
FARA: Reorganizing the Addressing Architecture ∗

David Clark
†

Robert Braden
‡

Aaron Falk
‡

Venkata Pingali
‡

† MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139
ddc@lcs.mit.edu

‡ USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA, USA 90292
{braden,Falk,pingali}@isi.edu

ABSTRACT
This paper describes FARA, a new organization of network
architecture concepts. FARA (Forwarding directive, Asso-
ciation, and Rendezvous Architecture) defines an abstract
model with considerable generality and flexibility, based upon
the decoupling of end-system names from network addresses.
The paper explores the implications of FARA and the range
of architecture instantiations that may be derived from FARA.
As an illustration, the paper outlines a particular derived ar-
chitecture, M-FARA, which features support for generalized
mobility and multiple realms of network addressing.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Architecture

General Terms
Design

Keywords
Network, Architecture, Model, Instantiation, Modularity,
Association, Rendezvous, Mobility, Security

1. INTRODUCTION
This paper suggests a new organization of the concepts

of naming and binding [11] that underlie the current Inter-
net architecture. This organization is embodied in a gen-
eral architectural model named FARA (an abbreviation of:
“Forwarding directive, Association, and Rendezvous Archi-
tecture.”). The FARA model defines an abstract set of com-
ponents and the modular relationships among them, while

∗This work was supported by DARPA under grants F30602-
00-2-0553 (MIT) and F30602-00-1-0540 (ISI), as part of the
NewArch project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 WorkshopsAugust 25&27, 2003,
Karlsruhe, Germany
Copyright 2003 ACM ACM 1-58113-748-6/03/0008 ...$5.00.

it leaves undefined many detailed technical mechanisms and
design decisions. Thus, FARA defines a class of architec-
tures from which a variety of specific architectures can be
instantiated by adding additional assumptions and defin-
ing various mechanisms. To clarify the FARA model, this
paper describes one particular instantiation, the M-FARA
architecture (Section 4.)

Although many of the individual ideas combined in FARA
are not new (see Section 5 on prior work), the synthesis
of concepts in FARA provides a conceptual framework for
reasoning about protocol architecture that we believe to be
new.

On another level, this paper is an illustrative exercise in
abstract reasoning about protocol design. It explicitly di-
vides the reasoning process required to create a new archi-
tecture into two stages. FARA represents the first stage: the
definition of a general high-level model that satisfies a spe-
cific set of assumptions (Section 2.2). In the second stage,
a complete architecture is derived as an instantiation of the
general model. This instantiation reduces the generality of
the model by defining specific mechanisms, but the derived
architecture satisfies the assumptions of its parent high-level
model. It also defines many details that are unimportant to
the general architecture, such as protocol fields and head-
ers. The purpose of this two-step process is to make explicit
the important relationships among specific design decisions
within the derived architecture. The success of FARA or
any analogous high-level architectural model can be judged
by the clarity as well as the utility of derived instantiation
architectures.

It is well known that IP addresses [10] are overloaded, as
they indicate both network locations and node identities[11].
This overloading has advantages and disadvantages that are
also well-known. In simplest terms, overloading the net-
work address provides some (minimal) security but makes
mobility more difficult. Conversely, decoupling of location
from identity results in an architecture that facilitates mo-
bility but makes security harder. A central theme of the
FARA model is to avoid this overloading by: (1) cleanly de-
coupling application identity from network-layer forwarding
mechanisms while (2) avoiding the (necessary) introduction
of a new global namespace and (3) providing security with
a range of assurance levels.

By separating location from identity, we free each part of
the design from the constraints that would otherwise arise
due to interactions and interdependence. As a result, the

network designer is free to pick an addressing scheme that
meets his needs, and to independently pick a naming scheme.
The generality of the FARA design is the confirmation that
the ideas of location and identity can in fact be separated.

Section 2 introduces the abstract components and ex-
plains the basic assumptions of FARA. These definitions
and assumptions determine the range of possible architec-
tures that can be derived from FARA. Section 3 explains
the FARA model more completely. Section 4 then describes
a specific derived architecture, M-FARA, including a brief
description of a prototype implementation. Section 5 briefly
surveys prior work, and Section 6 presents conclusions.

2. OVERVIEW OF FARA

2.1 Basic Components
In FARA, host-to-host communication is replaced concep-

tually by communication between pairs of entities via log-
ical linkages that are called associations, using packet ex-
changes over a communication substrate. This section
summarizes these three architectural components of FARA.
Three more components – rendezvous, the FARA directory
service, and slots – are introduced later (Section 3.)

• Entity

An entity is the generalization of an application that
is an end-point of network communication. An entity
contains state, both application state and communica-
tion state, and an entity is the smallest unit that can
be mobile.

The term “entity” is deliberately chosen to be ab-
stract. An entity might be a process, a thread in a
process, a set of processes, an entire computer, a clus-
ter of computers, etc. FARA is intended to encompass
any of these forms of entities, although the protocol de-
sign details of a FARA instantiation may depend upon
the particular entity structures that are supported. A
Unix process in a non-mobile host could be a simple
example of a non-mobile entity. At the other extreme,
a complex entity might have its own internal communi-
cation structure that is hidden from FARA, for exam-
ple it might be a computer cluster. For communication
with such a cluster entity, FARA would deliver packet
to a portal system, e.g., a load-balancer, which would
forward these packets to some server node invisibly to
FARA.

• Association

FARA entities communicate with each other using log-
ical communication links called associations. An asso-
ciation implies persistent communication state within
the linked entities1. This state evolves over the life of
the association and is synchronized by the association.
An association may be considered to be roughly anal-
ogous to a transport-layer connection in the current
architecture.

1The FARA model is currently defined only for point-to-
point communication between pairs of entities. Initial efforts
to extend FARA in a completely natural way to multipoint
delivery have been less than satisfactory, which could be
considered to be a defect of the FARA model.

Abstractly, an association is the combination of rele-
vant communication state in each entity and an ongo-
ing sequence of packets that are flowing between the
entities. Each packet belongs to exactly one associa-
tion, and an entity may have multiple concurrent asso-
ciations. Associations are purely end-to-end; they are
known only to their entities and are invisible to the
routers.

Under FARA, each packet carries an association ID
(AId) that enables the receiving entity to demultiplex
the message to its association. Since AIds are local to
each entity there may be a distinct AId at each end,
so it is convenient to carry a (source AId, destination
AId) pair in every packet. However, FARA itself does
not specify the format of an AId.

• Communication Substrate

Entities live in a world of lower-level supporting
systems, including operating systems and networks.
FARA assumes some network communication sub-
strate that delivers data on behalf of associations. In
particular, FARA assumes a connectionless2 packet
delivery mechanism with appropriate addressing and
routing, although it does not restrict the particu-
lar choice of mechanism(s). Possible mechanisms
might include conventional hop/hop delivery, explicit
(source) routing, or label swapping, for example.

The choice of a particular forwarding mechanism must
take into account a range of issues on which the FARA
model is silent, for example the performance of net-
work nodes, or the balance of anonymity vs. identity
for communicating end-nodes. Just as NAT boxes hide
the number and identity of the hosts behind them, so
some forwarding schemes may provide a high degree of
invisibility at the cost of reduced accountability. The
particular case of conventional hop-by-hop forward-
ing based upon a single globally-unique binary address
would provide a mid-point on this anonymity/identity
scale, while some schemes might mandate a more ro-
bust indicator of identity and hence accountability with-
out anonymity.

Since we assume only connectionless service from the
communication substrate, entities are responsible for
end-to-end reliability when required. When an entity
wants to send a packet for one of its associations, it
hands that packet to its communication substrate with
a header field that we call the destination Forward-
ing Directive (FD). The destination FD contains
the information needed to cause eventual delivery of
the packet to the desired destination entity, although a
particular forwarding mechanism may rewrite the FD
in route. In addition to the destination FD, a packet
may also contain a reply FD that can be used to deliver
a return packet to the source entity.

Note that FARA packet delivery is not to a node or to
a destination host’s protocol stack, but “all the way”
to the entity containing the remote end of the asso-
ciation. This delivery is effected by the network and
by the operating system environment within which the

2It would be possible to further generalize FARA to allow a
connection-oriented substrate, but we chose not to do so.

destination entity operates. Once a packet is delivered
to the destination entity, this entity must interpret the
destination AId to find the corresponding association
state.

The essential modularity of the FARA model separates
the forwarding mechanism of the communication substrate
from the end-to-end communication functions performed by
entities. We have found it useful to visualize a (metaphori-
cal) “red line” demarcating this separation; the communi-
cation substrate operates “below the line,” while the entity
and its associations operate “above the line.” A complete
architecture instantiated from the FARA model must define
an interface specification (API) corresponding to the red
line, to maintain modular separation of forwarding function
from entities.

This separation allows the independent evolution of for-
warding mechanisms and applications, so that the details of
the structure and semantics of the communication substrate
are hidden from an entity. As discussed above, one of the
goals of the FARA design exercise was to demonstrate that
this degree of generality does not interfere with the rest of
the design.

A further benefit of this separation is the freedom to
change the delivery path for packets belonging to a par-
ticular association, i.e., to change the entity’s logical “point
of attachment”. This is a logical point of attachment be-
cause an entity generally corresponds to an application, not
(in general) to a physical box. This freedom is a definition
of (generalized) mobility, a capability that the current In-
ternet architecture lacks. Generalized mobility may come
in different flavors. An entity may move within the same
system or to a different system. It may also move because
the entire system moves, either physically or logically (e.g.,
renumbering, provider-based addressing, etc.) FARA cov-
ers all these forms of mobility with a common architectural
model. FARA itself assumes, but does not define, specific
mechanisms to ensure that each entity maintains up-to-date
FDs defining the forwarding paths for its ongoing associ-
ations. However, an architecture instantiating the FARA
model must define such mechanisms; Section 4 describes the
M-FARA mechanism in particular.

2.2 Key Assumptions
We now summarize the most fundamental assumptions

that together distinguish FARA from other network archi-
tectural models.

1. Mobile Entities

An entity is the unit of mobility in FARA. An en-
tity that moves, moves as a unit, carrying its applica-
tion state and communication state including the end
points of its associations. Of course, an entity may also
move because its containing system – the end node or
even the attached subnetwork – moves. The FARA
model allows this as well.

2. Association Naming

FARA does not have a global namespace for associa-
tions.

An association ID (AId) must be unique within the
destination entity, but it is local to that entity. Since
it is local, an AId is unchanged by movement of the
entity.

3. Entity Naming

An association is not a name for an entity, and in fact
FARA does not define a global set of entity names. To
communicate with a specific entity, it must be possi-
ble somehow to determine its unique location – e.g.,
by a lookup from some user-friendly character string,
or as a process id within a particular system, or via
a static FD – but there is no universal name for an
entity within FARA. FARA instead provides higher-
level services to help users to find remote entities for
the purpose of communication (Section 3.1). The loca-
tion of an entity, as distinct from its identity, is defined
by the FD that will forward packets to that entity.

The underlying philosophical point here is that com-
munication with a remote entity only requires the abil-
ity to get a packet to it; you don’t necessarily have to
know its name. Furthermore, the mechanism used to
learn how to get to it may be global, or it may be local.

4. End System Addresses

FARA does not require that end systems have addresses
chosen from a single global address space. As described
earlier, FARA is intended to allow a range of forward-
ing mechanisms. Some of these mechanisms may use a
single global address space (and in fact such an address
space is awfully convenient), but some may not.

To meet FARA’s goal of decoupling entity identity from its
location without requiring the introduction of a new names-
pace of entity names raises two major issues: (1) how do
associations get established when there is no global names-
pace for entities, and (2) how are packet delivery paths main-
tained as entities move? Association creation is discussed in
Section 3.1. FARA assigns maintenance of packet delivery
paths to the communication substrate (see Section 3.3) but
does not otherwise define the specifics. We assume that a
particular elaboration of FARA will provide a mechanism
to keep delivery paths for current associations up to date.
Section 4 illustrates one possible mechanism, which is used
in M-FARA.

3. FARA FUNCTIONS
We now describe in more detail the basic functions of the

FARA model.

3.1 Creating an Association
How do two entities A and B establish an association?3

This will generally involve some kind of handshake that be-
gins when, say, A sends an initial message to B. Entity A
must have an FD to reach B. Subsequent packets from A
to B will also carry an AId for the association, but the
initial packet cannot; since AIds are local to entities, the
destination AId can only be determined during the hand-
shake. Thus, there is a bootstrapping problem whose so-
lution requires two additional FARA components: a ren-
dezvous mechanism and a FARA Directory System (fDS).

• Rendezvous Mechanism

The initial packet in an association must be special:
rather than a destination AId, it contains a rendezvous

3Note that “A” and “B” here are identification tags used for
this document; they do not correspond to identifiers within
the FARA model.

information (RI) string, which the destination entity
can use to establish the association and assign an AId.
In addition, if this is the first association of a client-
server relationship, the initial packet may need a spe-
cial FD to reach a dispatcher daemon. The RI string
would then supply whatever parameters (e.g., service
name) are needed by that daemon to start the entity
and create the association.

This discussion assumed that rendezvous takes place
on the target (server) system. However, the FARA
model admits of more general rendezvous mechanisms.
For example, the rendezvous point might be an agent
at some central location [14]. Upon receiving the ini-
tial packet, this agent could rewrite the initial FD to
point to the correct target entity or even to another
rendezvous agent.

The rendezvous mechanism has two parts, discovery
and initiation. The discovery part returns an FD and
an RI string. The initiation part of rendezvous is the
handshake required to actually establish the associ-
ation state, once the (FD, RI string) pair has been
discovered.

• FARA Directory Service

Discovery may be accomplished by a variety of high-
level mechanisms, including DNS-like directory sys-
tems, Web sites, or other programs. The FARA model
subsumes these various discovery processes into a sin-
gle generic directory service, leaving the details to an
instantiating architecture.

Note that the service names used by the FARA Di-
rectory Service (fDS) are not necessarily global and
unique. Private name spaces may exist and some enti-
ties may not be named, while the rendezvous process
may have to do a final disambiguation among candi-
date (FD, RI string) pairs. Furthermore, the archi-
tecture must allow communication even if the fDS is
unavailable, to restart the network after a power fail-
ure and to provide low-level services like network man-
agement. Like dotted-decimal IP addresses, manually-
constructed (FD, RI string) pairs are needed for this
purpose.

In simple cases, the (FD, RI string) pair returned by the
discovery process can be used directly by the initiating en-
tity. In more complex cases, the initiating system may have
to perform a transformation on the pair in order to gener-
ate the full FD and the final RI string. Such a mechanism
is proposed for M-FARA, whose assumptions allow source-
dependent FDs (see Section 4).

3.2 End-to-End Security
The overloading of the IP address in the current Inter-

net architecture gives the receiver some limited assurance
about the source of a packet. However, source addresses are
easily spoofed, and real assurance can be provided only by
cryptographic security. Decoupling FDs from associations
removes even this limited assurance and forces the architec-
ture to deal directly with the end-to-end security issue.

Therefore, FARA entities may (and generally should) im-
plement some mechanism to validate themselves to each
other, during the handshake that creates the initial asso-
ciation. The FARA model permits two entities to choose

whatever means they want for this validation. FARA makes
this a private matter between consenting entities, just as
end-points under the current architecture may use clear-text
passwords, ssh, shared-key crypto, etc. In particular, two
entities might use a means of mutual identity that does not
reveal their identity to third parties.

It is also generally necessary to verify that the source of
each packet is the remote end of the same association. The
FARA model does not specify the mechanism used for this
packet source verification; it might or might not be the same
mechanism used for the initial entity validation. Source ver-
ification will generally require some state that is shared be-
tween the two ends of an association and established by the
handshake that creates the association.

An important FARA goal is to support a range of source
verification mechanisms, ranging from a full cryptographic
signature on each packet to no security. The Host Identity
Protocol (HIP) [8] and the IP Security Protocol (IPsec) [5]
(transport mode) are examples of existing crypto-based se-
curity mechanisms that could be adapted to this purpose.
However, FARA allows intermediate levels of assurance be-
tween these two extremes. Some applications may require
high assurance that demands authentication of every packet,
while others may be satisfied with performing verification
only when an association is created or when the remote FD
changes due to mobility. Generally, overhead, connection
setup complexity, and perhaps setup latency increase as as-
surance level increases.

3.3 Communication Substrate Mechanisms
Although FARA deliberately tries not to constrain the

mechanisms used to implement packet forwarding, we can
list the functions that we generally expect to be performed
“below the [red] line”.

• Packet Delivery

The basic function of the common substrate is connec-
tionless (“best-effort”) packet delivery. Thus, it gen-
erally corresponds to the network layer of the current
architecture. However, the FARA model allows a wide
range of forwarding mechanisms, and a FARA instan-
tiation might allow multiple forwarding mechanisms to
coexist in different parts of the network, or even in the
same nodes. Different mechanisms will give a differ-
ent tradeoff between mobility, identity and anonymity,
and different schemes to maintain an association will
give different degrees of assurance that the relationship
has not been corrupted.

• FD Management

A specific FARA-derived architecture must include a
mechanism in the communication substrate called FD
management, to provide FD manipulation and signal-
ing functions. In particular, the ability of an entity
to move, changing its logical attachment point, re-
quires a robust mechanism to update FDs to track
these changes.

This in turn places requirements on the API that re-
alizes the “red line”. An entity must be able to notify
FD management that it is moving, and FD manage-
ment needs to notify the entity of the new FD.

• Delivery Failure Notification

There will generally be an ICMP-like function to re-
port packet delivery problems. The FD/forwarding
mechanism must in general support this error-reporting
function. This puts some constraints on the forward-
ing mechanisms that can be used. There must be a
reply FD in each packet, and it must be rewritten as
necessary as the packet is forwarded.

• Resource Control

Packets consume resources, which is manifested by
congestion and its control and possibly by a require-
ment for QoS. The FARA model does not specify any
particular congestion/QoS header, but it is not hard
to imagine what this might look like. Such a header
would be in the part of the packet that is visible to the
network elements (e.g. in the same part of the header
as the FD), but there must be an interface that allows
an entity to get and set this header.

• Network-Layer Security

The communication substrate is subject to resource at-
tacks – theft of service, denial of service, etc. Such at-
tacks naturally require “below the line” security mea-
sures. Current examples of such mechanisms might
include tunnel-mode IPsec, authenticated admission
control for QoS, and packet trace-back facilities.

Such mechanisms may demand the communication-
substrate have its own robust notion of identity. We
claim that this manifestation of identity is essentially
different from the identity used “above the line” to
validate entities to each other, as described in an ear-
lier section. The design criteria are very different and
the two should not be confounded. If it is required,
identity in the communication substrate has to be of
a public nature. An end-point is identifying itself to
the network, to the “authorities”, and so on. We note
that such a lower-level identity mechanism may add
to the overhead in packets and constrain what sorts of
FD dynamics can be supported.

3.4 Forwarding Directives
The FARA model envisions a range of possibilities for the

form and function of an FD, corresponding to a range of for-
warding mechanisms in the communication substrate. For
example, an FD might or might not be inherently reversible;
it might be rewritten in flight; it might be independent of
the location of the sender in the network, or not.

However, the FARA model implies some general charac-
teristics of FDs.

• FDs must be expressed in a uniform and well-defined
syntax.

• FDs should be derived from the network topology, so
that forwarding decisions can be efficiently derived by
FARA routers.

• An FD may be a generalized source route composed of
a series of sub-FDs, each of which has meaning within
some scope.

• In particular, every FD will have a network part and
a local-delivery (slot ID) part. The network part con-
trols delivery of the packet to a protocol stack in the

node containing the entity, and the local-delivery part
is used to complete delivery to the designated slot.
This is analogous to an (IP address, port number) pair
in the current architecture.

• FDs may contain identifiers drawn from a global ad-
dress space. Such identifiers can be relatively static
and can be registered in the fDS. However, this does
not guarantee global reachability; an FD that uses
globally-unique identifiers may still describe a forward-
ing process that will not result in successful packet de-
livery when initiated from some part of the network.

• Some FDs may be reversible, i.e., there may exist a
transformation from a destination FD to a correspond-
ing reply FD. Some reversible FDs will work from any-
where in the network.

• FDs may be transformed in route, generally at bound-
aries between addressing realms. This transformation
may be controlled by state either in the FD (“source
routing”) or in the network (“label swapping”). Such
FD transformations might be undone at the egress
from a realm, using a stacking mechanism in the FD;
this would provide the equivalent of IP-in-IP encapsu-
lation.

To enable one-way or anonymous communication, FARA
does not require that every packet contain a reply FD. How-
ever, entities may choose to not accept packets without
sender identification; this preference might be expressed in
the RI string, for example. Note that the absence of a re-
ply FD will prevent notification of the sender in case of a
forwarding or delivery failure.

A FARA objective is to allow changes in the forwarding
mechanism without changes to applications, so the internal
structure of an FD must be transparent to an entity. On the
other hand, entities need to create FDs, to save FDs in their
association state, and to update these saved FDs when they
change. Furthermore, the change of an FD due to mobility
may force an entity to invoke a re-authentication procedure
with the remote entity. An FD change may also trigger
invalidation of transport-protocol state for the association,
e.g., cached RTT measurements. Entities should treat FDs
as opaque objects, but the FD management functions pro-
vide services and an API that entities can use for creating,
analyzing, saving, and updating FDs.4

3.5 Slots
The description of an FD given earlier was conceptually

incomplete. An FD tells the network how to deliver a packet
to a logical location in some system, yet the packet is to be
delivered to the abstraction called an entity. To make sense
of this, we must add an additional architectural component,
the place to which an FD directs packet delivery and in
which an entity is located. This “place” is called a slot.

4An end-system implementation is likely to have an OS-
supported function that creates a level of indirection be-
tween an association’s handle for sending and receiving pack-
ets, and the corresponding FDs. Hence, an application pro-
gram itself normally won’t be explicitly aware of FD up-
dates. However, the function of updating the FD in the
association state is still logically within the entity abstrac-
tion.

• Slot

Strictly, an FD tells the network how to deliver a mes-
sage to the entity that is currently occupying a partic-
ular slot in the target system; see Figure 1. Since FDs
deliver to slots, a slot is a logical point of attachment
of the entity to the network topology. The implemen-
tation of a slot is system-dependent.

When a mobile entity moves to a different slot, the
FDs for existing associations must be updated to de-
liver to the new slot. When a packet is delivered to a
slot, a mobile entity may have already departed, leav-
ing the slot is empty; the packet is then discarded.
This is a denial of service, but it has no other effect.
Mobility may also have moved another entity into the
same slot, so entities must be prepared to reject pack-
ets that do not belong to their entities. This reduces
to the security problem described earlier.

3.6 The Protocol Stack
While the FARA model does not specify a particular pack-

et encoding, we can draw some general conclusions about the
protocols to implement FARA. For normal data packets, the
following headers will be required.

• The basic forwarding functions “below the line” would
be controlled by a network layer header. This layer
must carry the destination and source FDs. It is likely
to include mechanisms for fragmentation of datagrams
and for loop prevention analogous to (or exactly) those
of IP.

• There would be one or more protocol layers “above the
line”; we can think of these collectively as the associa-
tion layers. The association layers must carry destina-
tion and source AIds. They will also carry the associa-
tion state information that is currently in a transport-
layer header for reliable delivery, etc. Finally, they
will carry the security information needed for source
verification and/or (re-)authentication.

3.7 The System Model
Lurking behind every abstract network architecture, there

should be some model of how it can be realized in real sys-
tems. FARA changes our concept of how an end node would
implement the protocol stack. Figure 1 illustrates one entity
within a slot of a FARA-based end system. The dotted box
at the bottom represents the lower-level operating system
functions in the end system, which use the FD to deliver a
packet to a slot5.

In FARA, stored association state (symbolized by vertical
rectangles in Figure 1) is logically within the entity. This
state might include information for authenticating the re-
mote entity and for reliable delivery, for example. The entity
uses the AId to match an incoming packet with the correct
stored information, so that it can validate the packet and
act on it; this process is implied by the arrows.

It is important to understand that the “red line” will not
in general correspond to the user/kernel boundary in a sys-
tem. Although each entity could have its own code and
algorithms for its associations, we expect that there will be

5This slot is shown as multi-homed, with network attach-
ment points reached with forwarding directives FD1, FD2.

Figure 1: FARA End System

standardized association protocols that can be implemented
in common library or system routines available to every en-
tity. Furthermore, although the abstract FARA model as-
sociates this state with the entity, it does not follow that all
network protocol code and state must be in user space. A
particular implementation can still put transport-like func-
tions into the kernel.

The sequence of events when a service entity starts up
might be the following. The entity code would request the
allocation of a slot, and then query the local routing sub-
system (through FD management) to learn its own FD (or
FD fragment, from which a complete FD can be computed);
this would include its slot ID. If the entity provides a service
that is cataloged in the fDS, the entity could now register
a (servicename → FD) mapping with the fDS. To do this,
the entity asks the kernel for the FD of the fDS, creates an
association with the fDS, and sends the registration request.

4. A FARA INSTANTIATION: M-FARA
The strength of the abstract FARA model is that it pro-

vides a consistent framework from which a wide variety of
specific architectures can be derived. To illustrate this, we
now describe M-FARA, one particular architecture derived
from the FARA model.

M-FARA is not at this point a complete architecture; it
defines some, but not all, of the mechanisms that FARA
leaves unspecified. In particular, M-FARA was designed to
explore and illustrate the implications of FARA for mobil-
ity and addressing domains, so it provides a specific set of
mechanisms for addressing, forwarding, FD management,
and security. The important issues of rendezvous and direc-
tory service have been deferred for later work.

Furthermore, the features chosen for M-FARA were moti-
vated by a desire to explore the generality in FARA, rather
than by a consideration of whether they are the best choice
for a real architecture. We do claim that, because it inher-
its FARA’s general separation of naming from addressing,
M-FARA provides an interesting mechanism for seamless
mobility across diverse address spaces.

4.1 Network Addressing in M-FARA
The choice of packet delivery mechanism depends upon

the assumptions about network addressing and forwarding.
M-FARA explores the implications of not assuming a single
global address space. Instead, it assumes that there are mul-
tiple domains, each of which is a distinct addressing realm,
similar to the world of private address spaces created by

NAT boxes. Within each realm there is a space of unique
addresses that can be used, for example, for conventional
hop-by-hop forwarding within the realm. As a result, a des-
tination FD is independent of the topological location of the
source entity if it is in the same domain6. An M-FARA FD
then contains a generalized source route of sub-FDs, to tra-
verse each realm along the path. We also assume that the
reply FD will be transformed along the path so that it will
be meaningful at the destination.

When an entity moves to a new location, it must compute
a new FD for the ”other end” of each existing association.
This implies that the routing subsystem, or some other sub-
system, must be able to transform FDs meaningful at the
old location into FDs meaningful at the new. If the inter-
network consists of a flat network of private domains, this
FD translation could be arbitrarily complex. To avoid this,
M-FARA assumes a two-level domain hierarchy, with a dis-
tinguished core domain in the “center”. Then a complete
FD to deliver a packet may be composed of two FD frag-
ments: (FDup, FDdown). FDup delivers the packet into the
core domain, while FDdown forwards a packet from the core
domain to the appropriate private routing domain.

We call FDdown a canonical route because it is invari-
ant between the various end-to-end routes used to reach the
destination entity. We assume that every entity can obtain,
using local knowledge, a path FDup from itself to the core.
It is then easy to compute an end-to-end FD: the source
entity’s FDup fragment is concatenated with the canonical
route FDdown of the destination entity7.

Canonical routes are advertised through the fDS and saved
as part of association state. They can also be used for
constructing more efficient routes between two entities, al-
though this is not necessary for correctness. Once an entity
gets a canonical FD from the fDS, it is free to use its local
knowledge of topology to transform the canonical route into
a more efficient FD that does not take the traffic “up” to
the globally-known core domain and “down” again.

4.2 FD Maintenance in M-FARA
M-FARA is intended to support mobility with dynamics

that cannot be practically obtained by simply updating the
fDS. M-FARA implements this part of FD management with
M-agents (mobility agents). M-agents act as rendezvous
points and as third parties to update FDs to handle mobility.

• Each mobile server entity has an associated M-agent
(which is assumed to be non-mobile, with a static FD)
with which the server registers itself at startup. The
FD of an M-agent in turn may be registered in the fDS
in place of the FD of a target entity, to allow clients
to find a mobile entity.

• The entity informs its M-agent whenever the entity
moves (changes its FD), so the M-agent can keep track
of the entity’s location.

• The entity sends packets carrying updated reply FDs
to the remote entities for which it has associations. In
this way, it tells remote entities where it is as it moves.

6This strong assumption in M-FARA represents an impor-
tant and useful case, although the FARA model admits of
more generality.
7The resulting routes have been called triangular routes.

When it receives a packet intended for a entity in its care,
an M-agent may either (1) rewrite the packet’s destination
FD to point to the entity and then re-launch the packet,
or (2) send a redirect message to the source entity speci-
fying the new FD. Case (1) supports anonymous one-way
communication, while case (2) is more efficient. In case (2),
redirection can be triggered by the initial packet that cre-
ates the association, so that subsequent packets will bypass
the M-agent and go directly to the destination entity. If the
connection “breaks”, the source entity can obtain the latest
FD from the M-agent and perform the re-authentication se-
quence. In the worst case the initial rendezvous may have
to be repeated, e.g., if an M-agent crashes with loss of state.

This brief discussion necessarily leaves many issues un-
specified, such as how the entity knows that it has moved,
what happens if both ends are moving (both might then use
M-agents), and so on. Many of these issues are discussed in
detail in [9].

In addition to M-agents, M-FARA requires a set of FD
management functions for building, analyzing, and updat-
ing FDs. For example, the entity needs downcalls to com-
pose complete FDs from canonical FDs, for analyzing and
dissecting FDs, and for computing the entity’s own canon-
ical FD. There are also upcalls to the entity to pass a new
FD when either its own FD or a remote FD has changed,
for example. See [9] for details.

4.3 Associations in M-FARA
M-FARA supports four kinds of association: simple, con-

nected, mobile, and reliable.

• A simple association has functionality analogous to
UDP: unordered, unreliable, and unauthenticated mes-
sages.

• A connected association is also unreliable and unorder-
ed, but it includes a handshake to establish and destroy
the association, to support authorization.

• A mobile association builds on the connected associ-
ation to provide transparent mobility, by performing
authentication and resynchronization after every move
or in general whenever the status of the remote entity
is uncertain.

• A reliable association builds on a mobile association by
including reliability and ordering, analogous to TCP.

4.4 Source Verification in M-FARA
M-FARA adopts a relatively weak form of security, which

provides authentication during the initial packet exchange
that establishes the association and re-authentication after
mobility or any other event that calls into question the re-
mote state, but which does not verify every packet. It uses
an authentication protocol based on that defined for DCCP
(Datagram Congestion Control Protocol) [6].

Basically, a pair of tokens exchanged during association
creation serve as credentials. Re-authentication is accom-
plished by presenting an authentication challenge to the re-
mote entity, containing some function of the two credentials.
The remote entity verifies the function and returns a chal-
lenge response containing its credential.

4.5 M-FARA Prototype

Element Implementation

Entity, M-Agent Unix process
FARA Kernel Unix process
Association Datastructure
FD Multiple forms (see text)
Rendezvous Association establishment protocol
Rendezvous String String carrying protocol cookies
Authentication Original DCCP: XOR
FARA Directory Service (Not implemented)

Table 1: Prototype Implementation of M-FARA

An M-FARA prototype was built as a platform for testing
ideas and for verifying that M-FARA does indeed lead to
enhanced flexibility and extensibility of the network. Table 1
lists the M-FARA components and their manifestations in
the implementation.

The prototype is written in C++, using Unix processes
for entities and communicating via Internet overlays with
UDP encapsulation. For ease of implementation, the low-
level end-system functions such as delivery to a slot are also
implemented in user space as Unix processes; this is known
as the FARA “kernel” or fKernel. The entity/fKernel “sys-
tem call” interface (the slot interface) is implemented using
Unix IPC. As a result, a simulated M-FARA end system is
represented by an fKernel process and zero or more entity
processes. An fDS entity was not implemented, but it would
be also be represented by a Unix process.

The prototype supports the M-FARA association types
identified in Section 4.3. It supports traditional hop-by-
hop forwarding and source routing using IPv4 and IPv6 ad-
dresses. Specifically, an FD takes the form:

(HopFD1,HopFD2, ..., SlotID),

where each HopFD contains an IPv4 or IPv6 address for
crossing a domain, and SlotID is used by the fKernel in the
target system to deliver to the destination entity.

The prototype implements a reliable association using a
trivial subset of TCP protocol, using the header format of
TCP and providing reliable delivery but limited to a one-
byte window. Each application entity executes some fixed
application code. The only applications currently imple-
mented are simple ping and a reliable byte-stream data echo.

Figure 2 shows a typical experimental setup for the pro-
totype. Here there is a non-mobile entity communicating
with a mobile entity. There is also a router connecting IPv4
and IPv6 domains. The entities set up a reliable associ-
ation, and this association persists and is re-authenticated
when the mobile entity moves from one domain to the other.
The M-agent could be in either domain (although it was not
mobile.) In practice, mobility has been simulated by multi-
homing the mobile entity into domains and configuring its
logical interfaces up and down.

Many more details of the prototype implementation of M-
FARA can be found in [9].

5. PRIOR WORK
In 1982, Jerry Saltzer [11] borrowed the concept of bind-

ing from operating system design and applied it to computer
networks. He distinguished four kinds of objects that could
be named: (1) services/users, (2) nodes, (3) network attach-
ment points, and (4) paths for packet delivery. He related

Figure 2: M-FARA Prototype: Experimental Setup

these in turn to the name/address/route distinction of Shoch
[12]. He also defined three bindings, mapping (1) to (2), (2)
to (3), and (3) to (4).

The present paper reconsiders these relationships. FARA’s
association and entity correspond very crudely to Saltzer’s
service/user and node, but the alignment is far from perfect.
A FARA entity could be considered to be an abstraction of
a service in a node, although Saltzer did not make the dis-
tinction between entities and associations (think: process vs.
socket). “Below the line”, FARA’s FD defines Saltzer’s de-
livery path. The FARA model always requires the definition
of a path, while it allows but does not require attachment
point naming. The path effectively specifies the attachment
point without any explicit name. Finally, FARA attempts
to avoid requiring a global namespace for service/user ob-
jects, envisioning instead a variety of alternative mecha-
nisms, some global and some local, to find the FD for the
desired virtual attachment point (slot).

The seminal 1994 effort PIP (Paul’s IP Protocol) [2] intro-
duced the forwarding directive concept and, in effect, sep-
arated location from identity. A later paper on IPNL (IP
Next Layer) [3] extended the FD concept to create a NAT-
based solution to the IP address depletion problem.

TRAP (Trivial Routing Architecture Proposal) [1] intro-
duced a single identifier for a port and a network address;
packets sent to a TRAP transport layer are delivered to the
application. This is similar to FARA’s concept of FDs de-
livering packets all the way to the entity.

The TRIAD architecture [4] introduced a notion called
Wide-area Relay Addressing Protocol (WRAP), in which
packets contain an ordered list of opaque tokens, or rout-
ing hints, forming a source route. This is similar to the
forwarding directive function in FARA.

Finally, the HIP (Host Identity Payload)[8] provides a se-
curity architecture that is very relevant to FARA. HIP uses
a cryptographic key to represent the identity of an end sys-
tem (not an entity, as in FARA). A hash of this identifier
is carried in a shim between the IP and transport layers.
Transport and application layers are expected to bind to
the hash of the cryptographic identity rather than to the IP
address of the end system. HIP thus provides a separation
of address and identity. Although HIP was originally de-
signed as an extension of the current Internet architecture,
its mechanisms are a candidate for association setup under
FARA.

6. CONCLUSIONS
Although the basic concepts of FARA are not new, the

reasoned assembly of these concepts into a general model is
believed to be new. FARA should provide a framework for
proposing and understanding a range of alternative protocol
architectures. he FARA model re-modularizes the architec-
ture into two conceptual levels: the abstractions of entities
and associations at the upper level and a distinct commu-
nication substrate for connectionless packet forwarding in
the lower level. The intent is to cleanly separate location
from identity, providing support for general mobility as well
as independent evolution of mechanisms at the two levels.
FARA envisions a clearly articulated “red line”, with a cor-
responding API, between the two levels.

FARA is also an exercise in abstract reasoning about ar-
chitecture, and part of its value is what it can teach us about
the logical structure of protocol architectures. Its assump-
tions were deliberately pushed to the limit of generality. In-
deed, its assumptions (Section 2.2)are mostly negative, spec-
ifying what FARA does not define. Further development of
FARA instantiations will be needed before we can make a
judgment on whether the present FARA assumptions are
too aggressive to create a practical instantiation.

FARA is a work in progress. The FARA model appears
to be self-consistent and M-FARA shows that there exists
at least one instantiation of FARA that provides significant
functionality beyond that of the current Internet architec-
ture. However, additional work is needed to further explore
M-FARA as well as other possible and perhaps useful in-
stantiations of the FARA model.

7. ACKNOWLEDGMENTS
The work reported in this paper was performed under

the DARPA-funded New-Generation Internet Architecture
(NewArch) project. We are very grateful to the other mem-
bers of this project, especially Noel Chiappa, Ted Faber,
Mark Handley, Karen Sollins, and John Wroclawski, for
their creative ideas and patient criticism as FARA and M-
FARA evolved.

8. REFERENCES
[1] V. Antonov. Trivial Routing Architecture Proposal

(TRAP). IETF Work in Progress, September 1995.
http:

//gato.kotovnik.com/~avg/old_page/papers.html.

[2] P. Francis. Pip Near-term Architecture. Internet
Request for Comments RFC 1621, May 1994.

[3] P. Francis and R. Gammadi. IPNL: A NAT-extended
Internet Architecture. Proc. ACM SIGCOMM 2001,
pp 69-80, 2001.

[4] M. Gritter and D. Cheriton. An Architecture for
Content Routing Support in the Internet. Proc.
USENIX USITS, March 2001.

[5] S. Kent and R. Atkinson, Security Architecture for
the Internet Protocol. Internet Request for Comments
RFC 2401, November 1998.

[6] E. Kohler, M. Handley, and S. Shenker. Datagram
Congestion Control Protocol (DCCP). IETF Work in
Progress, March 2003.

[7] E. Lear and R. Droms. What’s In A Name: Thoughts
from the NSRG. IRTF Name Space Research Group
report, Work in Progress, December 2002.

[8] R. Moskowitz. Host Identity Payload. IETF Work in
Progress, February 2001.

[9] V. Pingali, A. Falk, T. Faber, and R. Braden.
M-FARA Prototype Design Document. USC
Information Sciences Institute, In preparation, 2003.

[10] J. Postel Internetwork Protocol. RFC 791, September
1981.

[11] J. Saltzer. On the Naming and Binding of Network
Destinations. In Local Computer Networks,
North-Holland Publishing Company, Amsterdam,
1982, pp. 311-317. Reprinted as RFC 1398, August
1993.

[12] J. Shoch. Inter-Network Naming, Addressing, and
Routing. Proc. 17th IEEE Conf. Comp. Comm.
Networks, pp 72-79, September 1978.

[13] A. Snoeren and H. Balikrishnan. An End-to-End
Approach to Host Mobility. Proc. 6th Int. Conf.
Mobile Comp., 2000.

[14] I. Stoica, D. Adkins, S. Zuhang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. Proc.
ACM SIGCOMM 2002, pp 73-86, August 2002.

