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Texture Classification by Modeling Joint
Distributions of LLocal Patterns with Gaussian
Mixtures

Henning Lategahn, Sebastian Gross, Student Member, IEEE, Thomas Stehle, Student Member, IEEE,
Til Aach, Senior Member, IEEE

Abstract— Texture classification generally requires the analysis
of patterns in local pixel neighborhoods. Statistically, the un-
derlying processes are comprehensively described by their joint
probability density functions (jJPDFs). Even for small neighbor-
hoods, however, stable estimation of jPDFs by joint histograms
(jHSTs) is often infeasible, since the number of entries in the
JHST exceeds by far the number of pixels in a typical texture
region. Moreover, evaluation of distance functions between jHSTs
is often computationally prohibitive. Practically, the number of
entries in a JHST is therefore reduced by considering only two-
pixel patterns, leading to 2D-jHSTs known as co-occurrence
matrices, or by quantization of the gray levels in local patterns to
only two gray levels, yielding local binary patterns (LBPs). Both
approaches result in a loss of information. We introduce here
a framework for supervised texture classification which reduces
or avoids this information loss. Local texture neighborhoods are
first filtered by a filter bank. Without further quantization, the
jPDF of the filter responses is then described parametrically by
Gaussian mixture models (GMMs). We show that the parameters
of the GMMs can be reliably estimated from small image regions.
Moreover, distances between the thus modelled jPDFs of different
texture patterns can be computed efficiently in closed form from
their model parameters. We furthermore extend this texture
descriptor to achieve full invariance to rotation. We evaluate
the framework for different filter banks on the Brodatz texture
set. We first show that combining the LBP difference filters with
the GMM-based density estimator outperforms the classical LBP
approach and its codebook extensions. When replacing these
— rather elementary — difference filters by the wavelet frame
transform (WFT), the performance of the framework on all 111
Brodatz textures exceeds the one obtained more recently by spin
image and RIFT descriptors in [Lazebnik et al., 2005].

Index Terms— Texture, Classification, Filter Banks, Wavelet
Frame Transform, Parametric Models, Gaussian Mixture Models,
Support Vector Machines.

I. INTRODUCTION

Texture in images has often rather concisely been described
as a “neighborhood property” [1], [2], [3], [4]. Texture clas-
sification consequently requires the analysis of patterns in
local pixel neigborhoods. From a statistical point of view,
the random process generating a certain texture pattern is
completely described by its joint probability density function

H. Lategahn was with the Institute of Imaging and Computer Vision, RWTH
Aachen University, Germany. He is now with the Institute of Measurement
and Control, Karlsruhe Institute of Technology (KIT), Germany. S. Gross,
T. Stehle and T. Aach are with the Institute of Imaging & Computer
Vision, RWTH Aachen University, Germany. This work was supported by
the excellence initiative of the German federal and state governments.

(jPDF). Even for small neighborhoods, though, stable estima-
tion of jPDFs by joint histograms (jHSTs) is practically often
infeasible, since the number of entries in the jHST exceeds by
far the number of pixels in a texture region of typical size - a
phenomenon which is known as the curse of dimensionality.
A such estimated jHST is then almost empty. An attempt to
overcome this problem using Parzen window estimation would
require huge efforts in terms of both time and storage. More-
over, computational evaluation of distance measures between
jHSTs in order to assign the observed patterns to classes is
also often prohibitive. Different approaches to extract partial
information about the underlying jPDFs from the observed
texture samples were therefore developed. A classical method
is the so-called texture energy transform by Laws [5], where
a bank of local filter masks is applied to the texture, followed
by computing the local variance in each channel. The set
of variances can be shown to be a linear transform of the
covariances of the texture process [6], [7] (cf. for the DCT
also [8], [9, p.76]), i.e., of second order joint moments of
its jJPDF. These describe the texture process completely only
if its jPDF is Gaussian (and zero-mean), which, however, is
generally too rigid a model. For supervised segmentation, Ade
replaced Laws’ ad-hoc filters by so-called eigenfilters [10],
while the use of quadrature filters allowed a more elegant
computation of local energy [7], [11], [12], for instance in
Gabor filter banks [13], [14], [15], [16], [17], [18]. Another
alternative are wavelet filter banks, for instance the shift-
invariant wavelet frame transform [19]. Unser [3] has shown
that convolution operators yield projections of histograms that
approximate a jPDF by means of local linear transforms of
neighborhoods, and derived conditions for optimal separability
(cf. also [20]). Spectral marginal histograms computed from
filter bank outputs are used in [21]. A comparative review of
filter bank approaches to texture classification can be found in
[22].

An alternative to extracting information about a jPDF via
moments is to reduce the number of entries in a jHST by,
e.g., considering only pixel pairs. This leads to 2D-jHSTs
known as gray level co-occurrence matrices (GLCMs) [1],
which often serve as an intermediate step from which further
features are computed [1], [23]. A related idea combining
the consideration of pixel pairs with elementary filters is to
estimate 1D histograms of differences of neighboring pixel
intensities (gray level difference histograms) [24]. A scheme
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combining Gabor filter banks and gray level co-occurrence
statistics of pixel pairs can be found in [25].

A pioneering approach to texture feature extraction, devel-
oped by Ojala et al., decreases the number of jHST entries
by quantization of the pixel values in local patterns to only
two values while keeping the full dimensionality of the jHST,
leading to features called local binary patterns (LBPs) [26],
[27]. To achieve invariance with respect to gray level offsets,
the gray level of the central pixel is subtracted from all other
gray levels in the local pattern prior to the binary quantization.
This operation can be regarded as applying a bank of oriented
difference filters [28]. For a second-order neighborhood, i.e.,
a neighborhood consisting of the eight nearest pixels to its
center pixel, the binarized gray level differences can then
be coded as an eight-bit word, thus elegantly allowing to
represent the 8D-jHST as a 1D histogram with 256 bins. If,
for larger neighborhoods, the number of LBP values grows
too large, they may be rebinned such that only a lower
number of prominent LBP values are distinguished, while
only using a few bins for the others [27]. A certain degree
of rotation invariance is achieved by cyclic shifts of the LBPs.
Genuine rotational invariance, however, then holds only for
rotations by some integer multiples of 27 /@), where @ is
the number of pixels in the neighborhood. Modifications of
LBPs include thresholding to increase robustness against noise
in flat regions [29], making LBPs center-symmetric [30] for
region description, and combining LBPs with co-occurrence
matrices [31]. An alternative approach [32], [33] uses vector
quantization [34] of the QD-jHSTs to reduce their size, which
may be regarded as a special instance of signatures [35].
Compared to the complete jPDF of non-trivial neighborhoods,
both the GLCM approach and the LBP approach result in a
loss of information.

We describe here a framework for supervised texture clas-
sification which avoids the dilemma of either considering
only very low-dimensional jHSTs or applying very coarse
quantization by modelling the jPDFs of local patterns by Gaus-
sian mixture models (GMMs) [36], [37]. We show that the
parameters of the GMMs can be reliably estimated, even from
small image regions, by the expectation-maximization (EM)
algorithm [38]. The texture features are then formed by the
jPDF estimates, or, more precisely, by their GMM parameters.
For classification, distances between the thus modelled jPDFs
can be computed in closed form from their model parameters.
Using the — rather elementary — oriented LBP difference filters
leads to a descriptor related to the LBP which we will refer
to as the local continuous patterns (LCP) descriptor.

While results show that the LCP descriptor outperforms
the LBP method, it does not reach the performance of a
more recent approach by Lazebnik et al. [39]. In their ap-
proach, Lazebnik et al. model the jPDF of the filter outputs
by signatures, which consist of cluster centers in the filter
output space and associated weights. Furthermore, they use
histograms as non-parametric density estimators. Signatures
are compared for similarity by the well-known Earth Mover’s
Distance (EMD) [40], while the histograms are compared by
the y2-distance.
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Fig. 1. Examples of Brodatz textures (200 x 200 pixels). From left to right,
top to bottom: D3, D6, D11, D52.

Our above approach is comparable to the one of Lazebnik
et al. as both subject the region of interest to a filter bank and
estimate the jPDF of the filter outputs. Later on in this paper,
after having replaced quantization and histogram computation
of the LBP method by the GMM-based jPDF estimator, we
will therefore also replace the simple LBP difference filters by
more sophisticated filters, namely, the wavelet frame transform
(WFT). The thus constructed texture descriptor, consisting
of a filtering step by a WFT filter bank and subsequent
GMM density estimation, is evaluated by classifying the entire
Brodatz set (111 textures) in a setting as used in [39].

The paper is structured as follows. In section II, we review
the LBP approach in more detail. Section III is devoted to
rotational invariance. We then develop the models for the gray
level differences observed in local patterns, and describe how
the parameters are estimated (section IV). Section V shortly
reviews the WFT. In section VI, we discuss distance measures.
In section VII, we turn to classifiers, viz., k-nearest neighbor
(k-NN) classifiers and support vector machines (SVM) that use
a kernel derived from the aforementioned distance function. In
section VIII, we provide results and comparisons between the
described classification approach and the methods discussed
above, viz., LBPs, the method by Lazebnik et al., and to the
recent Gabor-Filter-LBPs [41]. The evaluations and compar-
isons are based on the Brodatz texture set [42] in setups as
employed in [33], [27] and [41] for the LBPs, and as described
in [39] for signatures. We conclude with a discussion in section
IX.

Throughout the remainder, and unless otherwise mentioned,
we shall assume the following setup. There exists a set of
textured images (Fig. 1), each of which is subdivided into
smaller regions of, for instance, 64x64 pixels. Each such
region is to be uniquely assigned to one of K texture classes.

II. LOoCAL BINARY PATTERNS

LBPs as devised by Ojala et al. [26], [27] consider the gray
levels y; to y¢q of the () pixels on a circle of radius R around
the central pixel to be processed, as illustrated for R = 1
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Tllustration of LBP formation for R = 1 and @ = 8.

Fig. 2.

and @ = 8 in Fig. 2. From each y;, ¢ = 1,...,Q, the gray
level c of the central pixel is subtracted, yielding the feature
vector z = (21,...,20) = (11 — ¢, ..., Yo — ¢). Computing the
differences can be regarded as convolution with the oriented
difference filters

1 0 0 0 0 0
REBE — 10 —1 0f,...,hPP =1 -1 o] . (1)
0 0 0 0 0 0

The differences z;, ¢ = 1,...,Q are then quantized to two
levels, and converted into a scalar value according to

Q
LBPor = Y Ipsop-27" 2)
=1

where I, is the indicator function which evaluates to one if
the Boolean expression b is true and to zero otherwise. While
the binary quantization is rather coarse, it makes the LBPs
invariant to gray level scaling. A certain degree of rotation
invariance is achieved by cyclically shifting the binary rep-
resentation (L., >0y, --,{2,>0}) so that LBPg r becomes
minimal, which corresponds to cyclically interchanging the
axes of the QD-jHST. The @D-jHST can now be conveniently
represented by the 1D histogram of the LB Py r as computed
by (2) over one texture region. These histograms form the
features upon which classification of the texture regions is
based [27]. Distances between the histograms of LBPs can,
for instance, be evaluated by the Kullback-Leibler divergence

ol h
dxL(H,G) =) hylog (g”) (3)
n=1 n

where h, and g, are the bins of the histograms H and
G to be compared. While LBPs constitute thus a signifi-
cant step forward towards consideration of the jPDF with
all its dimensions, the coarse quantization omits gray scale
information which may well be beneficial for classification
(although it may provide an additional degree of invariance to
gray level scaling); indeed, Ojala et al. propose to combine
the LBP histograms with variance histograms of the same
region in [27] to improve recognition performance. Secondly,
shifting of the binary representation is limited to shifts that
correspond to rotations of the texture by full pixel positions.
For (Q = 8, rotation invariance is reliably achieved only for
angles of 27i/8 (i = 0,...,7). In the next section, we will
treat a refinement of rotation invariance. We then show how to
model the jPDFs of observed local patterns without additional
quantization, and how the model parameters can be estimated
from the texture regions.

III. ROTATION INVARIANCE

To achieve rotation invariance, interpolation between the ()
elements of z = (z1,...,29) — which can be interpreted
as a sampled version of the continuous circle around the
center pixel — is required, as well as the determination of
a defined starting point on the arc of the circle . Towards the
end of the latter, and because of the circular LBP support, the
elements zq,...,2¢g are periodically repeated. By piecewise
cubic interpolation (cf. [43], [44]), a continuous function
Zeont(B) (with 8 € R continuous) extending z around its
sampling points Tcont(N) = Z(n mod @) for n € N is then
computed. If the texture region is rotated arbitrarily, each pixel
on the circle will produce a very similar (possibly equal)
xl . that is a circularly shifted version of Zcons. All that
remains now is to define one period of z.u, that is unique
regardless of the shift. This period is defined by its starting
point Sgtart € [0, Q), and the period length (). We define the
starting point Sgart Such that the integral over the first half of
the period is maximized, i.e., such that

s+%
Sgtart — argmax / Zcont (ﬂ)dﬂ (4)
s€[0,Q) s

where the evaluation of (4) for each candidate s is imple-
mented as convolution with a moving sum filter. To finally
extract the rotation invariant feature vector, the extracted
period is sampled, yielding = = (x1,...,2z7) with x; =
Zeont (Sstart + %), t = 1,...,T7. The number of extracted
values T does not necessarily need to be equal to (), though
this may seem like a good value. Instead of infinitesimal
sampling, an even higher degree of rotation invariance can
be achieved by taking the average over a small neighborhood
€ around ZTeont(Sstart + %) as the value for x;, yielding
xy =5 [, xcom(sstart—&—%—&—v)dv. The process is illustrated
in Fig. 3. Experimental results for rotation invariance are
provided in section VIII-B.

IV. LOCAL TEXTURE DESCRIPTORS: DENSITY
ESTIMATION

We first seek to overcome the coarse binarization of the LBP
approach. Towards this end, we show that the computation
of the one-dimensional histograms of LBP-values can be
interpreted as computing a Q-dimensional joint histogram of
the filter responses quantized merely to their signs. The binary
representation (I, oy, ., I{z,>0})2, Which is calculated in
an intermediate step of the LBP value computation, is the bin
index of the Q-dimensional jHST. In fact, the summation in
equation (2) simply unfolds the Q-dimensional jHST to a one-
dimensional histogram [28]. Hence, the LBP descriptor can
be regarded as a filtering step by oriented difference filters,
and a subsequent density estimation step by Q-dimensional
jHST computation. The goal of this section is to develop
a parametric density estimator using GMMs to avoid the
binary quantization. To motivate GMMs, Fig. 4 (a) shows
a 2D-jHST (or GLCM) which, for illustrative purposes, is
not populated densely enough to form a reliable estimate. In
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Fig. 3. Top: Illustration of gray levels on a continuous circle around a center
pixel after periodic repetition. Middle row: Three randomly selected periods
in blue (dark gray), each indicated by a horizontal bar in the top row, which
correspond to rotations by arbitrary angles. Blue (dark) spots correspond to
the sampling points (z1,...,2g) used to interpolate Zcont () shown in red
(light gray). For each rotation, the automatically determined starting point
Sstart 1S also shown. Third row: Interpolated gray level curves after shifting
each curve by Sstart, and the resampled feature vector (x1,...,zs) as red
(light gray) spots. The differences between the three curves are negligible,
thus illustrating rotation invariance. Bottom: Area as computed in (4) shown
shaded.
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Fig. 4. Sparsely populated 2D-jHST (a), the Parzen estimate derived from
it (b), and the GMM estimated from it (c).

Fig. 4 (b), a Parzen estimate obtained by a Gaussian window
from the 2D-jHST is shown. While the estimate is smoothed,
this approach requires huge computational efforts especially
for more dimensions, as does the computation of distance
functions between different estimates. Fig. 4 (c) shows an
estimate of the jPDF obtained from the histogram in (a) by a
sum of weighted normal distributions, or GMM.

Given a texture region P, we observe all local patterns z
as defined above present in it. The observed patterns may
be optionally made rotation invariant, yielding a realization
z of a random vector X as described in section III. All

observations are then assumed to obey the jPDF p(X|P). We
model p(X|P) by a sum of weighted normal distributions
according to

I
p(X|P) = ZOMP N (X16;p) (5)

i=1
where N(X|0;p) is a normal distribution with parameters
0;p = {1ip,Sip}. The variable I denotes the number
of Gaussian components in the mixture (sometimes referred
to as modes). The coefficients aq|p,...,ayp sum to unity.
From the observed patterns z, the unknown parameters O p =
{0;\p,apli = 1,...,1} can now be estimated such that
their likelihood given the data x is maximized. To ensure
stable estimation even in the presence of relatively few sam-
ples, each covariance matrix is split into a diagonal matrix
Y diag|p describing the variances for each Gaussian com-
ponent N (X|6;p) in (5), and a global full matrix Ygop|p,
which is identical for all summands of (5), and captures also

covariances [45]. This yields

Nip = (1 = X)Eglob| P + A diag| P (6)

where the parameter \ is set to A = 0.5. This smoothing tech-
nique is common practice to counteract overfitting when using
Bayesian Normal classifiers (see [45]). A standard algorithm
for solving the maximum likelihood estimation problem for
GMMs, which we also use here, is the EM-algorithm [38],
[46], [47].

V. LocAL TEXTURE DESCRIPTORS: FILTER BANKS

Results in section VIII-A will confirm that the GMM-based
density estimator provides indeed a tangible performance
increase over LBPs. When applied to more than 100 texture
classes as done in section VIII-C, the performance of the
GMM-based density estimator together with the difference
filters of (1) does, however, not quite reach the performance
of more recent texture classification methods, specifically of
[39]. In the following, we therefore show that replacing the
simple yet computationally efficient difference filters of the
LBPs by more sophisticated filter banks provides another
increase of classification accuracy. We exemplarily chose WFT
filter banks [48]. The wavelet frame transform corresponds
to the regular Wavelet Transform with the exception that no
dyadic downsampling is carried out in the subbands. Rather,
the analysis filters are dilated accordingly, leaving the filter
outputs at equal size at each decomposition level. The WFT
thus avoids the shift-variant phenomena tied to downsampling
in the dyadic wavelet transform [49], [50], and fits well into
the concept of texture description by filtering and subsequent
density estimation. In section VII-C, we will employ two
versions of the WFT, where one is based on coiflets, and
the other one on the Haar wavelet. The Haar decomposi-
tion filters are given by hJi%e" = [0.7071 0.7071] for the
lowpass channel and h}¢*" = [-0.7071 0.7071] for the
highpass channel, and the coiflets by h{/ = [~0.0157 -
0.0727 0.3849 0.8526 0.3379 — 0.0727] and h;‘zlf =
[0.0727 0.3379 —0.8526 0.3849 0.0727 —0.0157] for
lowpass and highpass channel, respectively.
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VI. DISTANCE FUNCTIONS ON GMMS

Once the GMMs are estimated for every texture region
in the entire set, classification requires the comparison of
GMMs for similarity. A well-established information theoretic
distance measure is the Kullback-Leibler (KL) divergence
[51], [52]. The KL divergence of two jPDFs p(X|P;) and
p(X|P>) (associated with two regions P; and P) is defined
as (cf. for discrete histograms (3)):

Dic (p(1Pr)p(1P2)) = [ p<x|P1>1og(

— 00

o

p(z|Pr)
p<z|P2>> e

The KL divergence is not a true distance metric, since
it does not obey the triangle inequality which is the
basis of fast search algorithms [53], such as successive
elimination in motion estimation by block matching [54].
Moreover, it lacks symmetry, but a symmetrized version

can be computed by the sum Dgkr, (p(:|P1),p(:|P2)) =
Dk (p(-[P1), p(-| P2)) + Dk (p(:|P2), p(:|P1)).
or by the minimum Dk (p(:|P1),p(:[P2)) =

min{Dky (p(:[P1), p(:[P2)) , Dxv (p(:|P2), p(:|P1))}.  The
KL divergence has been shown to perform well on, e.g.,
histograms [55]. Its biggest drawback with respect to GMMs
is that it cannot be computed in closed form from a GMM.
Using Monte Carlo sampling [56], [57], which is known
to converge to the KL divergence for sufficiently large sets
of samples, is computationally prohibitive in this setting. A
well-suited alternative is to use the normalized L2 distance,
as done for genre classification in [53]. First, all GMMs have
to be scaled to have unit L2 norm by

BT Pl = /[ ey
(®)

The normalized L2 distance between the normalized GMMs
of regions P; and P is then defined as

Dra(p(-|Py), o)) ©)
- / (2l Py) — o/ (| Py))? de

(-

Note the equivalence between equation (10) and the correlation
coefficient. As can also be seen from equation (10), Dy»(+, ) €
[0,2] holds. A distance of 2 is reached if the distributions
do not overlap, i.e., if they are orthogonal. For Gaussian
distributions, this is only reached in the limiting cases when
variances approach zero or the Euclidean distance between
each pair of mean vectors grows large. A distance of zero
is reached if and only if the distributions are equal, i.e.,
for p(X|P) = p(X|P;). To solve equation (8) and (10)
analytically the following integral has to be solved:

/ (Za“ x|911> Zagj (x]625) | dx
L I

ZZahagj/ N (2]01:) N (x]025) da

i=1 j=1

p(X|P) =

P (z|Py) ~p’(xP2)d;v> . (10)

(1)

where, to simplify notation, ay; stands for o;; p with P = P,
and so on. With A (X|) being a normal distribution, the
closed form solution for the last integral in (11) is

Jdet (27(Sy; + X2y))

1 _
exp (_2(,Uli — )T (Z1i + Do) M (pai — sz)> .

The complexity of the distance evaluation (10) is quadratic
in the number of modes because of the double summation
and cubic in the number of dimensions because of the matrix
inversion (1; + Xa;) !

The final distance function is obtained by substituting (12)
into (11) and then into (10), yielding
p(-|P2))

D2 (p(:|P1), (13)

1

Iz
1
1,025 Cij
([P0 2]lp(-| P2) ||2ZZ o

i=1 j=1

21—

VII. CLASSIFICATION

This section deals with assigning class labels to the tex-
ture regions based on the estimated GMMs. We review the
k-nearest-neighbor (k-NN) classifier [58], [59] and support
vector machines (SVMs) briefly. To evaluate the performance
of the texture classifiers, the set of all regions is subdivided
into a training set and a test set, which are kept strictly disjoint.
The former is used to train a classifier, such as the SVM, which
is then evaluated on the test set. The class labels of the test
patterns are only used for the calculation of the classification
error.

A. k-Nearest-Neighbor Classifier

Given all (normalized) GMMs of the training set
{P'(-|P1),...,0'(-|Pn)} and a single GMM p' (-| P*) extracted
from a region P* of the test set, the k-NN classifier compares
P/ (-|P*) to every p'(:|P,) (n = 1,...,N) by means of the
distance measure (10), which, for GMMs, simplifies to (13).
The class membership of the & closest mixture distributions
of the training set are used to “vote” for a class label that
is then assigned to p/(-|P*), or more precisely, to the texture
region P*. For instance, if k = 1, the class label of the most
similar training pattern is assigned to the test pattern under
investigation. Note that the computational complexity of the k-
NN classifier rises linearly with the size of the training set. As
the training set grows large, the k-NN classifier may become
infeasible, though methods to speed up the search process
exist, for instance by exploiting the triangle inequality [53].
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B. Support Vector Machines (SVMs)

SVMs are typical two class classifiers, that have gained large
popularity in the last decade [60]. After a training phase a new
sample x is assigned to the class

r(xz) = sgn (Z ant, K(z,z,) + b)

nes

(14)

with S being the set of support vector indicies. x, are
the training samples. Extending distance functions to kernel
functions is a well-known method to create problem specific
SVMs [61], [62]. In the case of texture classification by means
of GMMs, we have used the following kernel function which
exhibits some similarity to the Gaussian kernel:

—Dra(p'(-|Pn), p'(-|Pm))
v

+B

15)
where B and v are parameters that can be tuned to optimize
recognition performance. The parameter values were empir-
ically determined and set to B = 10 and v = 12 for all
experiments below.

K(p/(1P). 7/ (1Pm)) = exp (

VIII. EXPERIMENTAL RESULTS

We evaluated our method using the Brodatz test set [42],
where we first followed the experimental setup of [33] and
[27]. The Brodatz test set consists of textured images of size
640640 pixels representing one texture class each, such as
wood, water, rocks, fur etc. Examples are illustrated in Fig. 1.
We then evaluate the rotational invariance within the same
experimental setup as in [41] (section VIII-B). We finally
evaluate the GMM-based density estimator combined with the
WET for both the coiflet and the Haar wavelet in the same
experimental setup as used in [39].

A. Experiment 1 - Large Number of Classes

This set of experiments shall show the performance of our
texture classification method when large numbers of different
classes are present. Training and test set are constructed from
the Brodatz source images as follows: First, the images were
downsampled by factor of 2.5 and then subdivided into 16
regions of size 64x64 pixels. Half of these regions were taken
as training samples while the other half contributed to the test
set, leaving eight regions per class in both training and test
set. We did not distribute the regions randomly as in [33],
instead, we deterministically used the left half of each source
image as training material, thus leaving the right half to the test
set. This way of dividing into training and test set means that
both training and test set are formed from spatially adjacent
regions. The training set does thus not reflect small variations
over space which commonly occur in real life data. We believe
this to be a more realistic scenario making the classification
task more difficult. No further preprocessing was performed.

To assess the robustness of the classifier for different num-
bers of classes, we determined the relative error for classifying

Num. of basis k-NN k-NN SVM LBP
Classes system k=3 leave-1-out | (1-vs-all) | codebook
16 0.78 1.56 0.0 0.78 n.a.
24 0.52 1.56 0.0 0.52 n.a.
32 0.39 1.56 0.0 0.39 3.2 [33]

48 1.56 2.6 0.52 1.3 n.a.

64 3.3 3.97 0.39 2.5 n.a.

80 6.56 8.13 1.64 53 n.a.
TABLE I

RELATIVE CLASSIFICATION ERROR IN %

the samples in the test set for 16, 32, 48, 64 and 80 classes
respectively. The texture classes used in each case are given
in Appendix A. The classification results are summarized in
table I.

» We selected one setup of the classifier as a basis system
that parameter changes can be compared to. The basis system
uses I = 8 Gaussians in (5) and a neighborhood of Q = 8
pixels (see Fig. 2). The classifier of the basis system is a
k-nearest-neighbor classifier with & = 1. The exact number
I of Gaussians used in (5) is not critical, as changing [
to six or twelve Gaussians did neither improve nor degrade
the recognition performance (though it had an impact on the
computational load). Addressing how to identify the number
of Gaussians in general is beyond the scope of this paper, a
top-down approach can be found in [63]. Increasing the size
of the neighborhood to sixteen pixels, i.e., R = 2,Q = 16,
made results significantly worse. This can be explained by the
fact that too few samples were used to reliably estimate all
parameters. To evaluate another classifier on the basis setup a
Support Vector Machine was trained and tested within a one-
against-all setup which turned out to be slightly superior to the
one-against-one setup. We have used the SVM implementation
of [64]. Finally, the k-NN classifier was tested by the leave-
one-out method because of the small training sets. The relative
classification error was as low as 0.39 % for 64 classes.
Since there is no rotation invariance needed in this setup, the
difference vectors are not shifted.

As expected the error increases once a certain number
of classes is exceeded. Note, though, that even in the 80
class setup there are still only eight training regions per
class. Also, some of the classes, e.g., D3, D22 and D35,
are visually very similar. These are the ones which cause the
observed confusions. Note moreover that the complete error
rate in the 16, 24 and 32 class setup is caused by a single
confusion between the classes shown in Fig. 5. Comparing
classification accuracy in the 32 class setup to the results for
LBPs of [33] shows that the new method achieves lower error
rates even though regions are not distributed randomly into
learning and test set. On 32 classes, the standard LBP approach
reaches 8.8 % error, while the LBP-codebook approach — also
reported in [33] — achieves a recognition error of 3.2 %.

B. Experiment 2 - Rotation Invariance

This experiment evaluates the rotation invariance of the
described method. It is based on the exact same data used in
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training angle
method 0° | 20° | 30° | 45° | 60° | 70° | 90° | 120° | 135° | 150°
LBPis 2 38 [ 10 | 14 | 11 [ 15 [ 09 [ 24 | 14 | 13 | 25
LBPs1116,2+24,3/VARs 141624243 || 00 | 03 | 0.5 | 02 | 04 | 03 | 02 | 04 | 02 | o1
basis system (I = 8,Q = 8, 1-NN) 0.0 | 00 [ 00 | 00| 00 ] 00]00] 00| 00 | 00
TABLE Il

CLASSIFICATION ERROR IN %

Fig. 5. The only confusion occurring in the 16, 24 and 32 class setup. Left:
D22, Right: D3.

[27] in order to allow comparing the results on a one-to-one
basis. The same benchmark set has also been used recently for
comparison in [41] who use dominant local binary patterns in
conjunction with circularly symmetric Gabor filter responses,
achieving an average error rate of 0.2 %. The experiments
consist of ten runs. Each run uses a given training set and
classifies a test set of sixteen classes. Test and training sets
are kept disjoint. Each class consists of eight textured images
of size 180 x 180 pixels at rotation angle 0°. Furthermore,
versions rotated by angles of 20°, 30°, 45°, 60°, 70°, 90°,
120°, 135°, 150° were generated. Only one image per class is
used as a training sample. This training image is subdivided
into a 11 x 11 grid of 16 x 16 pixel sized training regions
totalling in 121 training regions per class. The remaining
seven texture images rotated by the remaining nine angles
are used as test samples, thus totalling in 63 test images per
class. Note that the test samples are still of size 180 x 180
pixels while the training samples are of size 16 x 16. During
the training phase the training samples are combined into
one GMM for each class in order to numerically reliably
estimate the parameters, in a manner analog to [27] where
all training samples for each class where collected into one
histogram. To extract the GMMs, a sixteen pixel neighborhood
of radius R = 2 was used. Regions are classified by the k-
NN classifier with k¥ = 1. Table II shows results obtained by
LBPs for the same neighborhood setting as well as the best
results obtained by LBPs on that particular set in which three
different neighborhoods are combined with additional variance
measures. Our approach classified all testing samples correctly
in all cases, yielding an average classification error of 0 %.

C. Experiment 3 - WFT Filter Banks

The experiments of sections VIII-A and VIII-B confirm that
GMM-based density estimation indeed results in a tangible

performance increase compared to the LBP approach. To eval-
uate our framework on an even larger number of classes, and
to compare to a recent state-of-the-art classification method,
we apply our descriptor within the same experimental setup as
in [39]. The entire Brodatz test set (consisting of 111 texture
classes) is separated into a training and test set as follows.
Each source image (640x640 pixels) is divided into 3 x 3
non-overlapping image regions of equal size all belonging to
one class. N samples of each class contribute to the training
set while the remaining 9 — N samples form the test set
with N = 1,...,8. The partitions are furthermore computed
randomly and classification results are averaged over 1000 trial
runs. Note that, in [39], all results are always for N = 3.

The reference result for using N = 3 training samples per
class taken from [39] is an error rate of 11.4 %. Testing the
descriptor using the LBP difference filter bank of equation (1)
achieves an error rate of 18.1 % on the very same task. It is not
surprising that a simple filter bank with such small support area
is inferior to the results of Lazebnik et al. Therefore we have
replaced the difference filters by a WFT filter bank as detailed
in section V. The number of decomposition levels of the
Wavelet Frame Transform is four. Classification results for var-
ious numbers of Gaussian components (I in equation (5)) and
choices of wavelets in the WFT are summarized in Table III.
Best classification results are obtained by using 16 modes and
a Haar wavelet, achieving an error rate of 10.1 % for N =3
training samples per class. The repetitive sampling of training
and test sets coupled with only few training samples per class
(as low as N = 1, which is often referred to as retrieval rather
than classification) mitigates effects of potential overfitting.
The comparable performance of coiflets and Haar wavelets
indicates that the decision to use a hierarchical decomposition
architecture such as the WFT has a stronger influence on
the classification results than the choice of a specific wavelet
filter. Accordingly, the classification results depend also on the
number of decomposition levels of the WFT. Using too low
a number of decomposition levels may result in the loss of
critical texture characteristics. On the other hand, if increased
beyond a certain number, the lowpass channels will contain
no more structural information but rather only local averages.
This increases the dimensionality of the feature vector without
providing additional relevant information for the classification,
thus making it in turn more likely for the EM algorithm to
converge to a poor local optimum.
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12 16 16 Modes | 20 Modes | Lazebnik
N Modes | Modes haar haar [39] LCP
coiflet coiflet wavelet wavelet
1 19.3 19.5 19.4 19.4 n.a. 30.7
2 13.2 13.1 13.2 12.2 n.a. 22.6
3 10.5 104 10.1 10.3 114 18.1
4 8.9 8.9 8.3 8.5 n.a. 15.1
5 7.7 7.7 7.5 7.6 n.a. 13.4
6 6.9 7.1 6.4 6.6 n.a. 12.0
7 6.3 6.5 5.7 5.9 n.a. 11.2
8 5.7 6.2 53 5.6 n.a. 9.6
TABLE III
RELATIVE CLASSIFICATION ERROR IN % ON 111 BRODATZ CLASSES FOR
VARYING NUMBER OF TRAINING SAMPLES (N = 1,...,8)

IX. DISCUSSION AND CONCLUSIONS

We have developed a framework for texture classification
which filters a given texture region by a set of filters and
subsequently estimates the jPDF by GMMs. Using the oriented
difference filters of the LBP method, we could show that this
framework avoids the quantization errors of the LBP method,
and that its classification performance is better than the one of
LBPs. Another performance gain of the GMM-based density
estimator was obtained when the elementary LBP difference
filters were replaced by WFT filter banks. Once the GMM
parameters are calculated, distances between the estimated
jPDF models of different textures can be compared by the
normalized L2 distance, which can be computed in closed
form from the parameters. Computation of the local difference
patterns by filtering according to (1) followed by parametric
modeling of the jPDF is thus consistent with what is stated
in [65], viz., that summarizing texture appearance consists of
filtering the image data and approximating the distribution
of the filter outputs [65, p.53]. Ample experimental results
on the Brodatz test set indicate a high recognition rate for
both the k-NN classifier and the SVM. For 64 classes with
separate training and test sets, the error rate was 2.5 %
for the SVM. With larger training sets in a leave-one-out
scenario, the error even fell to only 1.64 % for the k-NN
and 80 classes. Extending the test scenario to all 111 Brodatz
classes, our descriptor achieved an error rate of 10.1 % for
N = 3 and 5.3 % for N = 8 training samples per class.
The framework works still reliably when the textures are
rotated. These results also show that, while one might argue
that parametric modelling of the jPDFs basically may involve
potentially erroneous assumptions [27, p.972], modelling by
Gaussian mixtures is sufficiently flexible to outweigh such
reservations.

Let us also briefly comment on computational costs. Con-
sisting mainly of simple difference filters and quantization,
the standard LBP descriptor can be computed efficiently.
Classification, however, may be time-consuming as it involves
distance computations using the Kullback-Leibler distance. In
our approach, the most costly part is the estimation of the
GMM parameters by the EM algorithm. Classification then
requires analytical distance computations using the normalized
Lo-distance. In an example run using Matlab-implementations

of both the LBPs and the LCPs, the breakdown of computation
times was as follows (64 classes, Q = 8, I = 8, k-nn
classification with k& = 1): Filtering 50s for both LBP and
LCP, model computation 45s (LBP) vs. 133s (LCP), and
classification 2419s (LBP) vs. 661s (LCP).

The starting point of the algorithms developed in this
paper were LBPs. As these do not account for viewpoint
invariances, we have not considered such invariances here,
either. Achieving such “representational-level invariance” ([39,
p- 1271]) often involves nonlinear steps in the filtering stage,
such as feature detection [39, p. 1271], or determining the
maximum response over several filters [66, Section 2.1.3].
As the primary goal of this contribution is to circumvent the
curse of dimensionality using GMM-based density estimation,
extensions towards such nonlinear steps are beyond the scope
of this paper. We consequently restricted the evaluations to
the Brodatz texture base which exhibits considerable interclass
variability, but no geometrically transformed members of the
same class (cf. [39, p. 1266, p. 1273]). Although consequently
not as versatile as, for instance, the method of [66], our
framework is applicable to a wide variety of classification
problems, such as industrial inspection, where illumination
and image acquisition can be controlled, making the possible
number of classes the more challenging problem [67]. Achiev-
ing such representational-level invariance in our framework
is, though, an interesting future topic. Other plans include to
replace the k-NN by its fuzzy counterpart [68] (cf. also the
codebook with ambiguity in [69]), which has shown to perform
well in industrial inspection tasks such as [70]. Moreover,
the investigation of yet other density estimators within this
framework seems worthwhile. Finally, we plan to extend our
framework towards unsupervised classification.

X. APPENDIX
A. Brodatz Classes Used in the Experiments

The Brodatz album consists of 111 texture classes. We have
chosen test sets of varying size which are true subsets of the
subsequent larger sets.

1) 16 Classes: In the 16 class setup the following Brodatz
textures have been used: D1, D11, D18, D20, D21, D22, D3,
D34, D4, D56, D6, D64, D66, D68, D79, D87.

2) 24 Classes: Additionally to the 16 classes the following
textures have been used: D17, D28, D33, D37, D46, D49, DS,
Do.

3) 32 Classes: Additionally to the 24 classes the following
textures have been used: D101, D102, D103, D52, D75, D82,
D94, D95.

4) 48 Classes: Additionally to the 32 classes the following
textures have been used: D10, D104, D106, D109, D110,
D111, D15, D25, D26, D32, D35, D47, D57, D65, D74, D93.

5) 64 Classes: Additionally to the 48 classes the following
textures have been used: D112, D16, D19, D29, D48, D5,
D53, D55, D67, D76, D77, D80, D81, D83, D84, DS5.
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6) 80 Classes: Additionally to the 64 classes the following
textures have been used: D100, D107, D108, D12, D13, D2,
D24, D36, D38, D60, D7, D73, D78, D86, D92, D9S.
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