
IMPLEMENTING THE ASYMPTOTICALLY FAST VERSION OF THE

ELLIPTIC CURVE PRIMALITY PROVING ALGORITHM

F. MORAIN

Abstract. The elliptic curve primality proving (ECPP) algorithm is one of the current fastest
practical algorithms for proving the primality of large numbers. Its running time currently cannot
be proven rigorously, but heuristic arguments show that it should run in time Õ((log N)5) to prove
the primality of N . An asymptotically fast version of it, attributed to J. O. Shallit, is expected to
run in time Õ((log N)4). We describe this version in more details, leading to actual implementations
able to handle numbers with several thousands of decimal digits.

1. Introduction

From the work of Agrawal, Kayal and Saxena [2], determining the primality of an integer N can

be done in proven deterministic polynomial time Õ((logN)10.5). More recently, H.-W. Lenstra, Jr.

and C. Pomerance have announced a version in Õ((logN)6) (see [31]). Building on the work of
P. Berrizbeitia [7], and reusing classical cyclotomic ideas that originated in the Jacobi sums test
[1, 11], D. Bernstein [6] and P. Mihăilescu & R. Mocenigo [34], independently, have given improved

probabilistic versions with a claim of proven complexity of Õ((logN)4). For more on primality
before AKS, we refer the reader to [14] (see also [36]). For the recent developments, see [5].

All the known versions of the AKS algorithm are for the time being too slow to prove the primality
of large explicit numbers. On the other hand, the elliptic curve primality proving algorithm [3] has
been used for years to prove the primality of ever larger numbers∗. It is sketched in [30] that

Conjecture 1.1. The cost of ECPP is Õ((logN)5).

The same article describes an asymptotically fast version of ECPP, attributed to J. O. Shallit
and that we will call fastECPP:

Conjecture 1.2. The cost of fastECPP is Õ((logN)4).

The aim of the present paper is to describe fastECPP, give a heuristic analysis of it and describe
its implementation.

Section 2 collects some well-known facts on imaginary quadratic fields, that can be found for
instance in [13]. Section 3 presents the basic ECPP algorithm and analyzes it. In Section 4, the
fast version is described and its complexity estimated. Section 5 explains the implementation and
Section 6 gives some actual timings on large numbers. All estimates make use of the Õ notation.
Remember that Õ(f) means O(f(log f)O(1)).

Date: October 21, 2005.
Key words and phrases. Primality proving, elliptic curves, ECPP algorithm.

Projet TANC, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École polytechnique,
INRIA, Université Paris-Sud. The author is on leave from the French Department of Defense, Délégation Générale
pour l’Armement.

∗See the web page of M. Martin, http://www.ellipsa.net/, or that of the author,
http://www.lix.polytechnique.fr/Labo/Francois.Morain that also contains binaries of his program.

1

2. Quadratic fields

A discriminant −D < 0 is said to be fundamental if and only if D is free of odd square prime
factors, and moreover D ≡ 3 mod 4 or D mod 16 ∈ {4, 8}. The quantity

D(X) = #{D ≤ X,−D is fundamental}
is easily seen to be O(X).

A fundamental discriminant may be written uniquely (modulo permutations) as:

−D =

t∏

i=1

q∗i

where q∗i is either −4 or ±8, or q∗i = (−1/qi)qi for any odd prime qi. (We denote by
(
a
p

)
the Legendre

symbol.) The number of genera is g(−D) = 2t−1 and Gauss proved that this number divides the
class number h(−D) of K = Q(

√
−D). Moreover, Landau (see e.g., [37, Thm 4.4, p. 143]) proved

that h = O(D1/2 logD).
The rational prime p is the norm of an integer in K, or equivalently, 4p = U 2 +DV 2 in rational

integers U and V if and only if the ideal (p) splits completely in the Hilbert class field of K,
denoted KH , an extension of degree h(−D) of K. The probability that a prime p splits in KH is
1/(2h(−D)).

Using Gauss’s theory of genera of forms, it is known that if
(q∗

i

p

)
= 1 for all i (equivalently, (p)

splits in the genus field of K), then the probability of (p) splitting in KH is g(−D)/h(−D).

3. The basic ECPP algorithm

We present a rough sketch of the ECPP algorithm, enough for us to estimate its complexity. We
do not insist on what happens if one of the steps fails, revealing the compositeness of N . More
details can be found in [3]. Without loss of generality, N is supposed to be greater than 3.

3.1. Elliptic curves over Z/NZ. For us, an elliptic curve E modulo N is an equation Y 2 =
X3 + aX + b, a, b ∈ Z/NZ with gcd(4a3 + 27b2, N) = 1 and we will let

E(Z/NZ) = {(x : y : z) ∈ P2(Z/NZ), y2z ≡ x3 + axz2 + bz3} ∪ {OE = (0 : 1 : 0)}
which ressembles the definition of an actual elliptic curve if N is prime, P2(Z/NZ) being the
projective plane over Z/NZ. The important point here is that if p is a divisor of N , we can consider
E as a curve Ep over Z/pZ and reduce a point P ∈ E(Z/NZ) to Pp ∈ Ep(Z/pZ). Moreover, we can
define an operation on E(Z/NZ), called pseudo-addition, that adds two “points” P and Q with
the usual chord-and-tangent law. This operation either yields a point R or a divisor of N if any is
encountered when dividing. If R exists, then it has the property that Rp is the sum of Pp and Qp

on Ep for all prime factors p of N . Note also that OE reduces to the ordinary point at infinity on
Ep.

We will need to exponentiate points in E. This is best defined using the division polynomials
(see for instance [4] for a lot of properties on these). Remember that over a field K there exists
polynomials φm(X,Y), ψm(X,Y), ωm(X,Y) such that, if P = (X : Y : 1),

(1) [m]P = P + · · · + P
︸ ︷︷ ︸

m times

=
(
φm(X,Y)ψm(X,Y) : ωm(X,Y) : ψ3

m(X,Y)
)
.

All these polynomials can be computed via recurrence formulas and there is a O(logm) algorithm
for this task (a variant of the usual binary method for exponentiating). A fundamental property is
the following:

2

Theorem 3.1. Let K stands for an algebraic closure of K. Let m be an integer. If P = (x : y :
1) ∈ E(K) is such that [2]P 6= OE, then P is of m torsion if and only if ψm(x, y) = 0.

For the sake of presenting the algorithm in a simplified setting, we prove (compare [27]):

Proposition 3.1. Let N ′ a prime satisfying (
√
N − 1)2 ≤ 2N ′ ≤ (

√
N + 1)2. Suppose that E is a

curve modulo N , that P = (x : y : 1) ∈ E(Z/NZ) is such that gcd(y,N) = 1, ψ2N ′(x, y) ≡ 0 mod N
but gcd(ψN ′(x, y), N) = 1. Then N is prime.

Proof: suppose that N is composite and that p ≤
√
N is one of its prime factors. Let us look at

what happens modulo p. Since p - y, Pp is not a 2-torsion point on Ep. Since ψN ′(x, y) is invertible
modulo p, then [N ′](Pp) 6= OEp

and therefore Pp has order 2N ′ on Ep. This is impossible, since

2N ′ ≥ (
√
N − 1)2 ≥ (p− 1)2 > (

√
p+ 1)2 ≥ #Ep by Hasse’s theorem. �

3.2. Presentation of the algorithm. We want to prove that N is prime. The algorithm runs as
follows:

[Step 1.] Repeat the following: Find an imaginary quadratic field K = Q(
√
−D) of discriminant

−D, D > 0, such that

(2) 4N = U 2 +DV 2

in rational integers U and V . For all solutions U of (2), compute m = N + 1 − U ; if one of these
numbers is twice a probable prime N ′, go to Step 2.

[Step 2.] Build an elliptic curve E over Q having complex multiplication by the ring of integers OK

of K.

[Step 3.] Assuming N is prime, it splits completely in KH . Reduce E modulo a prime divisor of
(N) in KH , to get a curve modulo N .
[Step 4.] Find P = (x : y : 1), gcd(y,N) = 1 on E such that ψ2N ′(x, y) = 0, but gcd(ψN ′(x, y), N) =
1. If this cannot be done, then N is composite, otherwise, it is prime by Proposition 3.1.

[Step 5.] Set N = N ′ and go back to Step 1.

3.3. Analyzing ECPP. We will now analyze all steps of the above algorithm and give complexity
estimates using the parameter L = logN . One basic unit of time will be the time needed to
multiply two integers of size bounded by L, namely O(L1+µ), where 0 ≤ µ ≤ 1 (µ = 1 for ordinary
multiplication, or any ε > 0 for fast multiplication).

Clearly, we go through Step 5 O(L) times for proving the primality of N . We consider all steps,
one at a time, easier steps first.

3.4. Analysis of Step 4. Finding a point P can be done by a simple algorithm that looks for the
smallest x such that x3 + ax+ b is a non-zero square modulo N and then extracting a squareroot
modulo N , for a cost of O(L2+µ), using for instance the Tonelli-Shanks algorithm (or Lehmer’s
algorithm when N − 1 is divisible by a large power of 2). Using the trick described in [3, §8.6.3],
we do not need the modular square root, though. . .

Computing ψN ′(x, y) costs O(L2+µ), and we need O(1) points on average, so this steps amounts
for O(L2+µ).

3

3.5. Analyzing Step 2. The original version is to realize KH/K via the computation of the
minimal polynomial HD(X) of the special values of the classical j-invariant at quadratic integers.
More precisely, we can view the class group Cl(−D) of K as a set of h primitive reduced quadratic
forms of discriminant −D. If (A,B,C) is such a form, with B2 − 4AC = −D, then

HD(X) =
∏

(A,B,C)∈Cl(−D)

(

X − j((−B +
√
−D)/(2A))

)

.

It is known that HD(X) ∈ Z[X]. In [16, 15], it is argued that the logarithmic height of this

polynomial (logarithm of the sup norm) is well approximated by the quantity π
√
DS(D) where:

S(D) =
∑

[A,B,C]∈Cl(−D)

1

A
.

It can be shown that S(D) = O((log h)2).

Evaluating the complex roots of HD(X) and building this polynomial can be done in Õ(D)
operations (see [15]). Note that this step does not require computations modulo N .

Alternatively, we could use the method of [12, 8] for computing the class polynomial and get a

proven running time of Õ(h2), but assuming a suitable Riemann hypothesis.

3.6. Analyzing Step 3. To get E modulo N , we need a root of HD(X) modulo N . This can
be done with the Cantor-Zassenhaus algorithm (see [23, §14.3] for instance). Briefly, we split

recursively HD(X) by computing gcd((X + a)(N−1)/2 − 1,HD(X)) mod N for random a’s.

Computing (X+a)(N−1)/2 mod (N,HD(X)) costs O(LM(N,h)) where M(N, d) is the time needed
to multiply two degree d polynomials modulo N . A gcd of two degree d polynomials costs
M(N, d) log d (see [23, Ch. 11]).

We expect a splitting after O(1) trials; after each splitting, we carry on with the factor of lowest
degree. Since the degree is divided by at least 2 after each splitting, we get a root after O(log h)
steps, but the overall cost is dominated by the first step, for a cost of

O(M(N,h)(L + log h)).

We can assume that M(N, d) = O(d1+νL1+µ) where again 0 ≤ ν ≤ 1.

3.7. Analysis of Step 1. This is the crucial step. Given D, testing whether (2) is satisfied involves

the reduction of the ideal (N, r−
√
−D

2) that lies above (N) in K, where r2 ≡ −D mod (4N) (if N is

prime. . .). This requires the computation of
√
−D mod N as in Step 4, i.e., a O(L2+µ) time. Then

it proceeds with Cornacchia’s algorithm, akin to a half gcd (see 5.2), for a cost of O(L1+µ).
In the event that equation (2) is solvable, then we need to check that m = 2N ′ and test N ′ for

probable primality, which costs again some O(L2+µ).
The heuristic probability of m being of the given form is O(1/L). Though quite realistic, this

estimate is out of reach of current techniques in analytical number theory. Using this heuristic, we
expect to need O(L) discriminants D. Let us take all discriminants less than Dmax. Since N splits
completely in KH with probability 1/(2h(−D)), we expect to get a useful m provided

∑

D≤Dmax

1

2h(−D)
� L.

The left hand side dominates
∑

D≤Dmax

1√
D logD

�
√
Dmax

logDmax
,

so Dmax = O((L logL)2) = Õ(L2) should suffice.
4

Turning to complexity, Step 1 then solves Õ(L2) equations of type (2), followed by Õ(L) probable
primality tests:

Õ(L2(L2+µ
︸ ︷︷ ︸√

−D mod N

+ L1+µ
︸ ︷︷ ︸

reduction

)) + Õ(L · L2+µ
︸ ︷︷ ︸

probable primality

).

which is dominated by the first cost, namely Õ(L4+µ).

3.8. Adding everything together. Taking D = Õ(L2) readily implies h = Õ(L). The cost of

Step 2 is Õ(L2), and that of Step 3 is Õ(L3+µ+ν), which dominates Step 4. All in all, we get that

ECPP has heuristic complexity Õ(L4+µ) for one step, and therefore Õ(L5+µ) in totality.

3.9. Remark. In practice, the dominant term of the complexity of Step 1 is O(nDL
2+µ) where nD

is the number of D’s for which we solve equation (2). Depending on implementation parameters
and real size of N , this number nD can be quite small. This gives a very small apparent complexity

to ECPP, somewhere in between L3 and L4 and explains why ECPP seems so fast in practice (see
for instance [22]).

4. The fast version of ECPP

4.1. Presentation. When dealing with large numbers, all the time is spent in finding the discrim-
inants D, which means that a lot of squareroots modulo N must be computed. A first way to
reduce the computations, alluded to in [3, §8.4.3], is to accumulate squareroots, and reuse them,
at the cost of some multiplications. For instance, if one has

√
−3 and

√
5 =

√
−20/

√
−4, then we

can build
√
−15, etc.

A better way that leads to the fast version consists in computing a basis of small squareroots
and build discriminants from this basis. From the analysis carried out above, we need Õ(L2)
discriminants to find a good one. The basic version finds them by using all discriminants that are
of size Õ(L2). As opposed to this, one can build those discriminants as −D = (−p)(q), where p

and q are taken from a pool of size Õ(L) primes.
More formally, we replace Step 1. by Step 1’. as follows:

[Step 1’.]

1.1. Find the r = Õ(L) smallest primes q such that
(q∗

N

)
= 1, yielding Q = {q∗1, q∗2 , . . . , q∗r}.

1.2. Compute all
√
q∗ mod N for q∗ ∈ Q.

1.3. For all pairs (q∗i1 , q
∗
i2

) of Q for which q∗i1q
∗
i2

= −D < 0, solve equation (2).

The cost of this new Step 1 is that of computing r = Õ(L) squareroots modulo N , for a cost of

Õ(L · L2+µ). Then, we still have Õ(L2) reductions. The new overall cost of this phase decreases
now to:

Õ(L · L2+µ
︸ ︷︷ ︸

squareroots

) + Õ(L2 · L1+µ
︸ ︷︷ ︸

reduction

) + Õ(L · L2+µ
︸ ︷︷ ︸

probable primality

) = Õ(L3+µ).

Note here how the complexity decomposes as 3 = 1 + 2 or 2 + 1 depending on the sub-algorithms.
Putting everything together, we see that this time the dominant step in terms of complexity is

that of Step 3 and therefore we end up with a total cost of Õ(L4+µ+ν) for this variant of ECPP

and Õ(L4) asymptotically.

4.2. Remarks.
5

4.2.1. Complexity issues. We can reduce further the number of square root computations by using
all subsets of Q and not only pairs of elements. This would call for r = Õ(log logN), since then
2r = L2 could be reached. Though useful in practice, this phase no longer dominates the cost of
the algorithm.

Moreover, we can see that several phases of fastECPP have cost Õ(L3), which means that we

would have to fight hard to decrease the overall complexity below Õ(L4).

4.2.2. A note on discriminants. Note that we use fundamental discriminants only, as non funda-
mental discriminants lead to curves that do not bring anything new compared to fundamental ones.
Indeed, if D = f 2D, with D fundamental, then there is a curve having CM by the order of discrim-
inant D. Writing 4N = U 2 +Df2V 2, its cardinality is N + 1 − U , the same as the corresponding
curve associated to D.

4.2.3. A note on class numbers. As soon as we use composite discriminants −D of the form q∗i1q
∗
i2

,
Gauss’s theorem tells us that the class number h(−D) is even. This could introduce a bias in our
estimation, but we conjecture that the effect is not important.

5. Implementation

5.1. Computing class numbers. In order to make the search for D ∈ D efficient, it is better to
control the class number beforehand. Tables can be made, but for larger computations, we need
a fast way to compute h(−D). Subexponential methods exist, assuming the Generalized Riemann
Hypothesis. From a practical point of view, our D’s are of medium size. Enumerating all forms
costs O(h2) with a small constant, and Shanks’s baby-steps/giant-steps algorithm costs O(

√
h) but

with a large constant. It is better here to use the explicit formula of Louboutin [32] that yields a
practical method in O(h) with a very small constant.

5.2. An improved Cornacchia algorithm. Step 1 needs squareroots to be computed, then
performs Cornacchia’s algorithm. Briefly, the algorithm runs as follows (see [38]):

procedure Cornacchia(d, p, t)
{t is such that t2 ≡ −d mod p, p/2 < t < p }
a) r−2 = p, r−1 = t ; w−2 = 0, w−1 = 1;
b) for i ≥ 0 while ri−1 >

√
p do

compute (ai, ri) such that ri−2 = airi−1 + ri, 0 ≤ ri < ri−1 ;
let wi = wi−2 + aiwi−1 (∗) ;

c) if r2
i−1 + dw2

i−1 = p then return (ri−1, wi−1) else return ∅.

We end the for loop once ri−1 ≤ √
p < ri−2. As is well known, the ai’s are quite small and we

can guess their size by monitoring the number of bits of the ri’s, thus limiting the number of long
divisions. One can use a fast variant for this half gcd if needed, in a way reminiscent of Knuth.

Moreover, we know that this algorithm almost always returns the empty set in step 2c), since
the probability of success if 1/(2h(−d)). Therefore, when h is large, we can dispense of the multi-
precision computations in equation (∗). We replace it by single precision computations in base 2b

(b = 32 or b = 64):

wi = wi−2 + aiwi−1 mod 2b

and at the end, we test whether r2
i−1 + dw2

i−1 = p mod 2b. If this is the case, then we recompute
the wi’s and check again.

6

5.3. Factoring m. In practice, trying to factor m = 2N ′, for a probable primeN ′, is too restrictive;
instead, we check whether m = cN ′ for some B-smooth number c. The parameter B is critical.

As shown in [20], the number of probable prime tests we will have to perform is heuristically
t = O((logN)/(logB)) and we will end up with N ′ such that N/N ′ ≈ logB.

For small N , we can factor lots of m doing the following. In a first step, we compute

ri = (N + 1) mod pi

for all pi ≤ B, which costs π(B)L logB, where π(B) = O(B/ logB) is the number of primes below
B and the other term being the time needed to divide a multi-digit number by a single digit number.

Then, sieving both m = N + 1 − U and m′ = N + 1 + U is done by computing ui = U mod pi

and comparing it to ±ri for primes pi such that (−D/pi) 6= −1. See [3, 35] for more details and
tricks.

The cost of this algorithm for t values of m is

O(BL) +O(t ·BL)

where the second term comes from the computation of U mod pi, which is roughly twice as fast as
that of (N + 1) mod pi, since U is O(

√
N). Since we need to perform also t probable prime tests

(say, a plain Fermat one), then the cost is

O(tBL) +O(tL2+µ) = O(BL2) +O(L3+µ)

and therefore the optimal value for B is B = O(L).
WhenN is large, it is better to use the stripping factor algorithm in [20], for a cost ofO(B(logB)2),

the optimal value of B being B = O(L3).

5.3.1. Remark. Suppose we have found N ′ and that m = N + 1 − U = cN ′. Then we will have to
compute

r′i = (N ′ + 1) mod pi = (ri − ui)/c+ 1 mod pi.

Computing the right hand side is faster, since c is ordinarily small compared to N ′.

5.3.2. Using an early abort strategy. This idea is presented in [20]. We would like to go down as
fast as possible. So why not impose N/N ′ greater than some given bound? Candidates N ′ need be
tested for probable primality only if this bound is met. From what has been written above, we can
insist on N/N ′ ≈ logB. Our implementation introduces a parameter δ and imposes N/N ′ ≥ 2δ.

5.3.3. Using new invariants. Tackling larger and larger N ’s forces us to use larger and larger D’s,
leading to larger and larger polynomials HD. For this to be doable, new invariants had to be used,
minimizing the height of their minimal polynomials. This task was done using Schertz’s formulation
of Shimura’s reciprocity law [39], with the invariants of [18, 16] (alternatively see [25, 24]). Note
that replacing j by other functions does not the change the complexity of the algorithm, though it
is crucial in practice.

5.3.4. Step 3 in practice. We already noted that this step is the theoretically dominating one in
fastECPP, with a cost of Õ(L3+µ+ν). In practice, even for small values of h, we can assume ν ≈ 0
(using for instance the algorithm of [33] for polynomial multiplication).

One way to reduce the cost of this phase in practice is to use smooth values of h, and use Galois
theory to factor HD(X) over a tower of extensions. Then, we replace the factorization of a degree
h polynomial by a list of smaller ones, the largest prime factor of h being log h. We already used
that in ECPP, using [29, 17]. Typical values of h are now routinely in the 10000 zone.

It could be argued that keeping only smooth class numbers is too restrictive. Note however, that
class numbers tend to be smoother than ordinary numbers [10].

7

5.4. fastECPP. We give here the expanded algorithm corresponding to step 1’. Using a smooth-
ness bound B, we need approximately t = exp(−γ) logN/ logB values of m and therefore roughly
t/2 discriminants. The probability that D is a splitting discriminant is g(−D)/h(−D). Therefore
we build discriminants until ∑

D

g(−D)/h(−D) ≈ t/2.

One way of building these discriminants is the following: we let r increase and build all or some
of the subsets of {q∗1 , . . . , q∗r} until the expected number of D’s is reached. After this, we sort the
discriminants with respect to (h(−D)/g(−D), h(−D), D) and treat them in this order.

6. Benchmarks

First of all, it should be noted that ECPP is not a well defined algorithm, as long as one does
not give the list of discriminants that are used, or the principles that generate them.

Since the first phase of ECPP requires a tree search, testing on a single number does not reveal
too much. Averaging on more than 20 numbers is a good idea.

Our current implementation uses GMP [26] for the basic arithmetic, which enables one to use
mpfr [28] and mpc [19], thus leading to a complete program that can compute polynomial HD’s on
the fly, contrary to the author’s implementation of ECPP, prior to version 11.0.5. This turned out
to be the key for the new-born program to compete with the old one.

We give below some timings obtained with our new implementation, after a lot of trials. We
used as prime candidates the first twenty primes with 1000, 1500, and 2000 decimal digits. Critical
parameters are as follows: we used D ≤ 107, h ≤ 1000, δ = 12 (see section 5.3.2). For 1000 and
1500 decimal digits (resp. 2000 digits), we limited the largest prime factor of h to be ≤ 30 (resp.
100). For the extraction of small prime factors (used in the algorithm described in [20] and denoted
EXTRACT in the sequel), we used B = 8 · 106, 107, 3 · 107 for the three respective sizes.

SQRT refers to the computation of the
√
q∗i , CORN to Cornacchia, PRP to probable primality

tests; HD is the time for computing polynomials HD using the techniques described in [16], jmod
the time to solve it modulo p; then 1st refers to the building phase (step 1), 2nd to the other ones;
total is the total time, check the time to verify the certificate. Follow some data concering D, h and
the size of the certificates (in kbytes). All timings are cumulated CPU time on an AMD Athlon 64
3400+ running at 2.4GHz. In the tables, avg stands for average and std for standard deviation.

Looking at the average total time, we see that it follows very closely the Õ((logN)4) prediction.
According to our analysis, the main costs are the square roots, the pseudo primality test and finding
a root of HD, with the same Õ(L4+µ) heuristic cost. Square roots seem to become comparatively
less important as L increases.

7. Conclusions

We have described in greater details the fast version of ECPP. We have demonstrated its ef-
ficiency. As for ECPP, it is obvious that the computations can be distributed over a network of
computers. We refer the reader to [20] for more details. Note that the current record of 15041
decimal digits (with the number 44052638 + 26384405 see [21]), was settled using this approach.
Many more numbers were proven prime using either the monoprocessor version or the distributed
one, most of them from the tables of numbers of the form xy + yx made by P. Leyland†.

†http://www.leyland.vispa.com/numth/primes/xyyx.htm

8

min max avg std
SQRT 19 34 25 3
CORN 10 24 17 4
EXTRACT 60 84 74 5
PRP 74 124 102 14
HD 0 7 2 2
jmod 42 99 61 11
1st 178 276 234 27
2nd 79 136 99 12
total 260 387 334 34
check 18 22 20 0
nsteps 124 156 143 7
certif 396 456 435 13
D 8740947 120639 608050
h 1000 31 87

Table 1. 1000 decimal digits

min max avg std
SQRT 114 427 171 65
CORN 59 140 95 21
EXTRACT 195 282 230 20
PRP 472 903 664 99
HD 5 13 9 2
jmod 219 471 334 60
1st 868 1590 1192 185
2nd 368 649 508 70
total 1322 2240 1701 230
check 71 94 85 5
nsteps 183 209 198 7
certif 796 968 897 40
D 9644776 201015 848112
h 972 46 111

Table 2. 1500 decimal digits

Cheng [9] has suggested to use ECPP to help his improvement of the AKS algorithm, forcing
m = cN ′ to have N ′ − 1 divisible by a given prime large prime of size O((logN)2). The same idea
can be used to speed up the Jacobi sums algorithm, and this will be detailed elsewhere.

Acknowledgments. The author wants to thank N. Bourbaki for making him dive once again in
the field of primality proving and D. Bernstein for stimulating emails on the existence and analysis
of fastECPP. My co-authors of [20] were a source of stimulation through their records. Thanks also
to P. Gaudry for never ending discussions on how close we are to infinity, as far as fast algorithms
are concerned. D. Stehlé and P. Zimmermann for useful discussions around Cornacchia and fast
sieving. Thanks to A. Enge for his help in improving the exposition, and to D. Bernardi for his
remarks that helped clarify the exposition. Last but not least, thanks to the referee for his very
detailed report that eliminated some mistakes and simplified the presentation.

9

min max avg std
SQRT 384 820 516 120
CORN 181 390 260 55
EXTRACT 600 853 713 67
PRP 1761 2879 2227 306
HD 6 27 16 5
jmod 969 1539 1255 188
1st 2974 4888 3778 528
2nd 1398 2120 1777 221
total 4494 6795 5557 711
check 213 261 238 13
nsteps 236 262 248 7
certif 1420 1644 1539 64
D 9760387 285217 1026529
h 1000 63 130

Table 3. 2000 decimal digits

References

[1] L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers from composite numbers.
Ann. of Math. (2), 117(1):173–206, 1983.

[2] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. of Math. (2), 160(2):781–793, 2004.
[3] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29–68, July 1993.
[4] M. Ayad. Points S-entiers des courbes elliptiques. Manuscripta Math., 76(3-4):305–324, 1992.
[5] D. Bernstein. Proving primality after Agrawal-Kayal-Saxena. http://cr.yp.to/papers/aks.ps, January 2003.
[6] D. Bernstein. Proving primality in essentially quartic expected time. http://cr.yp.to/papers/quartic.ps,

January 2003.
[7] P. Berrizbeitia. Sharpening ”Primes is in P” for a large family of numbers. Math. Comp., 74(252):2043–2059,

2005.
[8] R. Bröker and P. Stevenhagen. Elliptic curves with a given number of points. In D. Buell, editor, Algorithmic

Number Theory, volume 3076 of Lecture Notes in Comput. Sci., pages 117–131. Springer-Verlag, 2004. 6th
International Symposium, ANTS-VI, Burlington, VT, USA, June 2004, Proceedings.

[9] Q. Cheng. Primality proving via one round in ECPP and one iteration in AKS. In D. Boneh, editor, Advances
in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Comput. Sci., pages 338–348. Springer Verlag,
2003.

[10] H. Cohen and H. W. Lenstra, Jr. Heuristics on class groups of number fields. In H. Jager, editor, Number Theory,
Noordwijkerhout 1983, volume 1068 of Lecture Notes in Math., pages 33–62. Springer-Verlag, 1984. Proc. of the
Journées Arithmétiques 1983, July 11–15.

[11] H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. Math. Comp., 42(165):297–330, 1984.
[12] J.-M. Couveignes and T. Henocq. Action of modular correspondences around CM points. In C. Fieker and

D. R. Kohel, editors, Algorihmic Number Theory, volume 2369 of Lecture Notes in Comput. Sci., pages 234–243.
Springer-Verlag, 2002. 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings.

[13] D. A. Cox. Primes of the form x2 + ny2. John Wiley & Sons, 1989.
[14] R. Crandall and C. Pomerance. Prime numbers – A Computational Perspective. Springer Verlag, 2000.
[15] A. Enge. The complexity of class polynomial computations via floating point approximations. Preprint, February

2004.
[16] A. Enge and F. Morain. Comparing invariants for class fields of imaginary quadratic fields. In C. Fieker and

D. R. Kohel, editors, Algorithmic Number Theory, volume 2369 of Lecture Notes in Comput. Sci., pages 252–266.
Springer-Verlag, 2002. 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Proceedings.

[17] A. Enge and F. Morain. Fast decomposition of polynomials with known Galois group. In M. Fossorier, T. Høholdt,
and A. Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 2643 of Lec-
ture Notes in Comput. Sci., pages 254–264. Springer-Verlag, 2003. 15th International Symposium, AAECC-15,
Toulouse, France, May 2003, Proceedings.

[18] A. Enge and R. Schertz. Modular curves of composite level. Acta Arith., 181(2):129–141, 2005.

10

[19] A. Enge and P. Zimmermann. mpc — a library for multiprecision complex arithmetic with exact rounding, 2002.
Version 0.4.1, available from http://www.lix.polytechnique.fr/Labo/Andreas.Enge.

[20] J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very large numbers with fastecpp.
In D. Buell, editor, Algorithmic Number Theory, volume 3076 of Lecture Notes in Comput. Sci., pages 194–207.
Springer-Verlag, 2004. 6th International Symposium, ANTS-VI, Burlington, VT, USA, June 2004, Proceedings.

[21] J. Franke, T. Kleinjung, F. Morain, and T. Wirth. A new large primality proof using fastecpp.
http://listserv.nodak.edu/archives/nmbrthry.html, July 2004.

[22] W. F. Galway. Analytic computation of the prime-counting function. PhD thesis, University of Urbana-
Champaign, 2004. http://www.math.uiuc.edu/~galway/PhD Thesis/.

[23] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.
[24] A. Gee. Class invariants by Shimura’s reciprocity law. J. Théor. Nombres Bordeaux, 11:45–72, 1999.
[25] A. Gee and P. Stevenhagen. Generating class fields using Shimura reciprocity. In J. P. Buhler, editor, Algorithmic

Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 441–453. Springer-Verlag, 1998. Third
International Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.

[26] GNU. The GNU Multiple Precision arithmetic library. Available from http://www.swox.com/gmp/.
[27] S. Goldwasser and J. Kilian. Primality testing using elliptic curves. Journal of the ACM, 46(4):450–472, July

1999.
[28] G. Hanrot, V. Lefèvre, and P. Zimmermann et. al. mpfr — a library for multiple-precision floating-point com-

putations with exact rounding, 2002. Version contained in gmp. Available from http://www.mpfr.org.
[29] G. Hanrot and F. Morain. Solvability by radicals from an algorithmic point of view. In B. Mourrain, editor,

Symbolic and algebraic computation, pages 175–182. ACM, 2001. Proceedings ISSAC’2001, London, Ontario.
[30] A. K. Lenstra and H. W. Lenstra, Jr. Algorithms in number theory. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume A: Algorithms and Complexity, chapter 12, pages 674–715. North Holland,
1990.

[31] H. W. Lenstra, Jr. and C. Pomerance. Primality testing with Gaussian periods. Preprint. Available as
http://www.math.dartmouth.edu/~carlp/PDF/complexity072805.pdf, July 2005.

[32] Stéphane Louboutin. Computation of class numbers of quadratic number fields. Math. Comp., 71(240):1735–1743
(electronic), 2002.

[33] P. Mihăilescu. Fast convolutions meet Montgomery. Preprint, March 2004.
[34] P. Mihăilescu and R. Avanzi. Efficient quasi-deterministic primality test improving AKS. Available from

http://www-math.uni-paderborn.de/~preda/papers/myaks1.ps, April 2003.
[35] F. Morain. Primality proving using elliptic curves: an update. In J. P. Buhler, editor, Algorithmic Number

Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 111–127. Springer-Verlag, 1998. Third International
Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.

[36] F. Morain. La primalité en temps polynomial [d’après Adleman, Huang ; Agrawal, Kayal, Saxena]. Astérisque,
pages Exp. No. 917, ix, 205–230, 2004. Séminaire Bourbaki. Vol. 2002/2003.

[37] W. Narkiewicz. Elementary and analytic theory of algebraic numbers. PWN-Polish Scientific Publishers, 1974.
[38] A. Nitaj. L’algorithme de Cornacchia. Exposition. Math., 13:358–365, 1995.
[39] R. Schertz. Weber’s class invariants revisited. J. Théor. Nombres Bordeaux, 14:325–343, 2002.

(F. Morain) LIX École Polytechnique, CNRS/UMR 7161, INRIA/Futurs, F-91128 Palaiseau CEDEX,
FRANCE

E-mail address, F. Morain: morain@lix.polytechnique.fr

11

