From Protocol Stack to Protocol Heap

-- Role-Based Architecture (RBA)

Bob Braden, Ted Faber

USC Information Sciences Institute

Mark Handley
ICSI Center for Internet Research

ACM HotNets |
Princeton University
October 28, 2002

Outline

Motivation

Overview of Role-Based Architecture (RBA)
Using RBA

Related Work

Conclusions

Role-Based Architecture -- Braden@isi.edu

Motivation

« The IETF has become an architectural pretzel factory.
— Layer violations

— Sub-layer proliferation
« E.g.,, MPLS at 2.5, IPsec at 3.5, and TLS at 4.5.

— Feature interactions
o Cross-product complexity

— Erosion of E2ZE model -- middleboxes
» Firewalls, NATS, proxies, caches, ...

o A paradise for lovers of complexity

e Can we somehow reduce the complexity and increase
the architectural flexibility?

Role-Based Architecture -- Braden@isi.edu

Motivation ...

Suggestion 1: Replace the traditional protocol layering
paradigm with a more general model.
« Many of these problems seem to be related to traditional layering.

Suggestion 2: Provide a protocol mechanism to attach
additional metadata to data packets -- “in-band
signaling” -- for middleboxes.

« Attach color-coded “stickies” to packets in the network.

These suggestions led to the concepts of Role-Based
Architecture (RBA)

Giving up layering has profound consequences for how
we think about protocols.

Role-Based Architecture -- Braden@isi.edu 4

What Does Non-Layered Mean?

« Traditional layered architecture
— Modularity
* Functional unit for each protocol layer.
— Packet header format:
» Sub-header for each layer, forming a logical stack.
— Header processing rules:

* Order: Headers processed in order by layer (LOFO)

» Access: A functional module can read/write only its own sub-
header

Role-Based Architecture -- Braden@isi.edu

 Non-Layered architecture
— Modularity:
* Role: Functional spec of a communication building block.
— Packet header format:

» An arbitrary collection of sub-headers: “role data”.
* These are Role-Specific Headers (RSHs).
 RSHs are addressed to roles.

» Header data structure is now a logical heap of RSHSs.

— Processing rules: need new rules for order, access.

Role-Based Architecture -- Braden@isi.edu

RSH Processing in a Node

Network Node

Role o
ole
A Role C
B
Q&
T —)
RSH
> | [rsH 2 | REns Payload
1
_ Heap Y,

Packet

Role-Based Architecture -- Braden@isi.edu

Objectives of RBA (1)

Clarity:

— Replace “layer violations” with architected role interactions
Flexibility

— Roles have more flexible relationships than layers
Extensibility

— Roles are modular and hopefully orthogonal. No layer
restrictions.

Inband Signaling
— RSHs can act as “stickies”, e.g., to control middle boxes.
Auditability

— Can leave RSHs after they have been “consumed”, to signal to
downstream nodes that a function has been performed.

Role-Based Architecture -- Braden@isi.edu 8

Objectives of RBA (2)

e Portability
— Allow roles to be sited arbitrarily on nodes.
» For extra credit. mobile roles that migrate among nodes
e Re-Modularization

— Current monolithic protocol layers are large and complex;
can re-modularize into smaller units.

e This is not a new idea
 Itis unclear how far one should go towards micro-roles
* But RBA gives us freedom of choice on functional granularity
o Security
— Hide particular role data (Don’t muck with my meta-data!)
— RSH might be unit for encryption of role data

Role-Based Architecture -- Braden@isi.edu

Brief Overview of RBA

Outline

Role Data

Role Definition

Naming and Addressing
Processing Rules

Trivial Example
Implementation: Packet Layout

Role-Based Architecture -- Braden@isi.edu

10

More About Role Data

 RSHs can be added, modified, or deleted as a packet
Is forwarded.

 RSHs subdivide the header information (meta-data)
along role boundaries.

» Granularity of RSHs is an important design parameter

» Trade off processing overhead against reusability

 RSHs generally carry metadata, but some may not,
only modifying processing by their presence.

Role-Based Architecture -- Braden@isi.edu

11

Defining Roles

Roles communicate with each other only via RSHSs
— (for role mobility)

Roles may have local APIs to node software.

A fully-specified role will be specified by:

— Its internal state, its algorithms, its APIs, and the RSHSs it will
send and receive.

Generic roles

— Want to be able to derive a full role specification from a
generic functional definition by stepwise refinement.

— Aid reasoning about protocols and for developing new roles.

Role-Based Architecture -- Braden@isi.edu

12

More about Roles

* A role instantiation called an actor.
* (MJH doesn't like the Hollywoodiness of this term)
* Roles are often coupled in conjugate pairs

— E.g., {Encrypt, Decrypt} {Compress, Expand} {Fragment,
Reassemble}

* (Undecided: Is a conjugate pair one distributed role with two
actors, or two interrelated roles?)

Role-Based Architecture -- Braden@isi.edu

13

Naming and Addressing in RBA

* Role type is identified by unique name: RolelD
« “Color-coded”
« RSHSs are addressed to role(s)

— Assume an address space for nodes {NodelD} [~IP addr]
— <RoleAddr> ::= <RolelD> @ <NodelD> | <RolelD> @ *

Wildcard NodelD: RSH will be processed by any instance
of the RolelD that it encounters along the path.

 Symbolically, an RSH is:
RSH(<RoleAddr>, ... ; <RSHbody>)

(More accurately: RSH(<RoleAddr>:<access bits>, ...))

Role-Based Architecture -- Braden@isi.edu

14

Processing Rules

« A Role R onnode X may access an RSH If:

(1) The RSH is explicitly addressed to R
RoleAddr = R@X or R@*,

(2) or R is promiscously listening for RolelD R’ that /s addressed by RSH
Either may be restricted by access control bits.

 Enforce Sequencing rules

— Legal ordering of conjugate roles
* compress -> expand, or encrypt -> decrypt

— Proper nesting: compress -> encrypt -> decrypt -> expand

— Use presence/absence of RSHs (between nodes) plus
precedence rules for roles (within the same node).

Role-Based Architecture -- Braden@isi.edu 15

Simple Example Using RBA

{ RSH(HBHforward@* ; dest-NodelD, src-NodelD),
[* -> Forwarding role instance in every router */

RSH(Deliver@dest-NodelD ; servicelD, src-processiD,
payload),
[* Deliver payload to specific service at dest node */

RSH(Reassemble@ dest-NodelD ; offset, MFflag},
RSH(TrustScope@* ; <local scope>)

Role-Based Architecture -- Braden@isi.edu

16

Possble RBA Packet Layout

Payload

RolelD

NodelD:or zero

Flags Byte Offset

Access

Bits

Role-Based Architecture -- Braden@isi.edu

RSH format

| FIagsI DDescrI Length: (bytes) J

=

Using RBA -- Possibilities

Pure RBA architecture
 All functions, from current link layer to applications, using roles.

RBA only above the Link Layer

* Probably want to treat the link layer as god-given.

RBA only above IP layer

» Retain forwarding efficiency of IP in routers.
 RBA overhead then only in end systems and middleboxes

RBA only in app layer

* We need an application layer architecture; RBA could be a nifty
framework for it. Would still help immensely with middleboxes.

RBA only as abstraction for reasoning about protocols.

Role-Based Architecture -- Braden@isi.edu 18

Related Work

 Hasn't this all been done before? Not really...

e Modular construction of protocol stacks
— Peterson et. al. 1991 (X-kernel), Tschudin 1991.

* Protocol decomposition into micro-protocols

— For re-usabllity & customization --

O’Malley & Peterson 1992, Bhatti&Schlichting 1995,
Kohler et al 2000 (Click), Kohler et al 1999 (Prolac).

— For paralleism -- Haas 1991, Zitterbart et al 1993.

 These all focused on protocol implementations, not on the
protocols themselves.

 RBA is orthogonal concept; in fact, the earlier work may provide a
basis for realizing RBA.

Role-Based Architecture -- Braden@isi.edu

19

Conclusions ...

e This is a position paper.

— We have not yet built an RBA prototype, although a USC grad
student is working on it.

— We have worked through some simple examples.
— Some of the basic definitions are still subject to debate.
* | hope | have convinced you that a non-layered
approach to protocols might not be totally crazy.

— But we are so used to thinking in a layerist manner that using
RBA does twist the head a bit.

Role-Based Architecture -- Braden@isi.edu 20

Conclusions

e Advantages of RBA
— Modularizes functionality better then layering does.
— Provides an explicit place for middlebox metadata
— Should create fewer unexpected feature interactions

 Disadvantages of RBA
— Replacement of deployed protocols
— Less efficient (header space, processing).
— Greater flexibility may itself increase complexity and confusion.

Role-Based Architecture -- Braden@isi.edu 21

Conclusions ...

« RBA might be:

— The Next Great Thing in networking, or

— only useful for re-organizing particular protocol layers, e.g., the
application layer, or

— only an abstraction for reasoning about protocoils.

« RBA appears to have considerable richness and scope
for further research.

Role-Based Architecture -- Braden@isi.edu 22

