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ABSTRACT
A system as complex as the Internet can only be designed
effectively if it is based on a core set of design principles, or
tenets, that identify points in the architecture where there must
be common understanding and agreement.  The tenets of the
original Internet architecture [6] arose as a response to the
technical, governmental, and societal environment of
internetworking’s earliest days, but have remained central to
the Internet as it has evolved.  In light of the increasing
integration of the Internet into the social, economic, and
political aspects of our lives, it is worth revisiting the
underlying tenets of what is becoming a central element of the
world’s infrastructure.

This paper examines three key tenets that we believe should
guide the evolution of the Internet in its next generation and
beyond.  They are: design for change, controlled transparency,
and the centrality of the tussle space. [8] Our purpose is not to
present these ideas as new, but rather to propose that they
should be elevated to central tenets of the evolving
architecture of the Internet, and explore the ramifications of
doing so.  The paper first examines the tenets somewhat
abstractly, and then in more detail by studying their relation
to several design choices needed for a complete architecture.
We conclude with a discussion of the relationship between the
network architecture and the applications it serves.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks ]: Network
Architecture and Design

General Terms
Design

Keywords
Architectural principles, architecture design, transparency,
design for change, tussle, security, application support.

1. INTRODUCTION
This paper is concerned with network architecture, the
fundamental tenets that underpin the actual design of the
network.  Specifically, we are interested in the architecture of

the Internet as it evolves into a central component of the
world’s technical infrastructure.  That current Internet
architecture is based on fundamental technical and social
requirements [6] that we believe are basically sound, but that
should be assessed and modified in the light of current
experience.  The Internet has been undergoing significant
technical and philosophical changes for years, and
introspection on those changes is overdue.

We believe that the basic challenges facing the network
architecture arise from the network's growing place in society.
This contrasts with the situation in the past, where the most
fundamental questions facing the architecture have been
primarily technological and performance-oriented. While
adoption of new tenets must clearly continue to be technically
sound, and not unnecessarily impede performance
improvements, we argue that the single most important change
facing the Internet architect is the qualitative change in
perception of the Internet’s role and importance, and the
resulting new requirements and limitations placed on its
design.

This change takes many forms. In the Internet today, basic
assumptions about trust, autonomy, and shared objectives are
being challenged.  As more people and institutions use the
Internet to interact with one another, they inevitably encounter
unknown or even untrustworthy entities.  In the face of
potential abuse or other malice, it seems clear that future
Internet designs need to address trustworthiness – a concept
that is much broader than traditional security.

As corporations, national governments, and social groups with
varying perspective have come to both provide the
infrastructure for and make demands upon the Internet,
questions of control of resources come into sharper focus.
How much control a provider of bandwidth has over control of
content, or to what extent corporate or public policy should be
reflected in routing choices, were not part of the original
Internet design.  It seems clear that future designs ignore such
questions at their peril.

Beyond questions of control of the network components,
questions of how the network as a whole are used no longer
play out against a backdrop of shared purpose.  Early Internet
usage was largely characterized by common goals of free
communication for academic pursuits.  Now, a wide variety of
players use the network, with often contradictory goals.  For
example, there are content distributors who do not assert
property rights, like free software providers, and content
distributors who assert restrictive property rights.  Their
fundamental goals are different.

To address these issues, we propose elevating three concepts
to the level of central guiding tenets. These are the primacy o f
design for change, controlled transparency, and isolation o f
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Design for change encourages a network designed for
flexibility, elegance and simplicity whenever possible,
because such systems endure long after over-optimized and
over-specified systems have vanished.  Controlled
transparency allows network entities to regulate what
interaction they tolerate based on their trust of the questioner.
Lastly, a network that supports conflicts of interest i s
designed to accommodate tussles [8] within the system
elements.

We proceed by discussing these three core tenets in more
detail in Section 2.  In Section 3, we will consider a set of
architectural choices, examining them in the light of the
preceding discussion.  Section 4 takes the applications’
perspective, and in Section 5 we revisit the topic of state in the
network, in light of our discussions.

2. Tenets
In 1984, Saltzer, Reed and Clark [23] first enunciated the end-
to-end arguments.  These are a series of examples of choices of
placement of functionality in distributed situations, either
what one might call distributed systems or networks.  The
following discussions, each in its own way, represent a
continuation of reflections on the end-to-end arguments and
where to place functionality.

2.1 Design for change
The Internet architects understood from the beginning that the
network had to be designed with generality in mind. The
computer industry evolves rapidly, and the Internet was
intended to hook computers together, so the Internet would
have to evolve as well. The generality designed into the
Internet has allowed it to support applications that were never
contemplated when the design was first conceived, and to
embrace new technologies and modalities with drastic
differences in performance and behavioral characteristics
including such “disruptive” advances as mobility. The
Internet design has survived technology speedups of many
orders of magnitude, and similar factors in size, as well as more
functional changes.

This success implies that as we evolve the Internet, we must
continue to design for change. Carpenter [4] was the first to
call out “constant change” as the primary characteristic for
which a network architecture must be designed.  Many, if not
all, designers recognize that we must resist point solutions,
momentary optimizations that return to haunt us, and other
forms of short-sighted thinking, as detailed design decisions
are made.

What is less broadly acknowledged is that as any technical
infrastructure becomes established and embedded, and the
natural forces opposing change become dominant, it becomes
necessary to take explicit, architected action to preserve the
ability to change, evolve and advance the technology. A
corollary of this is that this action will often involve
sacrifices in other dimensions, such as performance and
efficiency. Unfortunately, these sacrifices often result in short-
term costs being incurred to preserve a longer-term, less
concrete benefit. The challenge facing the network architect i s
to arrive at an overall architecture that both encourages

protocol designers to preserve generality and evolvability,
and minimizes the costs of doing so.1

This is at first glance quite a high-level statement, but its
implications can be very concrete. For example, one of the
most successful aspects of the Internet, in terms of designing
for change, is the use of packets.  Packets optimize for
flexibility and support for diverse service requirements, not
for any single application. This approach has been successful
in fostering innovation, as the flow of new applications can
testify. Additionally, packets have proved their utility as a
unified representation that “works over anything”. Almost any
communications technology can be made to carry packets in
some way or other.

Critics will, often correctly, object that packets are not an
optimal way to use one or another underlying medium.
However, this begs the question of whether “optimization”
should be the dominant goal, and how the tradeoffs among
optimization, generality, and evolvability should be captured
and evaluated. As the Internet has grown up and proven itself,
we have seen that different media platforms have evolved to
carry packets more efficiently, e.g. time-division wireless such
as 802.11. This suggests that within limits (see the discussion
of aggregation in Section 3.1), the technologies can morph to
carry packets efficiently; the architecture need not morph to
match the technology of the day.

2.2 Controlled transparency and trust
The Internet is often described as “transparent”, by which i s
meant that what goes in comes out. The network (allegedly)
does not perform internal transformations, processing or other
actions on the data.2 This model has served the Internet well. It
is easy to understand, it does not “get in the way” of
applications trying to do something new, and for these reasons
it has fostered the development of new applications.
Transparency was another aspect of design for change, and i t
was a very successful approach.

In the early days of the Internet, transparency was seen as an
unalloyed good. However, the real world tells us that today
users want to be protected from some classes of traffic. Traffic
directed towards a host is often hostile, and users want
protection in the network, not just within the end-nodes.
Devices such as firewalls are popular, even though they
“break” the transparency of the network. We thus observe that
the role of transparency in a future network is more complex
than, say, the role of packets. Transparency is good when
considering design for change, but bad when we consider
security.

Firewalls are only an approximation to what the users want.
They block classes of traffic based on where in the network the
traffic is coming from. This type of control is crude and

                                                                        
1 It is worth noting that generality preserved through the

“millions of options” approach to extensibility often does
n o t  meet this test, because the implementation and
validation overhead and the interoperability problems of the
approach may outweigh any benefit to be gained.

2 This view of transparency is consistent with the specification
of the IP protocol [20], in which the concern is with
delivering the bits as transmitted to the receiver.   In
contrast, some authors [4] consider transparency only as
address transparency.



imperfect. It can only prevent certain classes of attach from
“outside”; it does not prevent attacks such as DDoS that
masquerade as messages to legitimate service ports.
Conversely, firewalls do nothing to control attacks from
“inside”; caused for example by disgruntled employees.  At
the same time, some users who trust each other may be on far
sides of the network. This leads to increasingly complex
structure and behavior, as VPNs and other methods to extend
trust boundaries evolve.

We claim that instead shared trust should implicitly modulate
the degree of network transparency at a basic, architectural
level. Ideally, when a set of users that trust each other
communicate, the network will appear as transparent as ever.
When users that do not trust each other communicate, the
network will constrain what is sent to only that which each end
is prepared to tolerate. This suggests that a design tenet for the
Internet of tomorrow should be controlled transparency, often
trust-regulated, which is more complex than the simple
transparency of today, but addresses both the goals of design
for change and security.

One venerable principle of Internet design that has much in
common with transparency is the end-to-end arguments, which
call for function to be implemented at the edge of the network
rather than in the core of the network when this is practical. A
network that is transparent, as we define it above, does not
involve itself with the data being transferred, so it conforms to
the end-to-end design. Devices like firewalls, which move
function into the net, begin to violate the end-to-end design.
So one challenge, discussed below, is how to marry the
benefits of the end-to-end approach with controlled
transparency.

2.3 Conflicts of interest
The observation that many users do not trust each other is
closely related to another observation—many users of the
Internet have interests that are adverse to each other. Users
want private communication; governments want to wiretap
their conversations. Users want to exchange music; rights
holders want to prevent this. Users want to send what they
please; Internet service providers (some of them) want to
regulate what they do, either as a matter of policy (employees
should not look at pornographic material at work) or as a
means to segregate high-value users (users who want a server
at their residence have to purchase a higher-price broadband
service.) These sorts of contention are intrinsic to the Internet;
they cannot be avoided by making a design decision. The
paper by Clark et al. [8] called this ongoing process of
contention tussle , and proposed that network designers
should make their goal designing tussle spaces, instead of
thinking that they going to resolve tussles. Once one takes
this viewpoint, one may be in a position to bias the tussle by
the shape of the tussle space, which is a more subtle but more
realistic form of control over the future. The paper also
identified some design tenets, in particular the isolation of
tussle-spaces so that unrelated tussles do not spill over into
one another.

3. Getting more specific
In this section we discuss a selected set of design features that
we believe should be at the core of a new generation Internet.
Each reflects one or more of the above general design tenets.

3.1 Making the best of packets
Questions about the net value of packets have been with us
from the beginning of networking.  We conclude that use of
packets, or more generally the provision for universal fine-
grained statistical multiplexing as a core architectural tenet, i s
a good idea that has passed the test of time. Even if one could
design a network from scratch today, the fine-grained
multiplexing implied by packets would be the way to go.

Packet-switched networks are motivated by the fact that the
ability to multiplex traffic from many of sources in a fine-
grained way is critical when traffic is bursty and intermittent.
[9], [28] As they have since remote login was first deployed,
applications continue to display this same bursty behavior.
While there are persistent predictions that the next application
will not fit this model and will require building a network with
constant-capacity circuits, this outcome has not materialized.
Statistical multiplexing as provided by packets is the way we
can give a user access to peak capacity on demand without
dedicating this capacity to that user full time.

There is a spectrum of service commitments that a network
might make to an application, from totally guaranteed
bandwidth to a service based on mixing lots of different
sources and provisioning to make sure that there is enough
capacity most of the time—this is the “best-effort” service of
the Internet. Packets (with some mechanism added) can do all
of these. We may debate whether we need to augment the best-
effort model, e.g with some sort of QoS. This does not
invalidate the basic need to deal with bursty traffic or the
decision to use packets as the unit of multiplexing.

We observe that the use of packets is an example of both
design for change and tussle-space design.  The provision of
fine-grained multiplexing allows for effective, unpredictable
uses of network resources.  By allowing for a spectrum of
service commitments, the packet approach defines access to
those services as a controlled tussle-space.

However, this does not mean that the (architectural) status quo
is correct. One aspect of the packet architecture that is missing
from the Internet today is any recognition of aggregates of
packets. By multiplexing lots of sources, service providers
make much better use of trunks; this is what makes the
economics of the Internet work. Going back to our first tenets,
it is packets that support the goal of design for change, but i t
is the properties of aggregates of packets that support
economic viability. Aggregates of packet flows have
significantly different statistical properties than the packet
flows that compose them—in general they have smaller short-
term fluctuations in rate, so they can make significantly more
efficient use of fixed capacity trunks. Different mechanisms for
the same problem may be preferable at the edge and in the
center. [2]  The simplest form of an aggregate is implicit—just
all the traffic going over a trunk. But aggregates are also a
natural unit of traffic engineering, and may be an equally
natural unit for on-demand bandwidth acquisition or QoS
control. This has obvious implications for the architecture.
Consider the network operator wishing to identify all the
traffic going between city-pairs and manage the routing of
these aggregates to balance the load on trunks. This objective
requires that the city-pair aggregate be explicitly identified in
the routing. The current Internet architecture has no way to
name or manage aggregates, so lower level mechanisms such as
MPLS are used to name these entities. This leads to duplicated



function and potential conflicts and instabilities between
competing algorithms operating at different protocol layers.

Instead, the architecture should include some means to name
and reason about aggregates as fundamental, first class
objects, so that important objectives such as traffic
engineering can be expressed within the architecture, rather
than outside it. This requirement does not imply that the
architecture should mandate the basis for forming the
aggregate—there can be many reasons for doing this. This
requirement only means that the architecture should
understand the concept of an aggregate, and should be able to
perform actions on it such as routing.3

Because the center of the network deals with aggregates, it i s
apparent that two sorts of network technology will evolve.
Near the edge of the network, where total speeds are lower and
the degree of aggregation is low, technologies will be used
that can multiplex packets and that can deal with statistical
fluctuations in traffic. Near the center of the network, where the
speeds are high and the degree of aggregation is high,
technologies are emerging that deal with aggregates. [22], [26]
This pattern is clearly emerging today. However, much of the
power and flexibility of the approach is lost because the
boundary between the two zones is unnecessarily rigid in the
currently evolving approach.

It is important to notice that the inclusion of aggregates in the
architecture changes the nature of the tussle-space over service
access, providing the “clients” with a new set of handles on
that tussle-space.

3.2 Transparency, security and end-to-end
design
In the 1970s, the security community had a clear idea of the
security problem to be solved and how to solve it. [12] Their
formulation of the problem had three parts: unauthorized
disclosure, loss of data integrity, and denial of service.
Security was framed in the context of an isolated machine, and
the proposed approach was a “security kernel” that mediated
all reads and writes to data. Most of the attention was directed
to disclosure and integrity—denial of service was considered
too hard to handle in a systematic way. Attacks on systems
were viewed as one means to achieve disclosure or loss of
integrity, and were treated in that context.

Managing disclosure and integrity in a networked world i s
best organized by separating host security from the problem of
protecting data “in the network”.  The network problem is
actually fairly easy to solve, since data can be encrypted end to

                                                                        
3 Some calls for abandoning packets (e.g. in the center of the

net) [1] are a result of not having aggregates as part of the
architecture.  For example, some high-speed optical
technologies cannot switch fast enough to forward
individual packets, implying that some other unit of
multiplexing is needed in the middle of the network. If the
aggregate were properly designed, these technologies could
be designed to deal with them, not with packets. It is then a
matter of optimization whether the packet headers should be
removed for efficiency and reconstituted or just sent for
greater simplicity, assuming they are recoverable.

end, if it need not be modified in transit4. So an “end-to-end”
approach to disclosure and integrity control protects data in
the network. At the same time, protection from disclosure and
data corruption within the host is (sometimes) easier, because
we no longer run multi-user systems with different users
running unrelated programs on the same machine. We usually
can afford to put mutually suspicious users on separate
machines, and limit multi-user interaction on a single machine
to servers, where the high-level security problems manifests at
the application level. Between end-nodes, there is a varying
spectrum of problems to solve. When two end-points trust
each other, it is appropriate and efficient to adapt an end-to-
end approach to integrity and disclosure. But among non-
trusting machines, the focus shifts to a different set of
problems—preventing one machine from attacking another,
and providing assurance (e.g. via a third party) that both end
of a transaction can be held accountable. The security tools of
choice depend on where in the spectrum of trust-regulated
transparency the end-points lie.

This approach to disclosure and integrity issues shifts
attention to denial of service and attacks on the end-nodes.
Attacks on end nodes are facilitated by pure transparency.
Pure transparency can be made secure in principle—it requires
that all end-points be perfect protectors of their own facilities,
and dedicate their resources to protecting themselves.
However, this means that hostile traffic can consume network
resources at will, since it will only be detected at the end-
point. In practice, the world is not going in this direction.
Observation of the real world suggests that people want a
security architecture that involves points of protection
“within” the network.  So network designers are now putting
technology into the network, not for the classic disclosure and
integrity control, but to fight system attacks and denial of
service attacks.

While perfect host security might reduce the call for controls
“in the net” to counter attacks on end points, protection within
the network is here to stay once we consider problems of theft
of network service, denial of service by flooding, and other
attacks on the network itself. But it is important to remember
that these two problems (host vs. network security) have
different implications for the protection mechanisms.

As we add new security services to the network, it is important
to think carefully about what they do to transparency. The
desirable ultimate outcome would be a universal model for this
function, independent of specific implementation. A simple
starting point might be that security checkpoints should
either appear totally transparent (as if they are not there), or
block traffic totally, so that they mimic a network failure
(which applications deal with today anyway). A simple
augment would be that when security considerations permit,
some sort of signal to the end-point should be defined so that
the users know what failure occurred.

As attention has shifted to denial of service, that problem is
being broken into parts that can be separately understood and
managed.  So a framework for addressing denial of service i s
emerging.

                                                                        
4 If the design of the application does require that the data be

processed while it is in transit across the network, this
implies that the end-node have decided to trust those
intermediate nodes, which becomes part of the security
equation.



1. Routers and similar devices inside the network can use
encryption and other means to protect themselves from
attack, just as hosts use end-to-end techniques. Note this
implies a degree of trust among the routers so connected.
(The problem with this approach is the possible increase
in the need for manual configuration of routers, which
adds to operational problems.) [15]

2. Routers and other devices that allocate capacity can use
priority or multiple queues to ensure that key network
messages can be forwarded during an attack, and abusive
traffic can consume only a share of network capacity,
assuming the masquerading problem is solved.

3 .  Devices that constrain or verify behavior will be
positioned at region boundaries, at points where the trust
assumptions change and where usage limits are to be
imposed.  

Attacks on end nodes are thus managed using a mix of
traditional end-node security and filtering of unwelcome
traffic (traffic from un-trustworthy nodes) upstream from the
host.

One result of this framework is that different parts of the
network can see into the protected areas with varying clarity.
To completely untrusted sources, the area is opaque; as
sources demonstrate more trustworthiness, more services and
endpoints become visible; completely trusted external sources
or internal sources can see all services.  This controlled
transparency is an emerging model for protecting networks
and services.

This general approach is coming into focus, but has not yet
evolved into an appropriate network security architecture.
There are no developed proposals for the expected division of
responsibility between the end-node and the network, and no
frameworks that let a system operator verify that the sum of the
mechanisms in place lead to a consistent level of security. So
there is much work to be done in this space. However, there are
some conclusions that can be drawn.

First, protection points will be stateful. We can perhaps learn
from today’s experience with firewalls and NAT how to think
about this state. Second, different parties (e.g. the operator of
the end-node and operator of the network) may disagree over
the desired security policy in these devices.  This is a tussle
space. A second tussle space is the conflict between the end-
user desire for confidentiality and virtually all governments’
desire for lawful intercept. An interesting example of the tenet
of separating tussle spaces was the US government’s
willingness, at one point in the debate over use of encryption
technology, to let it be used for integrity but not for
confidentiality. Mechanisms that tangled the two prevented
the deployment of improved integrity (which may have been a
tactical move by one side in the tussle.)

3.3 Weak semantics
The transport semantics of the Internet are quite vaguely
defined: best effort throughput, pretty good delivery latency,
mostly preservation of packet contents, and so on. This weak
specification has led to a tolerance and flexibility critical to
permitting operation over diverse technologies and diverse
implementations. It provides a weak foundation for theorists
to "reason about" the Internet, but as a practical matter it has
benefited most applications by forcing them to be much more

robust to varying performance and technical changes than they
would otherwise have been.

As the Internet matures, it is useful to ask whether new forces
challenge this perspective, and if so, whether the benefits of
the perspective continue to outweigh its disadvantages.  We
suggest that the primacy of weak semantics is indeed
challenged by two forces: the phenomenon of the least
common denominator, and an increased emphasis on security.

The phenomenon of the least common denominator is easily
understood by observing that in any sufficiently large system,
variability tends eventually to be driven out. In essence, this
is a network externality effect: within the space of a "weak"
semantics that explicitly or implicitly tolerates alternatives,
behaviors that do not provide significant benefit, or incur
high costs, will become less common than others, as a result of
which fewer portions of the system will tolerate them well, as a
result of which they will become even less common. The key
point is the positive feedback loop: as these behaviors become
less and less common, developers start to optimize for the case
in which they do not exist, causing the system to tolerate them
less. Over time, the de facto system specification becomes
more precise, and more minimal.

Many examples of this phenomenon are demonstrated in
today's Internet. Some are fairly obvious: over time the limited
use of IP options has led to the development of router fast-
paths that do not support them, rendering options less and
less useful. In effect, IP options are being removed from the
specification.

It is interesting to note that the same force can remove aspects
of a specification that at first appear much more fundamental.
Consider IP source addresses. Although the IP specification
would appear to demand that source addresses are to be carried
end-to-end, most common uses of IP do not actually depend
on this. As a result, the requirement has turned to an
assumption, which now is becoming weaker and weaker. With
the advent of NAT boxes, packet rewriting gateways, and the
like, it is now decidedly unwise to assume that the source
address in a packet has any relation to the end system sending
the data.

We offer two observations. The first is that this phenomenon
offers both cost and benefit. The benefit is that as the de-facto
system semantics becomes more precise and minimal, i t
becomes more and more possible to  optimize
implementations, and more and more possible to depend on
precise details of the architecture's behavior. This leads over
time to higher performance and greater efficiency for existing
applications.

The obvious cost, however, is ever-increasing loss of the
flexibility and evolvability that is a hallmark of systems with
weak semantics. Since, as we have argued above, this
progression is both natural and powerful, the system architect
that desires to limit its more negative effects should expect
that explicit action is needed to do so.

Unfortunately, the range of options available to slow this
progression is not entirely clear, and deserves further research.
Strategies employed in the past range from formal coverage
and regression tests of implementations (which can help



prevent atrophy of little-used capabilities, but effectively
remove much of the underspecification) to building in
"semantic escape paths" such as IP options, and then using
these paths for at least one critical function to keep them
viable. Less technical forces also play a role. For example, the
maintenance of a healthy application development and
research community serves to continually throw diversity into
the mix, balancing the drive toward homogeneity.

A second force increasingly acting against the existence of
weak semantics is concern about security. As any
infrastructure grows in importance to society at large, security
concerns correspondingly increase in importance. One
important manifestation of this is often a change in mindset
from "what is not explicitly prohibited is allowed" to "what i s
not explicitly allowed is prohibited". This is a direct challenge
to the weak semantics paradigm and its concomittant benefits.

We consider ways to balance concerns about security with the
perceived benefits of weak semantics described above.5 A first
question is why "weak semantics" is seen as problematic to
secure systems. One plausible conclusion is that precise and
minimal system semantics, by offering more direction to the
developer, lead to system implementations that are easier to
develop and verify, more able to detect and defend against
illegal inputs, and less likely to have bugs or unhandled
unusual cases. This is particularly relevant because it is widely
recognized that many networked system security weaknesses
are not due to mis-specification, but rather to mis-
implementation - problems such as buffer overflows,
unhandled bit combinations, and the like. [5] [19]

This concern can be alleviated in two ways.  The first is to use
implementation techniques, such as higher level programming
methods or formal verification methods that are less
susceptable to attack through mis-implementation. Of these,
high-level approaches such as formal protocol verification are
somewhat problematic in the presence of weak semantics, but a
substantial percentage of lower-level security holes could be
avoided without threat to the benefits of weak semantics
through stronger software engineering methodology.

A second approach is to protect against mis-implemented or
buggy code through the use of a separate, presumably simpler,
more understandable, or more reliable filtering device. The
most common of these is the firewall.6  Unfortunately, the
binary, all or nothing nature of firewall protection contributes
directly to the problems we hope to avoid here - current best
practice is to disable all paths through the firewall that are not
specifically required.

A better approach may be through the use of protocol
normalizers. [14] Here, some flexibility is preserved. The
device, rather than simply restricting actions it does not
expect, attempts to normalize them by ensuring that use of the

                                                                        

5 The authors thank Mark Handley and Steve Bellovin for a
useful email exchange that led directly to the points made in
this section

6 "The primary purpose of firewalls has always been to shield
buggy code from bad guys." Steve Bellovin, private
communication.

protocol falls within understood boundaries, and actively
reshaping it to do so if not. This more active and permissive
approach contrasts with the firewall's passive but restrictive
model. In theory, a correctly matched normalizer - end-system
pair will preserve significant flexibility while remaining
nearly as protected against mis-implementation security holes
as is a firewalled system. In practice, it seems likely that the
increased complexity of the normalizer approach, with
corresponding increased risks, must be traded off against the
additional flexibility. Our conclusion is that this strategy
merits further research.

To consider this situation further, it is useful to recognize that
there are two separable benefits to weak semantics. One is to
allow flexibility of implementation. The other is to allow for
growth and evolution in functionality of the protocol.

The protocol normalizer example above is most suited to
preserving benefits of the first sort. The trick lies in
identifying classes of underspecification that are potentially
exploitable in specific environments, and then mitigating
their effects through normalization.

Simultaneously maintaining functional flexibility and
security in the presence of "evolution" underspecifications i s
more difficult. The reason for this is that allowing for
evolution often means specifying that unknown or unexpected
protocol actions must be ignored - "be conservative in what
you send; be liberal in what you receive.” This idea is in direct
conflict with the security-motivated principle that
unanticipated protocol events or data objects should be
rejected rather than permitted. Reconciling these two
perspectives successfully requires moving away from either
simple endpoint - instead making a sophisticated, probably
runtime decision about which events to permit and which
events to reject, based on more complex analysis of the
surrounding environment and constraints. This too is a
subject for future research.

Despite the challenges posed to the weak semantics paradigm
by the forces described above, the implementation and
systemic benefits of the paradigm remain substantial.
However, that is the most we can say. System architects today
lack the tools to rigorously reason about how  substantial
these benefits are, or what the cost tradeoffs might be. At this
point, the ability to select a minimal set of semantics with just
the right degree of weakness or strength of the definition
remains an art. Success in this regard is a mark of the best
systems designers, and the process by which the skill is taught
and learned is not well understood.  We suggest that this
question is ripe for deeper study, and successful research
results in this area underpin the development of a more
scientific approach to our goal of systemic design for change.

3.4 Naming and addressing
Aside from packets, nothing may be as fundamental to the
Internet as its idea of host addresses, naming, and routing.
Since the original design of the Internet, there has been much
informal debate about how identity and addressing should be
handled. In the Internet, the IP address serves both to locate
the end-point within the network, and to provide a (weak)
identity check. TCP includes the IP address in the pseudo-
header to preserve the integrity of the end-point association.
DNS gives out an IP address when presented with a name, with



the implication that the service at that location is actually the
one desired. There is no other means to check that the service
at the end-point is the intended one unless there is some
shared application-level validation such as a login or
exchange of secrets.

3.4.1 Separation of identification and location
The proposal has been made many times that identification
and location should be separated. We believe that this is a
desirable goal, and should be a part of a future Internet
architecture. But this goal raises some interesting challenges
and a detailed design is necessary to expose all of them.

One consequence of mixing location (address) and identity i s
that since users do not want to lose their identity, they desire
to keep the same address, even when they move. The telephone
system mixes location and identity in a serious manner, since
phone numbers (rather than something like DNS names) are
printed on stationary and advertisements, and are remembered
by parties that want to call each other. So government
regulation has come to bear on the phone system to make
numbers portable; in the United States, 800 numbers are
portable today, local number portability and cellular number
portability are coming. What this implies in practice is that in
an example such as this phone numbers less and less express
location, and a lookup in a flat database is required inside the
phone system to translate the phone number dialed to the
internal location information.

In contrast, the Internet still maintains some efficiency in the
use of IP addresses to express location. The Internet has higher
level naming mechanisms such as the DNS, and in general,
users are expected to change their addresses when they move,
so addresses can still actually be used as addresses, rather than
a lame form of identity. This approach is the correct way to go.
For scaling reasons, routers cannot do a lookup for each packet
in a flat database of entries of ever increasing size, and if IP
addresses cease to express location, we will have to invent a
lower level identifier that does. A future architecture should
have an efficient means of expressing location, where efficient
means that it meets the needs of the routers.

Some proposals for the use of IPv6 have missed this point, and
describe a scheme where devices are manufactured with their
address built-in. This view makes an address into an identity
rather than a location, and should be resisted.

In arguing for separation of location and identity, it i s
important to note that location changes for all sorts of reasons.
A common example of changing location is host mobility.
This problem has received a great deal of attention, but there
are many other reasons that the location of an end-node may
change. First, the whole network to which the host is attached
may move. Networks are appearing in cars, trains, planes, and
people are starting to carry networks on their person. Networks
like these may change their attachment point to the Internet
frequently. Second, a host or network may be multi-homed,
and may change the path it uses from among the ones
available. Third, the operator of a host or a network may
change its service provider. If we accept the goal of efficient
representation of location, all of these actions will imply that
the address changes.  So change of location implies that
address dynamics will be much more pervasive, and all hosts,
not just mobile hosts, will have to deal with address
management issues. Also note that there are tussle spaces
within this design. Consumers tussle with providers over
customer lock-in. Providers try to capture customers, and

customers try to preserve the easy ability to change providers.
If identity gets linked to address, and the address is linked to
the provider, then one cannot change providers without losing
ones identity. This problem manifests most often at a higher
level, when people who change ISPs discover that they have to
get a new email identity.

3.4.2 Identities and translation
If we no longer use IP addresses as the identities for end-
points, we are left with three key issues to address:

• Scope: do all end-points need identifiers?

•  Identifier assignment: How are the identifiers
chosen?  Must they be unique over the whole
Internet?  Can they be reused over time?

•  Identifier translation: When and how are the
identifiers translated?

As the discussion above suggests, there are two key functions
we expect of identifiers: verification and resolution.  These are
very different from each other.  As Moskowitz [18] has
proposed, one can create public-key pairs for verification or
authentication that have no relationship to location or
accessing the end-points. Other sorts of names or identifiers,
such as DNS names or URNs (Uniform Resource Names) [10],
[25] might be resolved to addresses or URLs (Uniform
Resource Locators).  One can create a single mechanism to
provide both of these functions, but we suspect that part of the
negative experience of the past was that each is a potential
tussle space.  Hence, if a single mechanism provides both
functions, the tussles from one space overflow into the other.

If we believe that IP addresses should not provide either of
these functions, we need to invent one or possibly two
identifier spaces.  Let us consider each namespace separately.
In terms of verification, each end-point in a pair or group of
communicating end-points may need to verify the identity of
the other(s), but this requirement only applies to the potential
set of communicating entities, not the whole world.
Furthermore, there may be many end-points that an end-point
specifically does not want to be able to verify, or that do not
want to be verifiable.  We do not want to deny anonymity, only
to know when it is occurring.  So we can state clearly that, for
purposes of verification, there may be many verification
communities that do not need to be global, and that may
overlap.  A global namespace for verification is neither
reasonable nor necessarily desirable.  Rather we want to make
it feasible to have many such identification spaces.  

If we consider locating end-points, there are a number of
possibilities that one can imagine.  There are some cases in
which it is critically important that identifiers reach the same
end-point regardless of the location or identity of the source
end-point.  Email is a good example.  If we send email to
userXYZ@aol.com     , from various points around the globe, we
want it all to arrive at the same mailbox, although we do not
care where that mailbox is.  On the other hand, there may be
many end-points that never need to be identified.  For
example, a “known” end-point may hand off some of its
responsibilities to subsidiary end-points.  These may only be
accessible by telling a client their current addresses, which can
never be considered permanent identifiers, because those end-
points may be mobile.  Only for the period of a transaction
may that address be useful.  We can also easily find situations
in which local identifiers (such as “laser printer”) is all that i s
needed for resolution to an address.  



Thus, we can make four observations with respect to
identification scope and assignment: 1) It is often reasonable
to separate the identification functions into verification and
resolution; 2) there may be many such identifier spaces; 3)
some, but not all, of these identifier spaces need to be
resolvable to the same addresses or verifiers from everywhere;
4) there can exist some end-points that have no identifiers that
map to locations or verifiers.

With these issues of scope and assignment in mind, we can
now explore the question of how these identifiers, whether for
verification or addressing, are translated.  The situation here i s
fairly simple, since we have recognized that for both functions
there may be multiple identifier spaces and that not all end-
points fall into any or even one such space.  For those
identifier spaces that are intended to be global, in that from
anywhere they translate to the same result, some form of global
translation mechanism or federation of more local translation
mechanisms must be available.  But for the others, it can
simply be a local matter.  The DNS provides us with an
example of a global translation mechanism, and it is clear that
it is very challenging to make such a large, complex system
work well, especially under various engineering design
criteria, such as speed, accurate management of updates, and
network resource usage.  The Grapevine experience [11]
provides an interesting example of the sorts of problems that
can arise when trying to coordinate such a complex, widely
distributed system.  There is one more point worth noting with
respect to translation mechanisms.  There is nothing in all of
this that requires that there be one translation mechanism for
all time or even at any one time, for any particular scheme.  The
only requirement is that if, within some scope (global or local)
identifiers must be mapped in a specific way, that any and all
translation schemes meet the same criteria.  Translation
schemes may evolve; there may be more than one at any given
time, and certainly over time.  The DNS [16], [17] does not
support this approach, but other approaches such as URNs [24]
and Active Names [27] do.

We conclude from this that it is important to separate
location from the two functions of verification and access,
and, to the extent these functions are needed, they can be
provided by a multiplicity of services, each meeting the
engineering design criteria of their user communities.  These
criteria derive from both designing for change and the need
to cleanly define tussle-spaces.

4. An application perspective on architecture
In the past, network architects have designed the network, and
then let the application designers do what they pleased,
without much guidance. Today, not only do we know more
about how to build nets, we know more about what application
designers do. We should take this into account. By giving
advice to application designers, and making clear the
responsibility of the application layer, we can avoid making
the network more complex.

This does not mean we should restrict what the application
tries to accomplish. We cannot predict what the next
application will be; hence our continued emphasis on design
for change. The idea here is to give the application designer
better advice about how to accomplish his goal, whatever i t
may be. To understand how we might better guide applications
in their design, we need to look at network function from an
application perspective.

4.1 Applications, transparency and scope
Applications are selective with respect to the features of the
net on which they choose to depend. For example, the Internet
email protocol SMTP just depends on a byte stream. A byte
stream is a transparent service at some level—the bytes that
come out are the bytes that go in, but SMTP takes no heed of
the packet abstraction, nor (at a higher level) of the “features”
of TCP other than reliability and ordering. So some
applications are actually designed to tolerate weaker semantics
than the network provides. At the same time, the Internet email
service does not use an end to end approach to its design, but
is implemented as a series of mail relay servers between the
sender and receiver.  This illustrates an important duality,
which we discuss below.

The design goal of the network and the application are
different. The network is designed for the application yet to
come. It is optimized for change. Each application exploits
what it finds, and has no need of generality beyond that.
Application designers cheerfully pick and choose from the
generality offered them in favor of convenience and a different
kind of generality—the ability to operate over different sorts
of infrastructure from the ones the network operator proudly
offer, and thus to achieve a broader reach or scope than the
Internet itself. So design for change for the network builder
implies building for the application that has not yet emerged,
while design for change for the application builder implies
building for the network that has not yet emerged.

Email has a long history as an application that transcends
Internet boundaries.  All the networks in the 1986 survey by
Quarterman and Hoskins [21] supported email, and that paper
illustrates the lengths to which those users went to allow
interchange of email between non-IP and IP networks.  Email
messages were routed at the application level to gateways that
were capable of terminating the local network's reliable
transport, were able to translate the headers to the destination
network's addressing system, and could get the message to
appropriate application servers in the destination network.
Email connectivity extended beyond the Internet via
connection-oriented permanent networks and on-demand
telephone relays, as well as now-conventional packet
forwarding networks.

Though it is less common to come in contact with it today,
email continues to reach further than systems running IP.
FidoNet [3] is a network relaying email between bulletin board
sites via telephone connections.  It has been in operation since
the early 1980s and continues to operate. The Fidonet mail
routing and transfer protocols are far removed from IP.  Mail i s
routed between geographically-named mail hubs connected
via non-dedicated telephone lines using a transfer protocol
tuned for efficient use of telephone voice lines.  In this respect,
the “reach” of the application is broader than the reach of the
Internet itself. Its administrators claim that more than 10,000
systems are configured to transfer email via FidoNet.7 [13]

Architects understand that applications may span more than a
single network architecture, but this idea is not viewed as part
of the Internet architecture, because it seems as if by definition
it is beyond it. This view is wrong. Recognition of this should

                                                                        
7 Because FidoNet uses explicit route maps, that number is

trustworthy.



be explicit, because it will help us understand what the “core”
network needs to do.

The generality and uniformity of the network need reach no
further than the point at which we wish to support the
unknown application. Interconnection at the application level
will always be less general but more encompassing than
general Internet connection. Respect both approaches.

Consider (again) email, and imagine a mobile device that i s
designed only for email. Although designers of this device
may find full Internet connectivity attractive, they could also
use stateful conversion points as the historical systems do.
Both approaches have their merits and costs.  A conversion
point implies a stateful point in the path of the
application—email has these already. It implies that the
communication path from the device to this conversion point
may be outside the architected network (e.g. on the cellular
network). But it may imply more efficient use of wireless
capacity, or some other benefit.

Sensor networks are an emerging example. These networks
tend to have very constrained complexity and power budgets,
a constrained set of application goals, novel ways of routing
information and so on. These networks may be “attached to”
the Internet, and as a result make their applications available
across the Internet. But they often will not run the Internet
protocols. The interconnection point between the Internet and
the sensor network will almost certainly be application-aware.

Any device too specialized to run the full Internet suite can be
assumed to be too specialized to be treated as a fully general
platform for unknown applications.

Many people might accept this statement implicitly, but might
be unwilling to accept it as an architectural constraint. But if
we accept it, it provides a clean division between two parts of
the network—that part where we preserve the core principles of
the Internet design (universal packet carriage, transparency,
address-based routing, support for the unknown application)
and those parts that use some other principles. Networks of
sensors, networks of specialized wireless devices, and other
technologies should be encouraged to be cleanly in one camp
or the other. Either they run the general Internet suite, or they
have a connection point (probably stateful) and run
application-specific mechanisms8. This second mode exists
today, and we should ask what we need to do to support it;
not just deprecate it.

4.2 Application level framing revisited
The discussion above provides a way to resolve a standing
debate about the utility of a proposal called Application Level
Framing (ALF).[7] That proposal described an alternate sort of
network in which there was no uniform unit of multiplexing
such as the packet. The unit of transport was an application
layer data unit, or ADU. The network only preserved this aspect
of transparency, and was free, inside, to fragment and
reassemble the ADU in arbitrary fashion. ADUs could be
transported using different modes of multiplexing to match
the details of the network technology—packets, cells or what
have you. This idea was appealing, but had awkward
implications in detail. The original proposal provided

                                                                        
8 “Application-specific mechanisms” can include using parts

of Internet mechanisms, The important distinction is the
sacrifice of broad generality.

transparency at the ADU level—the ADU out was the same as
the ADU in. But this view turns out to be over-simplistic. If a
multiplexing unit is lost inside a network, it is not always
reasonable to discard the whole ADU.  We have seen the
problems that arise just with IP reassembly—this would be far
worse, because the ADU could be much bigger. But if the ADU
can be delivered while incomplete or reconstituted based on
partial retransmission, this implies that some knowledge of
the “hidden” multiplexing units starts to leak out.  Different
applications might be tolerant of ADUs with missing or
corrupted parts, others might demand totally accurate delivery
or nothing, and so on. So the ADU conversion point in the
network either has to be application-aware, or support a
number of “general” modes of error recovery.

We conclude that if ALF is not application-aware, several of
our goals will be compromised. First, since ALF error recovery
will not lead to a simple form of network transparency, it will
force a more careful specification of the ADU transport
semantics. Second, it will demand general, stateful
transformation points in the network. If, however, the
transformation is application-aware, it need only preserve the
semantics on which the application depends. The idea of
application-aware ALF at the application layer is exactly the
same idea as preserving the generality of the network only to
the same extent as we preserve application neutrality. This is a
valid approach, and should be made explicit.

4.3 Applications and naming
If applications wish to have a reach, or scope, that is larger
than the Internet, then it follows that they need to be able to
name application end-points in ways that are not restricted to
the Internet context. The design of email provides email
“addresses” general enough that they can name entities
outside the Internet. There are several approaches for doing
this, including embedding one kind of name inside another
with clever syntax, or building an application-specific naming
service that is managed coherently to name points in all the
desired networks. But as part of designing an application, the
designers must decide how they will name their end-points,
and whether the application will include a routing/forwarding
function at the application level, as Internet email does.   As we
discussed earlier in Section 3.4, questions about the
universality, persistence, and scope of translations of
identifiers, whether at the IP routing, transport, or application
layers must be considered carefully, in order to provide the
desired functionality balanced against various tussles.  The
problems are no different in the domain of applications,
although the choices may be, since these identifiers may also
need to be user or human friendly.

4.4 Giving advice to the application designer
Guidance to the application designer might be captured in the
form of a set of questions:

•  What is the definition of transparency on which the
application depends?

• What is the desired scope of the application?

• What sort of application-level naming and addressing i s
needed so that the application can have the needed
scope?

•  Does the application benefit from (or require) relay
points?



• If so, what parts of the data need to be visible for transit?
What parts can be encrypted end to end? Are there
regions of trust within which the data need not be
protected by encryption, and does this make the design
of the edge regions easier?

•  Does the application depend on end-to-end verification
to insure reliable delivery, or on robust relaying? Does
the application need to depend on “immediate” bi-
directional communication?

By asking these sorts of questions of the application designer,
we emphasize what problems the network and the application
each have to solve. We also return to the three tenets with
which we began this paper, now considering the boundaries
between network and application: the impact of designing for
change, controlled transparency and negotiation in tussle-
spaces.  If the application builder wants a greater scope than
that of the Internet, we shift to him the necessity of dealing
with network technology so specialized that the Internet
abstraction cannot easily be made to work over it. (With luck,
some other network designer has dealt with the quirks of that
technology, so the application designer does not have to be a
network specialist.)  We remove from the Internet naming
conventions the need to name entities that are outside the
reach of the Internet.

As we shift this responsibility to the application designer, we
might at the same time build tools that support his needs.
These might include new sorts of region-boundary services,
new naming services, and so on. But by this distinction, we
capture the idea that these new services do not need to capture
the full generality of the Internet transparency.

5. Revisiting the stateless faith
Internet believers praise the objective of the stateless network,
often ignoring the reality. Of course, the network is not
stateless; it has routing state at a minimum. But the normal
interpretation of “stateless” is that there is no state per
“connection”, whatever a connection is. One test we apply to
see if the network is stateless is whether any sort of setup i s
required before sending a packet.  This is a laudable goal;
demanding any sort of setup does add undesirable overhead
and complexity to interaction, especially since many
interactions are very brief and involve few packets.  But it i s
clear that there is state inside the network that does relate to
individual connections, and the quantity of such state i s
growing. State is particularly related to regions and their
boundaries. What is desirable is a general, reusable set of
architectural mechanisms to manage this state. To arrive at this
mechanism, it is helpful to consider the varying purposes this
state serves, as a starting point towards identifying common
characteristics that can be abstracted.

State in NAT boxes does address translation. It is created when
the first packet arrives, using a preset algorithm, so no explicit
setup from the endpoint is required.  State in firewalls usually
sits at region boundaries.  It is not usually per connection, but
has per-connection consequences. State is also found at points
where network-specific reformatting is performed (e.g.
breaking packets into cells), where QoS is implemented, and
where headers are compressed.  There is also a great deal of
application-level state in the network.  

Our affirmation above that packets are still a good choice does
not mean that the packet design currently used in the Internet -
stateless connectionless datagrams - is necessarily the way to

go. We need a new set of design principles that reflect this
reality: such as end-driven reconstitution of state after a
failure, ability to inspect the state to determine why
communication is failing (why transparency is missing), and
so on. Taken together, these design tenets begin to define a
shared, evolvable soft state support subsystem within the
Internet architecture.

In particular, the goal of controlled transparency may be best
achieved with some careful use of state in the network, so that
the first packet in a transfer carries some extra trust-defining
information, which is cached and reused on subsequent
packets, and which can be reconstituted if it is lost. This sort
of zero-round trip soft state may be a relatively benign design
compromise.

6. Conclusions
The tenet of design for change is, from one perspective, an
argument for architectural minimalism – a small, carefully
limited set of global invariants and shared functions, with all
else left to more local definition. Once an infrastructure
becomes embedded and dominant, any point of global
commonality will become almost impossible to change or
migrate. Of course, having alternative solutions to every
problem is an open door to loss of interoperability, confusion
at the application and user level, and so on. But clever
designers understand how to install escape paths to avoid
being locked in to a bad decision. The prefix to URLs (http,
https, etc.) was intended to allow them to name “things” in
multiple name spaces without the user having much care about
what was happening.  

Perhaps the most radical idea from this analysis is that the
simple, end-to-end transparency model should be replaced
with the more complex idea of controlled transparency. This
implies active elements in the network, which in turn implies a
tussle over who controls these devices. It also implies that we
need to specify what impact these devices have on the
semantics on which the applications depend on.
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