
e: The 
Master of All 

BRIAN J. MCCARTIN 

Read Euler, read Euler. He is the master of us all. 
--P. S. de Laplace 

L aplace 's  dictum may rightfully be t ranscribed as: "Study 
e, s tudy e. It is the master  of  all." 

Just as Gauss earned  the moniker  Princeps mathemati- 
corum amongst  his contemporar ies  [1], e may be dubbed  
Princeps constantium symbolum. Certainly, Euler would  
concur, or why  wou ld  he have e n d o w e d  it with his own 
initial [2]? 

The historical roots of  e have been  exhaustively traced 
and are readily available [3, 4, 5]. Likewise, certain funda- 
mental  propert ies  of e such as its limit definition, its series 
representation, its close association with the rectangular hy- 
perbola,  and its relation to c o m p o u n d  interest, radioactive 
decay, and the tr igonometric and hyperbol ic  functions are 
too well known to warrant  t reatment here [6, 7]. 

Rather, the focus of the present  article is on matters re- 
lated to e which are not so widely  apprec ia ted  or at least 
have never  been  housed  under  one roof. When  I do in- 
dulge in reviewing wel l -known facts concerning e, it is to 
forge a link to results of a more exotic variety. 

Occurrences of e throughout  pure and appl ied  mathe-  
matics are considered;  exhaust iveness is not the goal. Nay, 
the breadth  and dep th  of our  treatment of e has been  cho- 
sen to convey the versatility of  this remarkable  number  and 
to whet  the appet i te  of the reader  for further investigation. 

The Cast 
Unlike its e lder  sibling ~r, e cannot  be traced back through 
the mists of t ime to some prehistoric era [8]. Rather, e burst 
into existence in the early seventeenth  century in the con- 
text of commercial  transactions involving compound  inter- 
est [5]. Unnamed  usurers observed  that the profit from in- 
terest increased with increasing frequency of  compounding,  
but with diminishing returns. 

Thus, e was first conceived as the limit 

e = lim (1 + l/n)*' = 2.718281828459045" �9 �9 (1) 
n ~ a o  

although its bapt ism awaited Euler in the eighteenth cen- 
tury [2]. One might naively expect  that all that could be  
g leaned from equat ion (1) would  have been  mined long 
ago. Yet, it was only very recently that the asymptot ic  
development  

= ( 1 + 1 / n )  ~ = ~ e~. 

ev= e l---7--. ' (2) 
k=o ( v +  k)! l=o 

with & denot ing the Stirling numbers  of the first kind [9], 
was discovered [10]. 

Although equation (1) is traditionally taken as the defin- 
ition of e, it is much better  approx imated  by the limit 

[ (n + 2)n+2 (n + l)n+l ] 
e = lim 1),,+i (3) n--+~ (n  + r/n 

discovered by Brothers and Knox in 1998 [11]. Figure 1 dis- 
plays the sequences  involved in equations (1) and (3). The 
superior  convergence of equation (3) is apparent.  

In light of  the fact that both  equations (1) and (3) pro-  
vide rational approximat ions  to e, it is interesting to note 
that 87~ = 2.71826 �9 �9 �9 provides the best rational approxirna- 

323 
tion to e, with a numerator  and denominator  of fewer than 
four decimal digits [12]. (Note the palindromes!)  Consider- 
ing that the fundamental  constants of nature ( speed  of  light 
in vacuo, mass of  the electron, Planck's constant,  and  so 
on) are known  reliably to only six decimal digits, this is re- 
markable  accuracy indeed. Mystically, if we  simply delete  
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the last digit of both numerator and denominator then we 
t~ s732, the best rauonal" approximation to e using fewer 
han three digits [13]. Is this to be regarded as a singular 

property of e or of  base 10 numeration? 
In 1669, Newton published the famous series represen- 

tation for e [14], 

2 1 e---= ~ t  = 
k 0 

1 1 1 1 1 + 1 +  ~ . ( 1 +  ~- . (1+  ~- . (1+  ~- . (1+  . ' ' ) ) ) ) ,  (4) 

established by application of  the binomial expansion to 
equation (1). Many more rapidly convergent series repre- 
sentations have been devised by Brothers [14] such as 
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~, 2 k + 2  
e = (5) 

k=0 (2k)! 

Figure 2 displays the partial sums of equations (4) and (5) 
and clearly reveals the enhanced rate of convergence. A va- 
riety of series-based approximations to e are offered in [15]. 

Euler discovered a number of representations of e by con- 
tinued fractions. There is the simple continued fraction [16] 

1 
e = 2 + 1 , (6) 

1+ 2+ 11 
1+ 1 

1 1+ 4+ l+.__.k~_~ 
1+ r~... 

or the more visually alluring [5] 

e = 2 + 1 (7) 
1 + 2+-- 2 8 

3+  
4+ 4 

5 + 6 +  0 6 
7 7 + 8 + . . .  

In 1655, John Wallis published the exhilarating infinite 
product 

rr 2 2 4 4 6 6 8 8 1 0 1 0 1 2 1 2 1 4 1 4 1 6  
. . . . . . . . . . . . . . . . .  (8) 
2 1 3 3 5 5 7 7 9 9 1 1 1 1 1 3 1 3 1 5 1 5  

However,  the world had to wait until 1980 for the "Pip- 
penger product" [17] 

e 

2 

3 !  \ 5  5 7 9 9 11 11 13 13 15 ~ /  ' ' ' .  (9) \ l  J \  7 / \  
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In spite of  their beauty, equations (8) and (9) converge 
very slowly. A product representation for e which converges 
at the same rate as equation (4) is given by [18] 

U 1 ----- 1; U n +  1 = (T/ 4- 1 ) ( U n  -I- 1) 

[ I  un+ 1 2 5 16 65 326 
e . . . . . . . . . . .  (10) 

n = l  U*I 1 4 15 64 325 

A n  I n t e r e s t i n g  I n e q u a l i t - e  
In 1744, Euler showed that e is irrational by considering the 
simple infinite continued fraction (6) [19]. In 1840, 
Liouville showed that e was not a quadratic irrational. Finally, 
in 1873, Hermite showed that e is in fact transcendental. 

Since then, Gelfond has shown that e ~ is also transcen- 
dental. Although now known as Gelfond's constant, this 
number had previously attracted the attention of the influ- 
ential nineteenth-century American mathematician Benjamin 
Peirce, who was wont  to write on the blackboard the fol- 
lowing alteration of Euler's identity [2, 5]: 

' =  ~ e  ~, (11) 

then turn to the class and cryptically remark, "Gentlemen, we 
have not the slightest idea what this equation means, but we 
may be sure that it means something very important" [4]. 

But what of ~r~? Well, it is not even known whether it is 
rational! Niven [20] playfully posed the question "Which is 
larger, e ~r or rre? ''. Not only did he provide the answer 

e ~ > IT e, (12) 

he also established the more general inequalities 

/ 3 > a - > e ~  c~/3>/3~; e - > / 3 > a > 0 ~ / 3 ~ > ~ / 3 ,  (13) 

where e plays a pivotal role. This result is displayed graph- 
ically in Figure 3. 

B a r e l - e  T r a n s c e n d e n t a l  

As noted above, e is transcendental, but just barely so [21, 
22]. In 1844, Liouville proved that the degree to which an 
algebraic irrational number  can be approximated by ratio- 
nals is limited [23], so that, from the point of view of  ratio- 
nal approximation, the simplest numbers are the worst [24]. 
Liouville used this property-- that  if an irrational number  is 
rapidly approximated by rationals then it must be transcen- 
d e n t a l - t o  construct the first known transcendental number, 
the so-called Liouville number  L = 10 -1! + 10 -2! + 10 -3! 4- 
�9 . .  10-m! + �9 �9 -. In 1955, Klaus Roth provided the defini- 
tive refinement of Liouville's theorem by finding the ulti- 
mate limit to which algebraic irrationals may be approxi- 
mated by rationals [19]. For this work, he was awarded the 
Fields Medal in 1958. 

To phrase these results quantitatively, for any real num- 
ber 0 < s ~ < 1 and any fraction p/q in lowest terms, let R 
denote the set of all positive real numbers r for which the 
inequality 

1 
0 < I~ -- P l < qr (14) 

possesses at most finitely many solutions. Then, define the 
Liouville-Roth constant (irrationality measure) as 

r ( ~  ~- inf r, (15) 
r ~ R  

that is, the critical rate threshold above which {: is not ap- 
proximable by rationals. 

Then, the above may be summarized as follows [22]: 

{ i :  when  {: is rati~ 
r ( ~  = when  {: is algebraic of degree > 1, (16) 

2 when  s ~ is transcendental. 
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More germane to our present  deliberations, it is known  that 

[211 

r(e) = 2. (17) 

Thus, e dwells  in the twilight zone of overlap be tween  the 
algebraic irrationals and the transcendental  numbers.  

The Primor-e-al 
Letting Pn denote  the nth pr ime number,  we  define the pri- 
morial  of Pn as follows [25]: 

n 

P n*~ ~ H Pk. (18) 
k - - 1  

Thus, the primorial  sequence  proceeds  as follows: 2, 6, 30, 
210, . . . An integer is cal led a primorial pr ime if it is 
a pr ime of  the form p,,#-+ 1. For example ,  211 = 
2 �9 3 �9 5 �9 7 + 1 is a primorial  prime. It is not known whether  
there are infinitely many primes p for which p~ -+ 1 is pr ime 
or whether  there are infinitely many primes p for which 
p~ + 1 is composite.  

However,  Ruiz [26] has establ ished the following re- 
markable  limit relating e to the primes: 

lim (p,~)l/p, = e. (19) 
n---+ac 

As Figure 4 shows, the approach  to the limit is not nearly 
as tame or as speedy  as that in Figures 1 and 2. 

A related result certainly worthy of  note is the following: 
Let An and Gn denote  the arithmetic and geometric means,  
respectively, of  the integers 1, 2, 3, . . . ,n. Then [18] 

A n e 
lim - (20) 
n--,~ Gn 2 '  

e-quiangular Spiral 
Figure 5 displays the equiangular  (logarithmic) spiral de- 
fined by 

r = e c~ ~-e (21) 

and possessing the distinguishing characteristic of intersect- 
ing any radial line drawn from its center  at a constant an- 
gle ~. This spiral has many remarkable  self-reproducing 
propert ies,  such as that of being its own evolute [5]. Jakob 
Bernoulli (brother  and sometimes-adversary of Euler's 
teacher, Johann  [27]) was so taken by it that he had it p laced  
on his gravestone with the inscription "Eadum mutata 
resurgo (Though changed,  I shall arise the same)." 

While e has the straightforward geometrical  interpretation 
as delimiting a unit area under  the hyperbola  y = 1/x start- 

~* 0t 

Figure 5. Spira mirabilis. 

B 
Figure 6. Spiral compass. 

ing from x = 1, ~r is def ined as the ratio of two lengths (cir- 
cumference to diameter  of a circle). However ,  with refer- 
ence to Figure 5, e may also be def ined as the ratio of two 
lengths [28]: 

A 0 = t a n a ~  r 2  = e .  (22) 
rl 

(For example ,  if a = rr/4, then A0 should  be chosen  to be 
one radian.) But since, according to equat ion (21), the spi- 
ral requires e as part of its very definition, is this not a cir- 

cular argument? 
No, it is a spiral  a rgument ,  for an equ iangu la r  spiral  

may be  d rawn wi thout  re ference  to equa t ion  (21) [7]! Fig- 
ure 6 d isplays  a spiral  compass  des igned  for this purpose .  
The compass  po in t  is loca ted  at O and is free to sl ide 
smooth ly  in the s lot ted rod  BC The w h e e l  F, which  lies 
in a p lane  pe rpend icu l a r  to the page,  may  be  locked  in 
p lace  at the des i red  angle  relat ive to this rod. A small  han-  
dle  p ro t rudes  at G which  permits  grasping  the appara tus  
b e t w e e n  the thumb and two first fingers. Its sharp  edge  
keeps  the whee l  from sl ipping s ideways.  Hence,  as the 
whee l  revolves  it maintains  a constant  angle  with the slot- 
ted  rod  and the reby  traces out  an equ iangu la r  spiral  of 
any des i red  eccentricity.  

The equiangular spiral arises in many natural settings (and 
some unnatural ones as well: the beginning of the Yellow 
Brick Road is reputed to be a golden spiral). One of these is 
shown in Figure 7. The cauliflower (Broccoli Romanesco) 
there displayed is resplendent  with equiangular spirals. Deli- 
ciously enough, it is also a rich source of vitamin E! 

Stirl-e-ng's Formula 
In 1730, Stirling publ ished the asymptotic formula [29] 

n ! -  e ,z. n n . 2 ~ n .  (23) 

In addit ion to providing an intriguing connect ion be tween  
~r and e, it also affords the limit 

n 
e = lim (24) 

n ~  ( n ! )  1 / ~ z '  

However,  it should be poin ted  out that equat ion (24) can 
be obtained directly from equation (1) by elementary means 
and, furthermore, that equation (20) is now an immediate 
consequence  of equation (24). Formula (23) bears so many 
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Figure 7. V i t a m i n  e. 

remarkable relationships to the foregoing as to make it pos- 
itively eclectic. To begin with, Wallis's formula (8) was used 
by Stifling to determine the constant factor in his asymptotic 
formula. Furthermore, Pippenger  used Stirling's formula in 
deriving his product  (9). Moreover, Stirling's formula is an 
essential ingredient of Borwein's derivation of equation (17) 
for the Liouville-Roth constant for e. Lastly, both Ruiz's eval- 
uation of the primorial limit (19) and the determinat ion of 
the ari thmetic/geometric mean limit (20) hinge upon the in- 
vocation of Stirling's formula. 

Let us try to gain an intuitive feel for the accuracy of  Stir- 
ling's formula for moderate  values of n. Specifically, 100! = 
9.3326 �9 �9 �9 X 10 ~57, while Stirling's formula produces  100! 

1",7 1 0 9.3248 �9 �9 - • 10 - with an error of  less than --Ye. This also 
10 

al lows us to apprec ia te  the immensi ty  of  n! for even  
moderate  values of  n. For example,  the age of the Universe 
is bel ieved to be O(1017) seconds,  and the number  of  atoms 
in the visible Universe has been est imated to be O(1079). 
Yet, we must t emper  our awe of the magni tude  of n! with 
the realization that the number  of possible  chess games has 
been  est imated to be O(101~176 [30]. 

eigenfunction 
The functional equation 

./`(x + j,) ---f(x)/`(y) (25) 

is known as the exponent ia l  equat ion of Cauchy [31]. If .f  (x) 
is bounded  on a set of  positive measure  then the only so- 
lutions of (25) are f (x )  = 0 and f ( x )  = e% where  c is an 
arbitrary constant. This is easy to establish if we make the 
more restrictive assumption that f ( x )  is differentiable. 

In that case, 

f ' ( x  + y )  = f ' ( x ) f ( y )  = f ( x ) f ' ( y ) ,  (26) 

which upon  rearrangement  becomes  

f'(x) .f'@ 
c ~ f ( x )  = A e  cx, (27) 

f ( x )  f ( y )  

Since equation (25) clearly implies that f (0 )  = [./'(0)] 2, we 
must have either f (0)  = 0 = A o f f ( 0 )  = 1 = A, thereby pro- 
ducing the two solutions as required. 

Observe that, from equation (27), the emergence  of  the 
exponent ial  solution was a direct consequence  of  its being 
the eigenfunction of the differentiation operator: 

d 
( D -  c ) y ( x ) = 0  ~ y ( x ) = A e C X ;  D=-- dx"  (28) 

This same fundamental  property provides the exponent ia l  
function with a central role throughout  the vast field of dif- 
ferential equations and their applications. 

For example,  consider  the first-order, constant coefficient, 
scalar equation [32] 

y ' ( x )  - r y ( x )  = f ( x ) .  (29) 

Multiplication by the integrating f a c t o r / ,  ~ e-ru and invo- 
cation of the eigenfunction proper ty  produces  the self- 
adjoint form 

[e-rc'iy(x)] ' : e - rX  f ( x ) ,  (30) 

which upon  integration leads directly to the general  solution 

y ( x )  = e rx fe-rx f(x) dx ,  (31) 

where  we  have utilized the shorthand f 4 X x ) d x  ==- [x4x.~)d~. 

Let us recast this result in opera tor  form. Equation (29) 
becomes 

( D  - r ) y ( x )  = f ( x ) ,  (32) 

while its solution, equation (31), becomes  

1 
�9 S ( x )  = e rx r e -  rx [(x) d& ( 3 3 )  y(x) = O ~ -  r 

providing an explicit  representat ion of the inverse of the dif- 
ferential operator  D -  r. 

We may exploit  this observat ion in order  to boots t rap to 
a solution procedure  for second-order  equations with con- 
stant coefficients. Consider, for example,  

y"(x) - 3y ' (x)  + 2y(x) = x e  ~':, (34) 

or, in opera tor  fom~, 

(D 2 - 3D + 2)y(x) -- x e  x. (35) 

Factorization fol lowed by inversion then leads to 

1 1 
y ( x )  . . . .  x e  < (36) 

D - 1  D - 2  

An initial appl icat ion of the inversion formula (33) pro- 
duces the intermediate result 

1 e2 x f - -  " x e  x =  e 2XxeX d x =  - ( 1  +x)eX; (37) 
D - 2  
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then a second application provides a particular solution to 
equation (34): 

1 
y ( x )  = - -  �9 [ - (1  + x )e  x] 

D - 1  

= - e  x f e-X(1 + x)e  x d x  = - 1 ( 1  + x )Ze  x. (38) 

Clearly, this symbolic process generalizes to nth-order con- 
stant coefficient operators. 

However, it is frequently more natural to recast a higher- 
order equation as a system of first-order differential equa- 
tions [33]: 

2 ' ( t )  = A2( t )  + f ( t ) ;  2(0) = 20. (39) 

Defining the matrix exponential as 

e tA ~ - -  A n, (40) 
n=O n !  

we arrive at a solution analogous to equation (31), 

2(t)  = etA2o + e(t-')A f ( r )  dr. (41) 

This useful result is called the variation of parameters for- 
mula. Part of  its allure is that it expresses the solution in a 
form whereby the influence of  the initial conditions, 20, and 
the external influences, f ( t ) ,  have been isolated and hence 
may be studied separately. 

From Continuous to Discr-e-te 
The preceding section detailed an operational approach to 
differential equations (continuous models) founded on the 
eigenfunction property of  the exponential function. An anal- 
ogous symbolic calculus may be developed for the study of 
difference equations (discrete models). Appropriately enough, 
the bridge between these parallel universes (the continuous 
and the discrete) is afforded by e [34]. 

First, define the shift operator E, 

k f ( x )  =- f ( x  + b), (42) 

and the forward difference operator A, 

A f ( x )  =- f ( x  + h) - f ( x ) .  (43) 

Then by Taylor's theorem, E is expressible in terms of D of 
the previous section as 

1 + A = E = e hD. (44) 

Equation (44) may now be used to transform back and 
forth between the continuous world of D and the discrete 
world of  A: 

1 
Df (x )  = -~ln(1 + A) f (x )  

1 A2  A 3  
= - - [ A -  - -  + . . . . .  ]f(x), (45) 

h 2 3 

h 2 
A f ( x ) = ( e  b D -  1 ) f ( x ) = [ h D +  - - D  2 +  . . . ] f ( x ) .  (46) 

2I 

Corresponding relations may be derived involving both 
backward and central difference operators, but the above 
should be sufficient to convey the essential role of e as in- 
termediary between these two distant lands. 

exponential Generating Functions 
The sequence {an}n=0 is said to be generated  by the func- 
tion g(x)  if they are related by [35] 

g(x )  = ~ anX n (47) 
n = 0  

For example, (1 + x) m generates the binomial coefficients 
(m). 

Likewise, g(x)  is called the exponent ia l  generat ing f u n c -  

tion for the sequence {an}n= 0 if 

g(x)  = - -  x n (48) 
n o n! 

For example, the Bernoulli function B(x)  is the exponential 
generating function for the Bernoulli numbers Bn: 

2 x _ Bn" - - .  (49) 
B ( x ) -  e x _ 1 n! 

n=O 

The Bernoulli numbers arise in a dizzying variety of an- 
alytical and combinatorial contexts [9], like Faulhaber's for- 
mula for the sums of powers of integers: 

k P = P ~  1 (--1)P-k+l BP-k+I P' n k. (50) 

k= 1 k= 1 la! ( p -  k + 1)! 

In a later section, I will explore the use of exponential 
generating functions in combinatorics and graph theory. But 
first let us explore an important occurrence of the Bernoulli 
function in its own right [36]. 

Bernoull-e Function and Singular Perturbations 
Many natural phenomena are governed by differential equa- 
tions whose highest derivative is multiplied by a small pa- 
rameter E. These include [37] pollutant dispersal in a river 
estuary, vorticity transport in incompressible flow, atmo- 
spheric pollution, kinetic theory of gases, semiconductor de- 
vices, groundwater transport, financial modelling, melting 
phenomena,  fluid flow over an airplane, and turbulence 
transport. 

This field of applied mathematics is called s ingular  per-  
turbation theory because the correct physical solution for 
small E bears little resemblance to the solution obtained by 
simply setting E to zero. A prototypical problem is provided 
by [381 

e .  u ' (x)  + u(x)  = 0 ~ ui = e -Ax/E �9 Ui-1, (51) 

where the subscript notation indicates that the problem has 
been discretized on a mesh of  width Ax. The exact solu- 
tion afforded by equation (51) is shown in Figure 8 with 
u0 = u(0) = 1. The steep front that is on prominent display 
there is called an initial layer. 

If we approximate the differential equation by the ex- 
plicit (forward) Euler scheme [39], we obtain 

bl i - -  Ui_  1 
I~" -]- b l i -  1 = 0 ~ U i = (1 - Ax/e) �9 u i - 1  ( 5 2 )  

A x  

Comparison of the solutions in equations (51) and (52) re- 
veals that this is equivalent to the use of the first-order Tay- 
lor series approximation to the exponential function, e z -~ 
1 + z. This approximation is shown in Figure 8 for A x l e  = 

1.9608 and is clearly seen to be inadequate. 

16 THE MATHEMATICAL INTELLIGENCER 



If we instead insert a strategically placed Bernoulli func- 
tion, B ( - A x / E ) ,  into our approximation 

~.  B ( - A x / ~ ) .  u i -  ui-1 + ui-1 
kx  

= 0  ~ u i =  e -axlE" ui-1, (53) 

we obtain the exact solution! This spectacularly successful 
trick is known as exponential fitting [40]. 

Let us now employ the implicit (backward) Euler scheme 
to provide our approximation to the differential equation 

ui - u i -  ~ 1 
e. + u i = 0  ~ u i=  "ui-1. (54) 

A x  1 + A x l e  

Comparison of the solutions in equations (51) and (54) 
now reveals that this is equivalent to the use of the 
(0,1)-Pad6 approximation to the exponential function [41], 
e z ~ 1/(1 - z). Revisiting Figure 8, we find that, while the 
implicit scheme vastly improves over the explicit scheme, it 
is still inadequate for many applications. 

Introduction of a strategically placed Bernoulli function, 
B(Ax /E) ,  into our approximation 

E "  B ( A o c / f f . )  �9 IXi - -  I X i - 1  + U i ~-- 0 ~ U i = e -• u i - i  (55) 
kx  

again produces the exact solution. The crucial role played 
by the Bernoulli function in the approximation of singularly 
perturbed differential equations is thereby revealed. 

exponential Asymptotics 
Continuing with the theme of the previous section--just be- 
cause a term is small does not imply that it can be neglected 
in a respectable mathematical analysis of a physical prob- 
lem. Consider Figure 9, where we observe a duck moving 
along the surface of a pond, leaving in its wake a "caustic" 

enclosing an angle of approximately 40 ~ [42]. Outside the 
wake, the effect of the duck's motion is "exponentially 
small"; inside and on the caustic, its effect may be obtained 
through asymptotic approximations [43]. However, as first 
observed by Stokes in 1847, these exponentially small terms 
must be accounted for in order to produce refined asymp- 
totic approximations. 

Quantitative accuracy is not the only concern of such so- 
called exponential asymptotics. The very existence of a so- 
lution may hinge on properly accounting for exponentially 
small terms. For example, in crystal growth the formation 
of dendritic fingers is governed by an exponentially small 
term in the surface energy between solid and liquid [43]. 
This is an area of intense current interest in applied math- 
ematics [42]. 

exponential Transform 
Let us now return to the subject of exponential generating 
functions. In combinatorial analysis [44], generating func- 
tions are used for problems involving combinations while 
exponential generating functions find application in prob- 
lems involving permutations. However, exponential gener- 
ating functions find wider application to graphical enumer- 
ation problems [45]. 

Let A(x)  = ~ = 1  anx"/n!  be the exponential generating 
function of the sequence {au}~=l and B ( x )  = "Z~=l bnxn/n! 

be the exponential generating function of the sequence 
{b,,}~=l. If 1 + B ( x )  = e a(x) then {bn}n=l is called the expo- 
nential transform of {an}~=l and {an}n=1 is called the loga- 
rithmic transform of {bn}~=l [46]. 

Riddell's formula relates the number of graphs with n ver- 
tices to the number of such graphs which are connected [47]. 
It is stated in [48] that "if a ,  is the number of connected la- 
beled graphs with a certain property, then bn is the total num- 
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Figure 9. Duck-e with attendant wake. 

ber of labeled graphs with that property." Letting the prop- 
erty in question be "having exactly two connected compo- 
nents," we see that as stated this is clearly false. (a,, = 0 for 
all n so that Riddell's formula implies that b,  = 0 for all n, but 
b2 = 1.) Unfortunately, this error is repeated by Weisstein [46]. 

Sloane and Plouffe cite Harary and Palmer [45] who in turn 
cite Riddell [49]. However, inspection of Riddell's original 
work [49] reveals that he never applied the exponential trans- 
form to any property other than connectedness. The correct 
generalization of Riddell's formula requires amendment  of the 
above: "then bn is the total number  of labeled graphs with 
n vertices whose connected components possess the same 
property." Thus, if one restricts oneself to properties inher- 
ited by the connected components  of a graph, then Riddell's 
formula may be confidently used as an enumerative tool. For 
example, if we let the property be "even-ness" then Riddell's 
formula correctly relates the number  of Eulerian graphs to 
the number  of even graphs (see [47] for the definitions of 

these graph-theoretic concepts). Otherwise, employment of 
Riddell's formula produces erroneous results. 

P r o n - e ' s  M e t h o d  
It is sometimes necessary to approximate a function by a 
sum of exponential  functions. Essentially a nonlinear  prob- 
lem, this may be accomplished by transforming it to the 
problem of finding the zeros of a certain polynomial. This 
technique is known  as Prony's method [39]. 

Given f ( x )  at x =  0,1, . . . , N -  1, we seek an expo- 
nential approximation 

f (x)  .~ Cl e a l x  + . ' .  + one  a,,x, (56) 

where N --> 2n. Defining~ = f ( j ) ,  Irk := e %  Prony's method 
proceeds as follows: 

1. Solve (by least squares if necessary) for i l l ,  �9 . . f i , ,  in 
the N -  n linear equations 

.fiz + f n - 1 / 3 1  + " " "  + . 5 / 3 , z  = 0 

! ( 5 7 )  

d r 1  + d r  2/31 + " ' "  + d r , ,  1/3, = 0. 

2. Find the roots/~l,  �9 �9 �9 /.t,, of 

/ j n  -l- / 3 1 / / / l  1 q_ . . . _}_ /3,z 1/-t q- /3,t  ~--- O, ( 5 8 )  

and define a t  = ln/zt (k = 1, . . . n). 
3. Solve by least squares for q ,  . . . ,c,  in the N linear 
equations 

C 1 q- C 2 -F- " " " q- C n = j ~  

/d'l C1 q-  /J '2C2 q'- " " " q- [tnCn = "/q (59) 
i 

1-1'1 \~1  El Jr- 1"1"~ "-1 C2 " } - ' ' "  "Jr- [d'~Y -1  Cn = / N - I -  

Depending on the size of n, we may either solve equat ion 
(58) by directly applying a polynomial root-finding algo- 
rithm or by recasting it as an eigenvalue problem for the 
companion matrix [50] 

--/31 1 0 �9 �9 �9 0 

- - / 3 2  0 1 �9 �9 �9 0 
-/33 0 0 �9 �9 �9 . 

: : " . .  

- ,, 0 0 ' ' '  

(60) 

Modern-day applications of Prony's method include dig- 
ital-filter design, radar and sonar signal processing, deter- 
mination of atmospheric transfer functions, and even radia- 
tion therapy planning for cancer patients [51]. The original 
algorithm of Baron de Prony [52] dates back to 1795 and 
was concerned only with the case N =  2n. Unlike his con- 
temporaries Monge and Fourier, de Prony refused to join 
Napoleon's invasion of Egypt. Only his wife's close friend- 
ship with Josephine averted the anticipated dire conse- 
quences of such lack of military zeal [53]. 

P r o b a b l - e  
e has the curious habit of asserting itself in strange proba- 
bilistic contexts [54]. For example, suppose that numbers  are 
selected at random from the interval [0,1]. What is the ex- 
pected number  of draws necessary for the sum of these 
numbers  to exceed 1? There are several elementary proofs 
[54, 55, 56] that the answer is emphatically e. 

Then there is the old chestnut of the "secretary problem" 
[22, 54]. Here, it is required to select a new secretary from 
a pool of n applicants. Candidates are interviewed sequen- 
tially and the decision whether or not to hire an individual 
must be made at the conclusion of the interview. If the can- 
didate is not selected then he/she is excluded from further 
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consideration. If this process ever reaches the last applicant  
then that individual is automatically hired. The goal is now 
to devise a strategy that maximizes the probabil i ty of hiring 
the most qualified applicant.  There turns out to be a sim- 
ple optimal strategy: for some integer k (to be determined 
as part of the optimizat ion problem)  with 1 -< k < n, inter- 
view and reject the first k applicants.  Then, from the re- 
maining n -  k applicants,  choose  the first one that is the 
best  seen to date. In the limiting case of  large n, the opti- 
mal value is k ~ n / e  ~ 0.368n and the probabil i ty  of find- 
ing the best  applicant  is asymptotically 1/e (about  36.8%). 
This is but one of a variety of optimal s topping problems 
[22]; remarkably,  this very result has been  appl ied  to the al- 
location of cadaveric kidneys tor transplantation [57]. 

Well, our newly hired secretary is working out fine until the 
Christmas luncheon, at which one too many spiked eggnogs 
is imbibed. Upon returning to the office, we are confronted 
with the "drunken secretary problem." Waiting on the desk are 
n different letters, each with a corresponding addressed enve- 
lope. What is the probability that he/she will produce a "de- 
rangement" whereby no letter is placed in its correct envelope? 
Euler first posed this problem, answered it, and showed that 
the required probability asymptotically approaches 1/e [21. 

Of course, the flip side of this p roblem is: What  is the 
probability, p, that a permutat ion of n distinct objects has 
at least one fixed point? According to the above,  p ~ 1 - 
1/e ~ 0.632. We have hardly exhausted all of the appear-  
ances of e in probabil i ty  [54], but it is t ime we moved  on 
to her sister discipline of statistics. 

Statisticall-e 
While occurrences of e throughout  probabil i ty theory might 
be characterized as sporadic,  its influence on statistical the- 
ory has been  pervasive. First int roduced by DeMoivre in 
1733 as the limit of the binomial  distribution [58], the nor- 

>/ ) 
real distribution, N ( x ; t x , ~ ) = ( o - ~ 7 ~ )  le-CV-**>'{e~'), has 
come to dominate  the statistical landscape.  Spurred on by 
Gauss 's  1809 theory of errors of observat ion and Laplace's 
publicat ion in 1812 of the Central Limit Theorem [59], study 
of the normal distribution became virtually synonymous  with 
statistical inquiry. This fixation on the normal distribution 
reached an abnormal  pitch in the late nineteenth century at 
the hands  of  Adolphe  Quetelet  and Sir Francis Galton [59]. 
This frenzy was tempered  somewhat  in the twentieth cen- 
tury by Galton 's  prot~g~ Karl Pearson and his nemesis  Sir 
Ronald Fisher, but  to this day the normal distribution holds 
a special place in the hearts and minds of statisticians. 

e is intimately involved with at least two other statistical 
distributions [60], one discrete, the Poisson distribution with 
parameter  a (mean) 

a h 

P r o b { X =  k} = e - a "  - -  (61) 
le! '  

and the other continuous, the exponent ial  distribution with 
parameter  c (1/mean) 

f ( x )  = ce ~:~. U(x) ,  (62) 

where  U(x) denotes  the Heaviside unit step function. 
These two distributions are related by the theory of sto- 

chastic processes [60], where  the Poisson distribution is used 

to model  the number  of arrivals for a queue  in a given in- 
terval of time and, correspondingly,  the exponent ia l  distri- 
but ion is used to model  the actual arrival times. Thus, they 
give rise to mathematical  models  of supermarket  waiting 
lines and car accidents. If the independen t  variable is not 
time but  space, then the exponent ia l  distribution can be 
used to model  distance be tween  roadkill  or be tween  muta- 
tions on a strand of DNA. 

The exponent ia l  distribution possesses a special proper ty  
that endows it with great utility in reliability theory [60, pp. 
82-83]. This can be seen by comput ing the probabil i ty  of 
failure of some physical device during the interval (x, x + dx), 
assuming that it did not fail prior to time t: 

, / ' ( x lX  >- t) d x = f ( x -  t) dx; x >- t. (63) 

where  X is the random failure time of the device. 
Thus, the condit ional  failure rate, [3(0, defined as 

[3(t) =- f ( t ] X  >- t) = f ( 0 )  = c, (64) 

is independen t  of t. This is called the memoryless  property,  
and, significantly, only the exponential  distribution possesses  
it. This implies that, in any applicat ion where  the failure rate 
is approximate ly  constant, the exponent ial  distribution must 
arise. This is ev idenced by its frequent appearance  in mod-  
eling the "middle years" of the lifetime of diverse systems 
ranging from industrial machines to human beings. 

The exponent ia l  function is also used to define the mo- 
ment  generating t \mction of the statistical distribution with 
density function f ( x )  [60, p. 116]: 

�9 (s) =- f ( x )  �9 e -~x d x  ~ m,,  ~ E { X  ~'} = ~~ (65) 
x .  

where  E is the expec ted  value. Consequently,  qb(s) is the 
exponent ia l  generat ing function of the moment  sequence  
{mn},~=l. In point  of fact, generat ing functions were  first 
exploi ted  by Lagrange and Laplace in their probabil is t ic  
investigations [59]. Providing yet another  unifying thread, 
I note that Stirling's formula is an essential ingredient  in 
one of the proofs  of the DeMoivre theorem a l luded to 
above  [60]! 

Family Tr-e 
Over the course of four centuries, e has dutifully obeyed  the 
biblical directive "be fruitful and multiply" and spawned an 
illustrious lineage. Among its distinguished progeny [35, 61]: 

�9 hyperbol ic  functions: sinh(z) = (e z -  e-Z)/2, etc. 
�9 tr igonometric functions: cos(z) = ( e ' Z +  e - ' e ) / 2 ,  etc. 
�9 Bernoulli  function: B ( x )  = x / ( e  x -  1) 
�9 Gaussian function: G(x;  c~,[3)= e [~x-~//31-~ 

2 
�9 error function: eft(x) = ~ 7  f~ e - F d t  

�9 Gamma function: F(z) = J'~ e - t t ~ - l d t  (Re z >  0) 

�9 exponent ia l  integral: El(x )  = f**~,: 5 d t  

�9 orthogonal  polynomials:  
Hermite: weight  w ( x )  = e -'-' on ( -%0c)  
Laguerre: weight w ( x )  = x ~ e  x on (0 ac), c~ > - 1  

�9 integral transforms: 
Fourier: f~:~ e*a:r.f(y)dy 
Laplace: f~: e ':r f ( y ) d y  
Gauss: f_~:~ e ~" y~e f (_v )dy  
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Figure I0. Google-plexed. 

It should  be clear from the above  that one wou ld  be  
chal lenged to find a branch of pure  or app l ied  mathemat-  
ics which has not felt the enr iching presence  of e. Readers 
are invited to add their own favorite branches  to this al- 
ready robust  family tree. 

Conclusion 
The time has come to end our stroll through the Garden of 
e-den, even though we have yet  to taste many of its most 
succulent fruits, such as exponent ia l  splines [62]. However,  
I would  like to conclude  my p-e-an to e in a lighter vein. 

The initial decimal  digits of e are quite easy to remem- 
ber: 2.7 1828 1828 45 90 45. In spite of this, many mnemon-  
ics based  on the number  of characters of each word  have 
been  developed.  A particular favorite is: "It enables  a num- 
skull to memorize  a quantity of  numerals" [63]. For the more 
sophisticated, I offer the pleasingly self-referentiah "I'm form- 
ing a mnemonic  to r emember  a function in analysis" [13]. 
Of course, anything can be taken to excess, as is ev idenced  
by  the gargantuan 40-digit mnemonic  of [64]. 

Internet giant Google  holds the distinction of having 
transformed a mathematical  noun (the googol  [65]) into a 
verb. As further evidence of their mathematical  pedigree,  
when  filing the registration for their 2004 initial public  of- 
fering of stock (IPO) with the Securities and Exchange Com- 
mission (SEC), they chose not  to state the number  of  shares 
to be offered. Instead, they declared $2,718,281,828 as their 
estimate of  the money  that wou ld  be so raised. 

Later that same year, from deep  within their corporate 
headquarters in Mountain View, Califomia (the Googleplex),  
a most curious recruitment strategy was hatched. Billboards 
and banners, such as that in Figure 10, appeared  anonymously  
in Silicon Valley and Cambridge, Massachusetts. After deci- 
phering the puzzle (whose solution begins strangely enough 
at the 101st digit of e) and visiting 7427466391.com, one was 
eventually led to a solicitation of employment  for Google. 

Even though e finally has its own b iography [5], it has 
traditionally had to dwell  in the shadow cast by the head-  
l ine-grabbing ~r. Witness the fact that in [12], 7r has 8 pages  
devo ted  to it, while e is al located a paltry 1/2 page! How- 
ever, the situation has improved  to the point  where  e now 
has its own Web  page  [66], from which Figure 11 is bor-  
rowed. 
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