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Abstract 

This article summarizes the presently avail- 
able general theory of rigidity of 3- 
dimensional structures. We explain how a 
structure, for instance a bar and joint struc- 
ture, can fail to be rigid for two quite different 
types of reasons. First, it may not have enough 
bars connecting certain sets of nodes. That is, 
it may faij for topologlcrl reasons. Secondly,. 
although it may “count” correctly, it may still 
fail to be rigid if it is set up with some special 
relative positions of its nodes and bars; This 
second type of failure is a question not of 
topology but of projectbe geometry. 

What distinguishes structural engineering from 
mechanical engineering is the special attention paid 
to the question of rigidity.* Whereas mechanisms* 
(linkages) are useful primarily by virtue of the rela- 
tive motion of their parts, buildings must be desi- 
gned to stand rigid, and to continue to stand when 
subjected to a variety of external forces such -as 
gravity, loading and wind pressure. 

In this article we sketch the presently available 
general theory of rigidity for three types of structu- 
res: (I) bar and joint structures*, typified by trusses in 
wood, or the bolted ironwork introduced in the last 
century, (2) strut and cable structures*, such as the 
tensegrity structures popularized by Buckminster 
Fuller in the fifties, which maximize reliance on the 
available tensile strength of wire cables, and (3) 
hinged panel structures*, explored recently by Ja- 
nos Baracs and his students, which expand the 
potential for construction with prefabricated con- 
crete or moulded plastic panels. With regard to each 
of these types of structures, we shall point to a 
number of challenging unsolved problems. 

The rigidity we speak of is such that rigid structures 
will resist even Inflnltedmal motions. To be non-rigid 
in this sense, a structure need not be a true mecha- 
nism, with an easily observable motion. For mathe- 
maticians we can make the distinction clear by 

saying we will be using linear algebra and projective 
geometry rather than differential geometry. 

From the standpoint of geometry, we are looking at 
structures whose component parts are line seg- 
ments joined to one another at nodes, or else 
polygonal pieces of planes in space, joined to one 
another along edges. These joints are articulated , 
so the bars at a node are at least locally free to 
change in angle relative to one another, and the 
panels are merely hinged, rather than welded, to one 
another. In Figure 1 we show (related) structures, 
each just rigid, of the three types. 

Bar and Joint Structures 

Rigidity theory for bar and joint structures in the 
plane was already well advanced in the latter half of 
the nineteenth century, thanks to the efforts of the 
English physicist James Clerk Maxwell and the 
Italian geometer Luigi Cremona (Maxwell 1864 and 
Cremona 1890). It was their theoretical advances 
which led to the development of graphical statics* as 
a practical discipline, at the hands of the German 
engineers Culmann, Henneberg and their followers 
(Culmann 1875 and Henneberg 1886). But during 
the last fifty years, the rigidity theory for bar and joint 
structures has been mucweglected, and the best 
work of the last century has, for the most part, been 
forgotten. It is one of the tasks of our research group 26 



to correct, to extend (particularly from structures in 
the plane to structures in space), and to apply in new 
ways geometrical methods initially developed under 
this heading of graphical statics. 

Each bar and joint structure is given topologically as 
a graph consisting of nodea, certain pairs of which 
are joined by bars. Each subset of the set of bars of a 
given structure determines a au-u- on the 
same set of nodes. We will discuss rigidity of 
structures primarily at the level of projective geome- 
try, where the nodes of a structure are assigned 
positions in projective space (usually in a plane, or in 
3-space) and each bar is represented as a line 
segment connecting its two nodes. (The degenerate 
case where the two nodes of a bar are in the same 
position we handle by assigning a direction to the 
bar at that point.) To say we are working in projective 
space means on one hand that we are making no 
use of angles or distance measurement or of the 
concept of being parallel. It also means that we have 
available all the points and lines on a “plane at 
infinity” which are missing from affine 3=space, so 
any line not lying entirely in a given plane must meet 
the plane in a single point. Two distinct coplanar 
lines always meet in a single point, and two distinct 
planes always meet in a line. 

The following introductory material we present for 
structures in three-dimensional space, and will make 
the obvious restriction to structures in the plane 
when it becomes necessary to do so. If a bar is 
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Note to Architects and Engineers 

This article is written by a mathematician, and 
is intended primarily for readers with a mathe- 
matical background. As such, an effort has 
been made to give mathematical definitions of 
terms commonly used in statics, to place the 
entire discussion in a context familiar to rea- 
ders with some experience in linear algebra 
and projective geometry, and to lay the 
groundwork for future research. 

As a result, structures are treated here in a way 
which may seem unduly abstract, and unrela- 
ted to any direct and practical structural appli- 
cation. Even the examples given are those 
dictated by the theoretical development rather 
than those arising in architectural or enginee- 
ring practice. 

Figure 1. Just-rigid 
-4 

structures, of types. 

Part of this difficulty is in the nature of the 
subject, and must be patiently studied by 
practitioners and theoreticians alike. For ins- 
tance, there is a dependence among 22 speci- 
fied bars in the structure illustrated below, a 
dependence which causes the octahedral- 
tetrahedral truss to be non-rigid. This type of 
phenomenon must be understood in itself, and 
cannot be eliminated by simple algorithms and 
practical rules of thumb. (This example will be 
the subject of a short article in Structural 
Topology (2). 

The other half of the difficulty in exposition can 
and should be corrected by the publication of 
further articles intended specifically for those 
with architectural or engineering training, pe- 
rhaps with less mathematical background. In 
the second issue of the Bulletin, we will include 
a general exposition on structural rigidity, 
summing up the state of the art for those who 
wish to apply these methods in practice. The 
discussion and examples will be supported by 
intuitive and risual evidence, rather than by 
higher mathematics. 

Such “translations” will be a regular feature of 
the Bulletin, and will occur in both directions. 
Theoretical papers will be “translated” to draw 
out their intuitive content and practical conse- 
quences. Papers describing practical applica- 
tions will be “translated” into scientifically 
precise language, to reveal some camouflaged 
but interesting and unsolved mathematical 
problem. 

Although we may take occasion, as we have 
here, to point out that a certain article is 
intended for readers with some specific trai- 
ning, we do not intend to discourage readers 
from attempting to digest articles posed in 
language and expressing ideas from fields 
other than their own. Also, though it is unavoi- 
dable at this stage that we write some articles 
differently for different audiences, it is in the 
nature of this publication project that “transla- 
tions” will be less necessary as we go along. 



subjected to forces applied at its two ends, it will 
tend to move unless the two forces are equal in 
magnitude, opposite in direction, and directed down 
the line of the bar. In this single case the bar Is in 
equlllbrium under the apblied load; it is either in 
tension or in compression. Using this idea as a 
starting point, we apply one of two theorems from 
elementary linear algebra, to arrive at a very simple 
‘explanation of the basic concepts of statics and 
mechanics of structures. 

With any structure S having V nodes and E bars in 3- 
space, we associate a matrix M = M(S) called the 
coordfnrtlzlng matrix + of the structure, which has E 
rows and a total of 3V columns, arranged in V groups 
of 3 columns each. The entries in this matrix consist 
of six possibly non-zero entries in each row: if the 
row is that corresponding to a bar between nodes in 
positions a and b, then in the three columns for the 
node a we have the components of the vector a-b, 
and in the columns for the node b, the vector b-a. 
Multiplication by this matrix H is a linear transforma- 
tion l M from RE to Rsv , and will convert an 
assignment s of scalars to the bars into an assign- 
ment sM of 3-vectors to the nodes. (A different 
matrix in which vectors of unit length replace the 
vectors a-b, gives a more useful interpretation of 
bars of length zero, but we shall not get into that 
here.) 

If we think of the scalars s as assigning a compres- 
sion (if positive) or a tension (if negative) to each bar, 
measured in force per unit length, then the result sM 
of multiplication by M is the resultant force on each 
node due to the combined effect on that node from 
the tension and compression in the bars incident 
with that node. Flgure 2 shows one such resolution 
on a structure which is a skew quadrilateral in space. 
For any scalar assignment s to the bars, the negative 
of the resultant -sM is an oquilibrlum system of 
forces on the nodes, a system of forces which will 
have no tendency to move the structure in any way. If 
the forces -sM are applied externally to the nodes, 
the tension-compression assignment s is one possi- 
ble static response of the structure to the applied 
load. Any two distinct possible static responses s, t 
to the same external load -sM = -tM differ by a scalar 
assignment s-t such that (s-t)M = 0, a scalar assign- 
ment which produces no resultant force on any 
vertex. It is thus an internal tension compression 

equilibrium, which we call a m* in the structure. 
(In engineering terminology, stress means force per 
unit cross-sectional area in a bar, so the scalar we 
assign to a bar must be multiplied by the length of 
the bar and divided by the cross-sectional area, to 
give the conventional measure of “stress”.) 

Let r(S) denote the rank of the matrix M, and call this 
the rank * of the structure. Let n(S), the nullity * of 
S, denote the dimension of the kernel of 9 M as a 
linear transformation from RE to R3V . Then r(S) = 
n(S)= E, where E is the number of bars, r= r(S) is the 
dimension of the space of resolvable external (e- 
quilibrium) loads, and n = n(S) is the dimension of 
the space of stresses (internal equilibria). 

For example, the skew polygonal structure in Figun 
2 cannot normally be stressed. In order for\ a non- 
zero tension-compression assignment to resolve to 
zero at a node, the two bars at that node must be 
collinear. If the stress is non-zero in one bar, it must 
be non-zero in the two adjacent bars. Thus the 
structure normally’has rank 4, nullity 0, and has rank 
3, nullity 1 if and only if the structure lies entirely 
along a straight line in space. This is the-simplest 
example of the phenomenon which is the main 
object of our study: under certain pr@ective geome- 
trlc conditlona, a structure will have a lower rank 
than would be expected from purely topological 
consideration. 

An external equilibrium load, in general, is a system 
of vectors acting along lines in space, whose vector 
sum is zero and whose total moment is zero about 
any axis. An arrow from a point b to a point a can be 
viewed as a force acting at a point b, in the specified 
direction and with the magnitude la-bb( . We coor- 
dinatize each such force f = ab as a 6- vector 

U bJ6) = (a,- bl, a2-b2, a-b, aA-a3b2, 
a&-al b3, alb-ah) 

where (f, ,f2,f3) is the free-vector difference a-b, and 
(f4,fSrfb) is the free-vector cross product axb, 
whose components are the moments of the force 
about the three coordinate axes. Thus coordinatlzed, 
the force is also known as a Ii--bound v-of, 
because the 6 coordinates are the same for any 
other arrow of the same length and orientation along 
its own line in space, but are different for all arrows 
on other lines. The six coordinates of a force always 
satisfy the quadratic condition 

f,f4 + f2f5 + f3fb = 0 

but this relation does net hold for the coordinates of 
a sum of two forces unless the forces act along 
coplanar (that is, intersecting) lines. The sum of two 
coplanar forces is the free-vector sum of those 
forces, acting along a line through the intersection 
point of their lines of action. Of course this intersec- 
tion may be at infinity, in which case the sum is either 
another parallel and coplanar force, or is a couple + 
which when applied to a body will tend to rotate it 
about an axis perpendicular to the plane of the 
couple. 

a b c d 

Figure 2. A spatial structure, 
compressions In the bars. 

Its coordlnatlzlng matrix, and 

ab a-b b-a 0 0 
bc 0 b-c c-b 0 
cd 0 0 c-d d-c 
ad a-d 0 0 d-a 

equlllbrlum systkm of forces equalized by given tenslons and 28 



Two non-coplanar forces, jointly acting on a body, 
will tend both to translate and to turn the body. Such 
sums of forces are known as wnnch@8 * . They are 
all coordinatized by 6-vectors, but only If they are 
forces do their coordinates satisfy the relation f,f4 + 
f,f,t+ f3fb = 9 The idea of coordinatizing forces and 
their sums in this way is due to Plucker and Grass- 
mann, and is part of exterior algebra (Plucker 1865). 
The line-bound vectors are the exten8ora of step 2 in 
this algebra. To say that a sum of extensors is zero is 

,precisely to say their free vector sum is zero and 
their net moment is zero about some (or any) point 
as centre. 

For a (non-collinear) structure with V 
nodes, there is a 3Vdlmensional space 
of possible assignments of forces to its nodes. 
Addition of bound vectors is a linear transformation 
of this space Rjv into the space R6. The kernel Eq of 
this “addition” transformation A is the 3V-6 dimen- 
sional space of external equilibria + , those assign- 
ments which sum to zero. Since a simple tension or 
compression in any one bar of the structure produ- 
ces an equilibrium configuration of forces on the 
structure as a whole (being two equal and opposite 
forces acting on the same line), the same will be true 
(by linearity) of any assignment of tensions and 
compressions to the bars. Thus the image of the 
linear transformation l M, right multiplication by the 
matrix M, is a subspace of Eq. The rank of the 
structure is the dimension of the range of l M, so its 
rank is not greater than 3V-6, where V is the number 
of nodes. If r = 3V-6, the structure will resolve any 
external equilibrium load, and we say the structure is 
rlgld * . 

Mechanics of Structures 

Rigidity of structures is a question not only of statics 
but of mechanics. Whereas right-multiplication by 
the coordinatizing matrix M of a structure shows how 
tensions and compressions in the bars resolve into 
forces on the nodes, left-multiplication by M shows 
how any movement of the nodes produces changes 
in the lengths of the bars: if the nodes a and b move 

P with velocities va and vb respectively, a bar from a to 
b will be forced to undergo a change of length at a 
rate equal to 

&a-Vb) l (a-b) = va (a-b) + vb (b-a) 
is the ab component of the product Mv. So the image 
of this linear transformation MO from R3V back to RE 
is isomorphic to the space of strains producible in 
the structure by moving its nodes. The kernel of the 
linear transformation M l , is the space of those 
velocity assignments to the nodes which produce no 
strain in any bar of the structure, to a first order 
approximation. We call these the (infinitesimal) mo- 
tions* of the structure. (Figure 3) 

Since a matrix and its transpose have the same rank, 
the image of the linear transformation M- Is also of 
dimension no greater than 3V-6, and its kernel must 
have dimension at least 6. In fact, the kernel always 
contains a specific 6-dimensioal subspace, the 
space of lsometrle8 * or rigid motlons Tl of the (non- 
collinear) structure, those motions which produce no 
change of distance between any pair of nodes, 
whether or not they are connected by a bar. An 
isometry of 3-space is easily described as a rotation 
about an axis in space, combined with a translation 
along that axis, that is a screw motion * of space, or 
else a pure rotation or pure translation. In general 
the motion space of a structure has dimension 3V-r 
3 6, so r G 3V-6. The quotient space of motions 
modulo isometries is the space of Internal motiona * 
of the structure. The space of internal motions is 
trivial if and only of the structure is rigid. 

The geometry of wre riches and screws in 3-space 
was extensively stud ied at .about the tur n of the 

v(b) 

century. See treatises: (Ball 1900), (Study 
(Jessop 1903) and (Reye 1907). See also 
1939), of which the first German edition was 
for a nice introduction to the subject. 

As is true whenever a linear transformation is 

gw, 
Klein 
1908, 

epre- 
sented by matrix multiplication, the subspace of R3” 
consisting of vectors orthogonal to all rows of M Is 
both the kernel of Mm and the orthogonal comple- 
ment of the range of .M. Thus the space of motions 
of a structure is the orthogonal complement of the 
space of resolvable external equilibria. Similarly, the 
space of stresses in a structure is a structure Is the 
orthogonal complement of the space of producible 
strains, both spaces being the space of vectors 
orthogonal to all columns of M. Any assignment f of 
forces to the nodes of a structure can be uniquely 
expressed as the sum f = m+e where m is a motion of 
the structure and e is a resolvable external load. 
Similarly, any assignment t of tensions and com- 
pressions to the bars of a structure can be uniquely 
expressed as the sum t = stp where s is a stress and 
p is a producible strain. The relation between stress 
and strain is a matter of elastlclty, which we cannot 
work out unless we include additional information 
about the elastic moduli of the bars,,and use Hooke’s 
law. The relation between force and motion Is a 
matter of Inertia (center of gravity and moment of 
inertia, for rigid structures), which we cannot work 
out unless we include additional information about 
the distribution of masses, say concentrated at the 
nodes, and use Newton’s second law. Nevertheless It 
is tempting to conjecture that the orthogonal decom- 

A A  
(v,-vb)’ l (a-b)/la--bl , 

ZY the rate of atraIn in that bar. Notice that Flgure 3. An internal motion of a structure. 



positions given above are in fact those occurring in 
nature, irrespective of elasticity and mass distribu- 
tion. This is accepted as true for forces applied to 
rigid bodies (see for instance (Houston 1948, page 
161). That is we conjecture that even though we do 
not know the specific response of a structure to a 
given applied load, we can predict the portion of the 
load which produces motion (thus kinetic energy). 
Then we expect there is a dual statement, presuma- 
bly about strains, which also makes physical sense. 
We summarize the various relations between subs- 
paces of RE and R3V in Flgure 4. 

structures which are mlnlmrl dependent, which we 
cal I circuits * . Circuits have nullity 1, and are mini- 
mal with that property. They carry a stress which is 
non-zero on every bar, a stress which is unique up to 
a common scalar factor throughout. In Flgun 6 we 
draw a number of circuits, some of which are 
dependent for topological reasons, others for pro- 
jective reasons. Dependent structures are statIcally 
Indetermlnate *I in the sense that there is some 
supportable external load which is in equilibrium 
with respect to more than one internal configuration 
of tension and compression. It is thus dependence of 
structures which makes it impossible to single out a 
specific response to external loading, without intro- 
ducing into the theory the motion of elasticity. 

r-l IRE 
l M 

4-is-i 

T ET quotient 
0 

&, 
- 

P 
nullity E 

Dependence zero ( 

1 - 

zero 

If the rank of a structure is equal to its number of 
bars (r = E), then it may be built up bar by bar, so that 
each successive substructure (each on the full set of 
nodes) will have a strictly smaller space of internal 
motions. Such a structure is Independent * 9 and is 
characterized by the fact that it is as rigid as 
possible, given its number of bars. Examples of 
structures which are independent and rigid in 3- 
space are easily built up node by node, starting from 
a tetrahedron, as in Figure 5. Each successive node 
is attached to three nodes of the previous substruc- 
ture, and is kept out of the plane of those nodes. 

Say we want an independent rigid structure: one 
which is rigid, and minimally so. If such a structure 
has V nodes, it must have exactly 3V-6 bars. Also, no 
proper subset of V’ < V nodes can have more than 
3V’-6 bars joining them, because such a substruc- 
ture would be dependent, and would cause the 
entire structure to be dependent. But for structures 
in 3=space, such a count of the number of bars in 
various substructures is not even a correct topologi- 
cal estimate of rigidity. We must also take hinges into 
account, as the following examples show. The struc- 
tures in Flgure 7 satisfy the above conditions as to 
the number of bars in various substructures, but are 
nevertheless dependent. They have been put toge- 
ther as follows. Take two circuits, such as a complete 
&graph, join them along a bar, then remove that bar 
to form a hinge* l If this process is repeated k times, 

1 I IRE I< Mo 

3 quotient ’ 
fjT-- 

- - motions= kernel 

rank 

If the rank of a structure is less than its number of 
bars, the structure is dependent* l Since we are 
interested in the reasons for a structure to be 
dependent, we shall concentrate our attention on 

r-l zero 1 zero 

stress 
I 
f 

elasticity -9 

I 

force 
I 
I 

++---inert ia 

I 

8 

str-ain - - -____ m&ion 

Figure 4. Summary of relations between subspaces, for statics and 
Infinitesimal mechanics. The diagram shows containment of rubs- 
paces, difference In rank, and the role of orthogonal complemen- 
tary subapacea. 

Figure 5. A sequence of simple structures which are Independent and rigid In space. 
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we have a circuit with 3V-5-k bars, to which k-l bars 
can be added to form a dependent structure with 3V- 
6 bars. The two added bars in the second example of 
Figure 7 are drawn with broken lines, so as to reveal 
the underlying circuit which has 34 = 3V-8 bars on V 

= 14 nodes. 

These examples illustrate some of the known topolo- 
gical reasons a bar and joint structure may be 
dependent: some substructure may have too many 
bars or too many hinges. But a structure may be 
dependent also for purely projective reasons. We 
give a few examples quickly at this point, and shall 
return to each of them in due course, to explain how 
‘we know they are dependent under the specified 

----- 

collinear 

coplanar 

, <  

I  - -  - - - - - - - - - _ - -  - -  

lying in two planes 

n 

coplanar 

Figure 6. Some &cults (minimally dependent structures). 
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projective conditions. As a first example, the skele- 
ton of the octahedron in Flgun 8 is dependent (with 
rank 11, nullity 1, and one internal motion) if and only 
if four alternate faces of the octahedron meet at a 
point in space. (If one set of four planes meet, the 
other set of four will also.) The structure in Figure 9, 
which is the cone over a polyhedral graph, is 
dependent (with rank 17, nullity 1, and one internal 
motion) if and only if the lines L and M through the 
node a lie in a plane which contains the node p, 
where L is the line through a meeting the lines bc 
and de, while M is the line through a meeting both cg 
and ef. The structure in Figure 10 is dependent (with 
rank 17, nullity 1, and four internal motions) if and 
only if two conditions hold: the planes abc, a’b’c’, 
a”b”c” meet in a line, and the planes aa’a”, bb’b”, 

n 

cc’c” meet in a line. Finally, the l-skeleton of the 
cube in Flgure 11 is dependent (with rank 11, nullity 
1, and seven internal motions) in a non-coplanar 
configuration if and only if every one of its eight 
nodes has its three incident bars in a plane. This is 
possible when the nodes lie four each on two distinct 
planes, as shown. 

Plane Structures 

Our research group has come to understand the 
dependencies just described by extrapolating from 
the much better understood situation for bar and 
joint structures in the plane. We summarize below 
what we know about structures in the plane, and our 

n 

Flgure 7. A genprlc &cult with a hlnge, and d 3V-6 structure 
having a substructure with 3 hlnges. Both have one Internal degree 
of freedom. 



various attem pts to extend results 
structures to spatial structures. 

concern ing plane shows generic plane structures which are clrcu its. 
Some of these were constructed by hinging two or 
more copies of the complete graph K4, and the 3- 
connected examples were constructed from Kq by a 
sequence of operations in which a face of the 
polyhedral graph is split by adding an edge from a 
vertex to the mid-point of some edge. Note that 
hinging and vertex-edge face-splitting both preserve 
the correct count of 2V-2 bars on V nodes, for 
topologically determined circuits. 

pendiculars may be joined in pairs to form planes 
perpendicular to the edges of the polyhedron. 
Finally, this entire cone may be intersected with a 
plane Q, to yield a plane structure S’ whose graph is 
the (spherical, or spatial) dual of the l-skeleton of 
the original polyhedron. If the polyhedron Is also 
taken by perpendicular projection into the plane Q, 
each bar of the structure S is perpendicular to the 
corresponding bar of the structure S’. The structures 
S and S’ are called reciprocal fIgurea* l Each 
determines a stress i,n the other, as follows. Since 
the oriented edges around any face of S’ form a set 
of vectors with sum zero, they may be systematically 
rotated (say counter-clockwise) by a right angle and 
may then be used as the tension and compression 
forces of the bars of S. See Flgure 13, which shows 

If a structure on V nodes lies in a plane In 3-space, 
each of its nodes has an allowed motion In a 
direction perpendicular to the plane of the figure, all 
other nodes remaining fixed. These motions of 
single nodes span a V-dimensional space, a 3- 
dimensional subspace of which consists of lsome- 
tries. Thus the minimum dimension of the motion 
space of a plane structure with V nodes in 3-space is 
(V-3) + 6 = V+3, and the maximum rank of a plane 
structure with V nodes is 3V - (V+3)= 2V-3. If such a 
plane structure has rank 2V-3, then it has no internal 
motions in its own plane, and is thus rigM in the 
plane. Simple plane-rigid structures can be built up 
node by node, starting from a triangle, if we support 
each new node in succession by 2 bars to nodes In 
the so-far-constructed plane rigid structure, taking 
care only to place each new node off the straight line 
of the two nodes to which it is to be-linked. Any such 
simple structure has 2V-3 bars, is independent and 
rigid. 

The projectlve reasons for dependence in plane 
structures are also known, and to our knowledge 
were first available in the work of James Clerk 
Maxwell. Given a plane structure whose graph is 
three-connected and planar, it is at least topologl- 
tally (by Steinitz’ theorem) the projection of a spheri- 
cal polyhedron. (By a sphericrl poIyhodron we mean 
a polyhedron whose topology is that of the sphere. 
Steinitz states further that the polyhedron can be 
taken as convex, but that is not what we wish to 
emphasize at this point.) 

What Maxwell proved is that if a plane structure Is 
exactly (projectively) the projection of a spherical 
polyhedron with faces flat in 3-space, it Is depen- 
dent. Members of our research group have recently 
proven the converse. Maxwell’s idea was as follows. 
Given a spherical polyhedron in space whose pro- 
jection is a plane structure S, choose an arbitrary 
centre c for the construction, and erect a line 
perpendicular to each face, through c. These per- 

The only topological reason for a plane structure to 
be dependent is that for some subset of V’ L V 
nodes, the substructure on that set of nodes has 
more than 2V’-3 bars. See (Laman 1970) and (Asl- 
mov 1978). So the mechanical properties of ~WW- 
ric* plane structures (plane structures in general 
position) are completely determined by the count of 
the number of bars on each set of nodes. Figure 12 

Figure 10. A dependent spatial structure with a 4-polyfoplal graph. 
The nodes may occur anywhere along the lines of the accompa- 
nying construction, the meetlng of two trlples of collinear planes. 
Thus the dependent structure need not be actually the proJectIon 
of a 4-polytope. 

a 
Figure 8. A dependent octahedron. 
any proJectIon of the figure. 

The six derived poln!s occur along the Intersection of two planes In space, so they are collinear In 



pairs of reciprocal figures, some drawn parallel 
rather than perpendicular, all of which appeared In 
Maxwell’s original papers, (Maxwell 1864) and (Max- 
well 1870). Any such pair of reciprocal figures In the 
plane are obtainable by simultaneous projection of a 
pair of polyhedra which are images of one another 
under a polarity* of 3-space (Crap0 1978). The 
corresponding scalars of dependence for each of 
the plane structures give the rates of change of the 
dihedral angles of the projected polyhedra as they 
move to take up their “inflated” positions In space 
(Whiteley 1978). 

e 

Maxwell also showed how to reduce plane structures 
with non-planar graphs to structures with planar 

a’ 
Fig. Ila. 

33 
Figure 9. A dependent cone over a polyhedral graph. Flgure 11 .A dependent cube. At each node the 

coplanar, but the entire Mructure Is mot coplanar. 

a’ 
Fig. 11 b. 

three bars are 



graphs, by introducing new nodes at the crossing 
points of any pair of edges, and showing how such 
alterations do not affect the statics of the structure 
(Flgure 14). This is the use of Bow% Notation* in 
(Maxwell 1876). Maxwell’s theorem has also been 
generalized to oriented (not necessarily spherical) 
polyhedra. Polyhedral projections have reciprocal 
figures relative to such polyhedra, and structures 
with reciprocal figures are dependent, but ~WW 
converse holds (Crap0 1978). 

Figure 12. Generic circuits in the plane. 

Figure 15. A funicular 
parallel redrawing. 

polygon, with Its associated 

In the article on polyhedra in this issue of the . 
bulletin, we look into the matter of pfomive COWS 
tions* and proJectbe cholcee* for the construc- 
tion of a polyhedron over a given plane figure. 
Generally speaking, if a spherical polyhedron has V 
vertices and 2V-2 edges, it also has V faces, and any 
drawing of it in the plane has a polyhedral preimage 
under projection which is unique up to the choice of 
one dihedral angle and the position of one initial 
face. If it has more edges, say (2V-2) + k in number, 
then there are V+k faces, and k additional free 
choices of dihedral angles can be made in construc- 
ting the polyhedron over the given plane figure. If 
there are fewer than 2V-2 edges, say (2V-2) - k in 
number, then k independent projective conditions 
are required to be satisfied in order for a plane 
structure with that graph to be a polyhedral projec- 
tion, and thus dependent. 

Figure 14. A dependent plane structure, and a statically equivalent 
structure with a planar graph, obtalned by the uie df Bow’s 
notation. Note that the latter Is a polyhedralmprojectlon. 34 
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35 Figure 13. Pairs of r@~lprocrl flgur88 In the plane, from Maxwell’8 I original papers. 



Figure 16. Three equivalent proJectlve condltlons guarantee de- 
pendence of this plane structure. 

One such single projective condition is that which 
arises when a ring of plane faces surrounding a 
single face, all of whose nodes are trivalent, is 
projected into a plane. One statement of the condi- 
tion is that a roof (or calotto~+ ) can be completed 
using the third bar at each node as the meeting of 
successive roof sections. flgun 1s exhibits this 
condition for a ring of five planes. Equivalently, and 
also shown in Figure lS, a parallel redrawing of the 
polygon is possible with vertices displaced along the 
given bars. (Think of cutting a roof with a plane 
parallel to its base.) In treatises on statics this figure 
is called a funicular polygon,’ or atrIng potygon , 
because a loop of string can be held taut in that 
position in the plane by forces in the directions of the 
third bar at each node. For plane structures with 
enough trivalent vertices, it suffices to verify depen- 
dence by checking this polygonal condition around a 
small number of faces. For instance, for the structure 
in Flgure 16, it is sufficient to check the polygonal 
condition’on any one quadrilateral face. There are 
four quadrilateral faces, but the conditions associa- 
ted with them are equivalent: The plane structure as 
drawn has nullity 1, and since it has 2V-3 bars, it 
has one internal motion. The graph of the cube, in 
Flgure 17, as a plane structure, must satisfy two 
independent projective conditions. These conditions 
may be stated in a variety of different but equivalent 
formulations, the most suggestive being that the 
corresponding bars in two opposite quadrilateral 
faces meet in four points on a line which may be 
viewed-as the intersection of the planes of those two 
faces in space. 

Figure 17. A proJected cube, dependent In the plane, satisfying two 
independent projective condltlons. 36 



Generalizations to 3-Dimensional 
Space. 

There is one well-known family of independent rigid 
spatial bar and joint structures: the triangulated 
convex spherical polyhedra. The Euler formula gua- 
rantees that all such structures have 3V-6 bars on V 
nodes, and because all their faces are plane-rigid, 
being triangles, Cauchy’s theorem (Cauchy 1813) 
shows they are rigid structures. 

Our study of dependent structures in three space 
began with the best-documented example of a 
deformable polyhedron’ the Bricard octahedron 
(Bricard 1897), illustrated in Figure 8. Since this 
figure consists of two rigid bodies (two opposite 
triangular faces A, B, say) linked by 6 bars, we 
reasoned that any internal motion which fixed the 
face A would have to be, at least infinitesimally, a 
screw motion of the face B. The six bars would have 
to be perpendicular to the velocity vectors of that 
motion, at their points of contact with the face B. But 
available treatises on the geometry of lines in 3- 
space (Veblen 1900), (Semple 1949), (Klein 1939) 
are explicit on this point: a line perpendicular to a 
screw motion at any point is perpendicular to the 
motion at every point along the line, and the set of all 
lines perpendicular to a specified screw motion is 
precisely the set of lines satisfying one linear condi- 
tion on their Plucker coordinates*. These families of 
lines are called (non-singular) he complexes . The 
geometry of non-singular line complexes is well- 
known, so it is not difficult to decide when the six 
bars linking opposite faces of an octahedron lie 
within a single complex: the four planes of alternate 
faces of the octahedron must meet in a point. (When 
this happens, the other set of four alternate faces will 
also meet in a point.) If aa’, bb’, cc’ are pairs of 
opposite nodes of the octahedron, and d, d’ are the 
two derived points of intersection of alternate faces, 
the eight points form eight planes 

abed’, abc’d, ab’cd, a’bcd, 
a’b’c’d, a’b’cd’, a’bc’d’, ab’c’d’. 

This configuraticn of eight face planes of any depen- 
dent octahedral graph has an illustrious history: they 
are the face planes of two mutuaMy-inscribed tetra= 
mrr *(Mobius 1837). The vertices abed of one 
tetrahedron lie on the face planes of the other, ana 
its face/planes pass through the vertices a’b’c’d’ of 

37 the other. 

The dependent octahedron is the first example of a 
spatial structure with 3V-6 bars on V nodes requiring 
one projective condition for dependence. There is a 
simpler dependent structure, the complete graph 
Kg, but it has 3V-5 bars, and is thus a generic 
dependent structure, dependent in any position. The 
complete graph Kg is the l-skeleton of the basic 4- 
polytope with 5 vertices, 10 edges and 5 tetrahedral 
3=cells, so a K,5 in any position in 3-space is the 
projection of a 4-polytope. The dependent octahe- 
dron also seems to have some such connection with 
4-space, but we have not succeeded in finding it. 

We have made efforts in several directions to gene- 
ralize ,the Maxwell-Cremona theorem to 3- 
dimensional space, but none as yet has produced a 
definitive theory. We shall now discuss three partial 
generalizations, mainly to cast some light on various 
facets of the remaining unsolved problem. 

(a) Cones 

If all nodes of a plane structure are joined to a single 
node q not lying in its plane P, the resulting spatial 
structure will be mechanically equivalent to the 
original plane structure in the following sense. The 
spatial structure is projectively equivalent to one in 
which the added node q is on the plane at infinity and 
all bars incident to that node are perpendicular to 
the plane P. These bars then serve only to hold the 
nodes of the plane structure within the plane. Any 
motion of the plane structure is a motion of the cone 
with the node q fixed, and conversely. 

More generally, a spatial structure is a cork* if and 
only if it has one node, called its apex, which is 
joined to all other nodes. If we use the apex of a cone 
as centre of projection, and project the cone onto a 
plane, we obtain a plane figure with the same nullity 
as the cone itself. The conditions for dependence of 
a cone are quite revealing, and suggest principles on 
which a more thorough-going generalization may yet 
be based. A cone is dependent if and only if 
projection from the apex as centre results in a plane 
structure which is dependent. Note that as in Figure 
9, above, the nodes other than the apex need not be 
coplanar. In Flguro 9, we see the spatial structure is 
dependent if and only if the lines bc and de, ef and 
cg, which are normally two pairs of skew lines, 

appear in projection from centre a to meet in points 
which are collinear with the projection of the point p. 
That is, the condition illustrated in Figure 18 holds in 
the projected figure, or holds from the point of view 
of an observer standing at the apex of the cone. 
Rephrasing this as a condition on the spatial struc- 
ture, we find that through the point a we may draw 
unique lines L and M which meet the pairs of lines 
bc, de, and eg, ef, respectively. These lines L and M 
determine a plane (through a) which must contain 
the point p if the structure is to be dependent. 

(b) Cremona Reciprocals 

Maxwell’s theorem on reciprocal figures and projec- 
ted polyhedra was followed by an equivalent result 
due to Cremona (Cremona 1890). The latter obser- 
ved what happens when 3-dimensional space is 
acted upon by a skew polarity * , which maps each 
point to an incident plane, each plane to an incident 
point, maps lines to lines, and reverses incidence. 
Under such a mapping, any polyhedron goes over 
into a polar polyhedron. For example, a pair of 
mutually-inscribed tetrahedra (Mobius 1837), dis- 
cussed above, are polar to one another in this sense. 
If a polyhedron and its polar are simultaneously 
projected from a centre c onto a plane 0, their 
projected images will appear to be drawn with 
correrpondlng lInea parallel, relative to an appro- 
priate choice of line at infinity (namely Q intersected 
with the image of the centre c under the polarity). 
The Cremona theory gives no new information in the 
plane, since a Cremona reciprocal figure is easily 
obtained by rotating the Maxwell reciprocal by a 
right angle. But it has an interesting generalization to 
certain spatial structures. Say we have a spatial 
structure which is topologically a spherical polyhe- 
dron. If the structure is dependent, the stresses in 
the bars produce a vector sum zero at each vertex, 
which we may represent as a closed cycle of vectors, 
using the cyclic order around each node on the 
surface of the topological sphere. If we consistently 
choose, say, the vector at the “left” end of the edge 
as we travel on the “outside” of the sphere from a 
face A to an adjacent face B as the vector from the 
“reciprocal node A” to the “reciprocal node B”, we 
will obtain a spatial structure (also dependent) with 
the dual of the original polyhedron as its topological 
structure, whose edges give the stresses in the 
original polyhedron. The relation between these two 



structures is symmetrical: the reciprocal structure 
has a stress given by the edges of the original 
polyhedron. 

For example, consider the Cremona reciprocal of 
the dependent octahedron, namely the cube graph*. 
in Flgure 11. It is constructed in such a way that the 
three bars Incident at any node are coplanar, yet the 
eight nodes do not lie in a single plane. Since three 
non-coplanar non-zero forces cannot sum to zero, 
the bars at every trivalent node of a minimal depen- 
dent structure (a circuit) must be coplanar. Thus the 
coplanarity of the bars incident at each node of the 
cube graph is necessary for the cube to be a circuit. 

0a’ 

Fig. 18a. 

Fig. 18 b. 

Figure 18. A dependent octahedron, obtalned from the dependent 
cube in Flgure 11. 

A further argument shows that by replacing two 
antipodal nodes of the cube by triangles on the 
nodes to which they were incident constructs a 
dependent octahedron (Flgure 18a) . We see in this 
way that any such cube is dependent, and further- 
more that any such cube, not lying entirely in one 
plane, I8 a clrcult. 

This cube graph is labelled systematically as a 
bipartite graph in which primed nodes are joined 
only to unprimed nodes, and nodes with the same 
letter are antipodal. The eight planes determined by 
the bars incident at the eight nodes thus each 
contain four nodes with distinct letters, either one or 
three of which are primed. Fixing our attention on 
two of these planes ab’c’d’, a’bcd and on their line q 
of intersection, as in Figure 11(a), we find the 
remaining six planes must meet the line q in 6 
collinear points. That is, the lines ab’ and cd, ac’ and 
bd, ad’ and bc, b’c’ and a’d, b’d’ and a’c, c’d’ and a’b 
are actually coplanar in pairs, and meet at the six 
collinear points. The plane projection of this F@un 
11(a) commonly occurs in treatises on projective 
geometry (Veblen 1910, Figure 21, page 50). The six 
points on the line q form a quadrilateral set’; 
determined by a complete quadrilateral in one 
plane, and an oppodtely placed or polar quadrilate- 
ral in another plane. In fact, taking any pair (say d, d’) 
of opposite nodes of this dependent cube graph, the 
planes of the bars at those nodes each contain three 
other nodes of the cube. The line of intersection of 
these two planes is shown in FIga 18(b). It contains 
the quadrilateral set of six points of intersection with 
the planes of the bars at the other six nodes. There 
are four figures like this, one for each pair of 
opposite nodes, one of which of course is figure 
11(a). 

(c) Projected 4-polytopes 

These first two efforts to generalize the Maxwell- 
Cremona theory to spatial structures are fairly clo- 
sely related and are applicable to only a small family 
of spatial structures. Our third effort at generaliza- 
tion we have tended to regard as more central to the 
subject and more likely to lead to results of broader 
application. We know that if a spatial structure is the 
projection into 3-space-of an oriented 4-polytope, it 
is dependent. For instance, if four quadrilateral faces 
of the structure in Flgun 8 are flat (that is their 

nodes are coplanar), the structure is dependent. In 
that event, the required collinearity of de meet bc, cg 
meet ef, and p occurs already in space, before 
projection. Flgure 10 provides another example. The 
structure on nine nodes a . . . c” will be dependent if 
all nine quadrilateral faces are flat, because then the 
given structure will be the projection of a polytope 
with 6 cells, each of which is a triangular prism. But 
in neither case are these conditions necessary for 
dependence. We have seen this already for Flgun 8. 
An analysis similar to that we have used for the cube 
(Tay 1976) reveals that the necessary and sufficient 
conditions for dependence in Figure 10 are that the 
planes abc, a’b’c’, a”b”c” meet in a line, as do the 
planes aa’a”, bb’b”, cc’c”. 

It is the main unsolved problem in this area of our 
work to find out how consistently to modify the 
conditions for 4-polytopial realizability to obtain the 
weaker conditicn for dependence. Presently we are 
investigating nonsingular mappings which preserve 
certain features of a structure, including depen- 
dence, yet are capable of destroying coplanarity of 
points, coincidence of lines, etc. For example, consi- 
der a mapping which “unwinds” a cone to produce a 
hyperboloid of one sheet, or “unwinds” the family of 
all lines through a point into the rujings of a one- 
parameter family of concentric hyperboloids. If such 
a mapping were to act on the bars of a dependent 
structure, the image would again be a dependent. 
structure, but a projected polytope could be chan- 
ged into something more general. (Such mappings 
are provided by non-singular linear transformations 
of the 6-dimensional vector space spanned by line 
segments in 3-space, namely of the space of wren- 
ches or screws, described above.) This line of 
investigation is highly conjectural: the problem is still 
wide open. 

. 

There is also a wide range of structures about which 
nothing is known concerning necessary and suffi- 
cient conditions for dependence. Locally-flat polyhe- 
dral graphs, like the dependent cube graph, have 
relatively few bars; projected 4-polytopes have many 
more. The whole middle ground between these two 
types of structures remains to be explored. 

Before 
structu 

leaving 
res, we 

the subject of s patial bar and joint 
should observe that typically it is 



easier to state necessary and sufficient conditions 
for dependence than it is to state the corresponding 
conditions that a structure be a circuit. A structure in 
a certain special position may be a circuit, but in 
even more special position it may still have nullity 1, 
but certain bars may carry no stress, and are no 
longer in the circuit. The Bricard octahedron, for 
example, in its most symmetric position has two bars 
which carry no stress. The circuit is simply two 
plane-rigid structures hinged at two nodes, and set 
at an angle to one another in space. Furthermore, in 
even more special position, a structure may have 
nullity higher than one. For instance, a complete 
graph K5 has nullity 1 in genera! position in 3-space; 
but has nullity 6 when a!! the nodes lie on a line. 

Strut and Cable Structures 

We close this article by discussing briefly two diffe- 
rent types of spatial structures, tensegrity structures 
and hinged pane! structures. in each case are a few 
facts which carry over from bar and joint structures, 
and a few new things to learn. 

The bars of a bar and joint structure resist both 
tension and compression. in a tensegrity structure, 
bars are replaced by cabid I which carry only 
tension, and struts::: 9 which are called upon to carry 
only compression. More generally, any dependent 
structure of rank r having a stress which is non-zero 
on every edge (a circuit, for example) can be rebuilt 
as a strut and cable structure which will carry an r- 
dimensional space of external loads. Since the 
stress is non-zero in every bar, the set of bars 
divides neatly into two classes according to the sign 
of the stress. One of these classes becomes the set 
of cables, the other the set of struts. Any finite load 
resolved by the bar and joint structure also has a 
resolution in a sufficiently tightened mode! of the 
associated strut and cable structure. To see this, 
observe that if a sufficiently large positive scalar 
multiple of the stress is added to the response of the 
bar and joint structure, a!! the scalars can be made 
to agree in sign with of the stress. That is, every 
cable will be in tension, every strut will be in 
compression’ and the structure will be in equiiibrium 
with the applied load. Thus any external load sup- 
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portable by such a bar and joint structure can be 
carried bv a sufficientiv Drestressed strut and cable 

structure of the same conformation. A strut and 
cable structure is rigid if and only its associated bar 
and joint structure is rigid and has a stress which is 
non-zero on every bar. 

This means that there exist rigid strut and cable 
structures with 3V-5 struts and cables on V nodes in 
space, for any V. There exist, however, strut and 
cable structures with many more than 3V-5 struts 
and cables, which are minimally rigid in the sense 
that removal of any strut or cable will introduce an 
internal motion. For instance, by a generalization of 
Cauchy’s theorem (Whiteiey 1977), a cube of struts 
in space, braced with cables along both diagonals in 
every face, is rigid. There are 24 = 3V struts and 
cables, but no member of either type can be remo- 
ved without losing the rigidity. 

Any pair of distinct points in the projective plane 
determine a Jine, and break the line into two line 
segments, one of which crosses the line at infinity in 
any affine drawing. Any strut in a strut and cable 
structure can be replaced by a cable in the other line 

/ CII \ \ \ \ \ lx! 
Fig. 19 a. 
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Figure 19. Strut and cable structures (cabled frameworks). 

segmentconnecting the same pair of nodes, and 
conversely. This observation permits us to generate 
from a given strut and cable structure a family of 
projectively equivalent but aff ineiy distinct such 
structures (Figure 18). Also, because the negative of 
a stress is also a stress, a!! struts can be replaced by 
cables, a!! cables by struts. This replacement does 
not affect rigidity, but may affect stability : the ability 
of the structure to restore itself following an infinite- 
simal motion. For instance, the structures in Figure 
19(a) are plane rigid, spatially non-rigid, but the 
figure with four struts is spatially unstable, that with 
two struts is stable. This question of stability of strut 
and cable structures is a challenging area for future 
investigation, in which little is known. 

Hinged Panel Structures 

A spatial panel Wucturo consists of completely rigid 
polygonal pieces of plane, hinged to one another 
along edges (Baracs 1975). F separate panels fioa- 
ting in space have 6F degrees of freedom. A hinge 
between two panels reduces the six degrees of 
freedom of relative motion between the panels to 
one, namely rotation about the hinge. So each hinge 
can remove at most 5 degrees of freedom. A hinged 
pane! structure will be rigid if in a!! 6F-6 = 6(F-I) 
degrees of freedom can be removed by the placing 
of hinges between panels, because the 6 isometries 
of space always remain as permitted motions. Thus 
the minimum number of hinges needed to rigidify a 
system of F panels is the least whole number greater 
than or equal to 6(F-!)/5. Thus F hinges are needed 
to rigidify F panels for F’= 2, 3, 4, 5, 6, while F+l 
hinges are needed for F panels for F = 7,8,9,10, Il. 

Cauchy’s theorem guarantees that a!! convex speri- 
cai polyhedra are rigid, where a!! edges are hinged. 
Baracs and his students have done some investiga- 
tion as to which hinges or even faces can be 
removed from such a structure, while retaining 
rigidity. For instance, there are two ways of choosing 
a cycle of six hinges on a cube, one of which 
produces a rigid cube, the other not (Baracs 1975). 

Rigid spatial pane! structures can be constructed 
step by step, using the principles that a ring of three 
panels is rigid unless they are coplanar with concur- 
rent hinges, a ring of four or five panels !s rigid 



unless the hinges go through a point (or are copia- 
nar), and a ring of six panels is rigid unless they.are 
part of a dependent octahedron, that is alternate 
panels meet at a point coplanar with the intersection 
points of the hinges on those panels. (If the ring is 
convex, as in Figure l(c), , it is surely rigid.) 

Any motion of a hinged panel structure assigns to 
each hinge an extensor which is a multiple of the 
hinge, namely the relative angular velocity of the two 
panels at that hinge. These extensors sum to zero 
around every closed ring of panels, the motion of 
any panel with respect to itself being zero. In 
particular, these extensors sum to zero around every 
vertex, if the hinged panel structure is a polyhedron. 
in this way we see that a hinged panel structure with 
ail edges hinged will be movable if and only if the l- 
skeleton of the polyhedron is dependent as a bar 
and joint structure! 

The subject of hinged panel structures forms a large 
new field of inquiry, with extensive practical applica- 
tion. The basic problem of rigidity of spatial panel 
structures in general remains unsolved. 

Algebraic Proofs 

Some proofs of rigidity theorems are best written out 
algebraically. For instance, a direct computation of 
the scalars of stress in the edges of a complete 
graph K5 in 3-space reveals that each bar is stressed 
by an amount equal to the product of the volumes of 
the two tetrahedra formed by dropping the nodes at 
the ends of that bar one at a time. 

Since extensors at a point add just like vectors, the 
dependencies between the rows of the coordinati- 
zing matrix M of a spatial bar and joint structure are 
unaffected if we use six-dimensional extensors ab 
instead of three-dimensional vectors a-b as its 
entries. Let M’ be the corresponding matrix with 
extensor entries. Any dependence between the rows 
of M’ holds also between the entries in any sum of 
columns of M’. In particular, if a dependent structure 
consists of two pieces linked by a set L of bars, we 
may add the columns belonging to nodes in one of 
the two pieces of the structure, and find that the 
same scalars are those of a dependence between 

the bars forming the llnk L between the two pieces. 
This is what is going on with the dependent octahe- 
dron, as discussed earlier: the six bars in any skew 
hexagon linking two opposite triangular faces are of 
rank 5 as extensors. 

in general, the scalars of dependence in a circuit In 
3-space can always be written as sums of products 
of volumes of tetrahedral ceils. To find a managea- 
ble combinatorial algorithm for writing these scalars 
is one of the basic unsolved problems of structural 
topology. 

Definitions 

Structure. This term is used to indicate a very 
general class of geometric objects: any assemblage 
of rigid components (nodes, bars, panels, solids), in 
specified positions in projective space, joined to one 
another at articulated joints (articulated nodes, or 
hinges). 

Rlgld. Specifically: statically rigid, not permitting 
even any infinitesimal motion, save rigid motions of 
the entire space. A statically rigid structure will 
support any external equilibrium load. 

Mechanism. A Structure having a 
to a merely infinitesimal ) motion. 

finite (as opposed 

Bar and joint structure. A structure composed of 
rigid bars, attached to one another at their ends, at 
nodes. The bars are articulated at the nodes, in the 
sense that two bars incident at a node are, in 
principal, free to change in angle relative to one 
another. External loading on such a structure will 
produce only axial reaction forces. 

Cable. A member connecting two nodes, capable of 
resisting only tension. 

Strut. A member connecting two nodes, capable of 
resisting only compression. 

Strut and cable structure. A structure composed of 
cables and struts, joined to one another, and articu- 
lated, at nodes. Also called cabled frameworks. 

Spatial panel structure. A structure composed of 
rigid and unbendable plane polygonal panels, hin- 
ged to one another (articulated) along edges. Such 
structures can be realized by using rigid bodies in 
space, as long as they join along edges forming 
plane polygons. 40 



Graphlcal statics. The study of stress configurations 
in plane structures, using reciprocal figures and 
projected polyhedra. Graphical statics was the crea- 
tion of Maxwell, Cremona, Culmann and others in 
the mid-l 9th century. 

Linear dependence. (From linear algebra). A set of 
vectors is linearly dependent when there is some set 
of scalars, not all zero, which when multiplied by 
those vectors makes their sum equal to zero. For 
example, two collinear vectors are dependent, as are 
three coplanar or four cospatial vectors. Since 
forces in 3-space are representable as vectors only 
in 6-dimensional vector space, dependence of for- 
ces on a rigid body is not just a matter of coplanarity 
or collinearity of their lines of action. Bars in spatial 
structures are vectors in 3Vdimensional vector 
space, so their dependence is even less obvious. 

Coordlnatltlng matrix. A matrix, thought of as ha- 
ving a vector entry corresponding to each incidence 
of a bar with a node. Linear dependence of rows in 
this matrix shows the dependence of the correspon- 
ding bars as structural constraints. 

Stress. An assignment of tension and compression 
forces to the bars of a structure, in such a way that 
the forces in incident bars add to. zero at every node. 
(We use unit cross-sections for the bars, to make 
this term agree with engineering usage.) 

Motion. An assignment of velocity vectors to the 
nodes of a structure, such that the relative velocity of 
the two nodes on any bar is a vector perpendicular to 
that bar. That is: the velocities of the ends of the bar 
are such as to cause no infinitesimal change in the 
length of the bar. 

Degree of freedom. The number of degrees of 
freedom of a structure is the dimension of the vector 

41 space of its motions. 

Rlgld motion. A motion of the entire space acting as 
one rigid body. An Isometry. Such isometries of the 
plane are either translations or rotations. In space, 
translations and rotations may be combined to 
produce screw motions. 

Screw motlon. A general rigid motion of 3-space, 
representable as a rotation about an axis, combined 
with a translation along that axis. 

Internal motion. An equivalence class of motions of 
a structure, modulo rigid motions. Loosely: any 
motion other than a rigid motion. Equivalently, for 
spatial structures, having fixed one bar and the 
plane of one adjacent bar, any remaining motion is 
internal. 

Internal degree of freedom. The number of internal 
degrees of freedom of a structure is the dimension of 
its motion space, minus the dimension of the vector 
space of rigid motions. 

Rank. The dimension of the vector space of equili- 
brium loads supportable by a given structure. For a 
spatial bar and joint structure, the rank is 3V-6 minus 
the dimension of the motion space of the structure. 
The rank is the number of degrees of freedom 
removed (from an unconnected set of nodes) by the 
bars. 

Nullity. In a bar and joint structure, the number of 
bars minus the rank. It is the dimension of the vector 
space of dependencies between the bars, and 
equals the dimension of the vector space of spatial 
realizations, for planar polyhedral structure. 

Dlmenslon. For a vector space, the minimum num- 
ber of vectors in terms of which all vectors can be 
expressed as linear combinations. Also the maxi- 
mum size of any independent set of vectors. The 
number of components needed to express a vector 
quantity. 

Couple. The sum of forces equal in magnitude and 
opposite in direction, acting on parallel but distinct 
lines. 

Wrench. The sum of forces acting along lines in 
space. It may be expressed as a couple in some 
plane, plus a force along a line perpendicular to the 
plane of the couple. The product of a wrench acting 
on a screw motion is a scalar quantity called work. 

Plucker coordinates. Six-dimensional coordinates 
for line segments (for example, forces) in 3-space, 
with respect to which resolution of forces becomes 
simply vector addition. For a line segment from a 
point a to a point b, the Plucker coordinates can be 
arranged so that the first three give the free vector b- 
a, the last three the moment vector bxa relative to the 
origin of the given coordinate system for 3-space. 

Independent. Having no redundancy. The rank of an 
independent structure is equal to its number of bars. 
Removal of any bar from an independent structure 
will introduce a new degree of freedom. Independent 
structures are statically determinate, in the sense 
that any supportable load has a unique response of 
tensions and compressions in the bars, but they are 
not necessarily rigid. 

Dependent. Having redundancy. Dependent structu- 
res are statically indeterminate, but may be either 
rigid or non-rigid. A dependent structure has posi- 
tive nullity, and has a number of bars in excess of its 
rank. Dependent structures have bars which can be 
removed without introducing new degrees of free- 
dom. 

Clrcult. Any minimal dependent structure. For 
example, a collinear polygon, or any minimal projec- 
ted spherical polyhedron. This terminology derives 
form combinatorial geometry, and thus has a mea- 
ning more general than it does in graph theory. 



Structure geometry. That combinatorial geometry 
which describes the dependence of bars in a struc- 
ture as linear constraints. By using the structure 
geometry, we may substitute counting arguments for 
algebraic computations. In this way, we may often 
find out not just that a structure is dependent, but 
also why it is dependent. 

Statically Indeterminate rtructure. A structure in 
which some external load can be resolved in more 
than one way by tensions and compressions in the 
bars. Dependent. 

Hyperstatlc structure. A structure which is rigid and 
dependent. Any external equilibrium load can be 
resolved in more than one way in tensions and 
compressions in the bars. 

Isostatlc structure. A structure which is rigid and 
independent. Every external equilibrium load has a 
unique resolution in the structure. For any rigid 
structure, its isostatic substructures are the bases 
(plural of basis) of its structure geometry. 

Hinge. An articulation between rigid .panels or other 
rigid bodies, permitting one degree of freedom of 
rotation about an axis (the hinge) in the other. 

Generic Mructure. A structure in general position. A 
structure in such geometric position that it has 
maximum possible rank, given its topological 
makeup. 

Generically - . To say a topological structure has a 
projective property generically is to say it has that 
property when realized in general position in the 
projective space. 

Polarity. A type of duality of a projective space. A 
mapping of a projective space into its dual space. A 
polarity of the projective plane maps points to lines, 
lines to points, and reverses all incidences. Thus the 
line determined by two points is mapped to the 
intersection of the polars of those points. A polarity 
of space maps points to planes, lines to lines, and 
planes to points. 

Skew polarlty. A polarity of projective 3-space in 
which each point is mapped to some plane through 
that point. Under a skew polarity the image of a line 
is equal to or skew to that line. A line equal to its 
image is said to be flxed by the polarity. The set of 
lines fixed by a skew polarity forms a line complex, 
representable as all lines perpendicular to a certain 
screw motion (rigid motion) of space. Whenever a 
set of bars are contained in a line complex, they are 
incapable of bracing one rigid body relative to 
another. 

Projective condltlonr. Statements concerning inci- 
dence of various points and lines derivable from a 
projective drawing jn the plane, or from a projective 
construction in space. Specifically, those conditions 
required for a given plane figure to be a projected 
polyhedron. These conditions arise from required 
incidences in the corresponding spatial structure. 

Projective choices. In a projective construction, 
arbitrary one-parameter assignments made for the 
position of points, lines or planes, where the position 
of those points, lines or planes are not completely 
determined by the given data. 

Calotte. A system of plane faces, edges and vertices 
in space which divides the space in two: the struc- 
ture produced by omitting one face, with its incident 
edges and vertices, from a spherical polyhedron. 
Topologically: a simply-connected unbounded 2- 
manifold. 

Funicular polygon. The position of a loop of string in 
equilibrium under the influence of a given Set Of 

equilibrium forces. The construction of a funicular 
polygon is a graphical method commonly used to 
compute the resultant of a given set of forces. 

Bow’s notatlon. The insertion of new nodes at the 
crossing points of bars, for the purpose of reducing 
structures with non-planar graphs to statically- 
equivalent planar structures. 

Mobluo palr. A pair of tetrahedra, arranged in space 
so that the nodes of each tetrahedron are on the face 
planes of the other. They are “mutually-inscribed”. 
Every Mobius pair defines a skew polarity of the 
entire space. 

Cone. A spatial structure formed at least topologi- 
tally by joining a new node in space to every node of 
a given plane structure. For example, a pyramid. 
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