUT: Rose City
2 Intel® Xeon® processors (JKT, E5-2687W, 3.1 GHz)
16 GB, 8-ch, DDR3, 1333 MHz
Patsburg C0
BIOS v46
Intel® x520 Adapter, ixgbe 3.18.7
Mellanox CX3 Adapter, mlx4_en 2.1.8
RHEL 6.3 x64, kernel v3.6.0
Clients
SuperMicro* 6016TT-TF (Thurley twin)
2 Intel® Xeon® processors (X5680, 3.33 GHz)
6 GB, DDR3, 1333 MHz
Intel® x520 Adapter
RHEL 6.3 x64, kernel v3.12.0
Network Configuration
Nexus 5020
Clients* connected @ 10G



Intel® Ethernet Flow Director  
and Memcached Performance

1.		memcached.org.
		 Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel Logo, and Intel Xeon are trademarks of Intel Corporation in the U.S.  

and other countries. *Other names and brands may be claimed as the property of others.     1014/MR/HBD/PDF    331109-001US

For more information visit: www.intel.com/go/Ethernet

http://www.intel.com/go/Ethernet

