Georg Cantor and Transcendental
Numbers

Robert Gray

1. INTRODUCTION. Conflicting statements have been made about Cantor’s proof
of the existence of transcendental numbers. For example, consider the following
statements:

The contrast between the methods of Liouville and Cantor is striking, and these methods
provide excellent illustrations of two vastly different approaches toward proving the existence of
mathematical objects. Liouville’s is purely constructive; Cantor’s is purely existential.

—Mark Kac and Stanislaw M. Ulam [20, p. 13]

Sometimes people have gone on to say that Cantor’s method is not constructive, and cannot
yield an explicit transcendental number. The words of E. T. Bell on page 569 of his Men of
Mathematics are typical:

The most remarkable thing about Cantor’s proof is that it provides no means whereby a
single one of the transcendentals can be constructed.

This is not true. Cantor’s idea can be used so as to yield an utterly explicit transcendental
number.

—1I. N. Herstein and 1. Kaplansky [19, p. 238]

Kac and Ulam are comparing Cantor’s method with Liouville’s earlier construction
of transcendentals [24, 25]—they find Cantor’s method to be non-constructive. But
Herstein and Kaplansky insist that Cantor’s method is constructive, that it can
produce a transcendental. A few lines later, they assert that this transcendental “is
as well determined a number as e or 7.”

After reading the statements by Kac and Ulam, and Herstein and Kaplansky,
we decided to study Cantor’s work and how it has been presented. This article
contains the results of our study. We begin by analyzing Cantor’s original articles,
his 1874 article that contains his first proof and his 1891 article that contains his
diagonal proof. Our analysis will show that Cantor’s methods lead to computer
programs that generate transcendentals, and it will also determine which transcen-
dentals are generated by the diagonal method. Next we will examine the history
behind Cantor’s first proof. Finally, we will consider how some commonly-held
views about mathematics and its history have affected the interpretation of
Cantor’s work.

2. CANTOR’S FIRST PROOF. In 1874, Cantor published his first proof of the
existence of transcendentals in an article titled “On a Property of the Collection of
All Real Algebraic Numbers” [3, 5]. Cantor begins his article by defining the

1994] GEORG CANTOR AND TRANSCENDENTAL NUMBERS 819



algebraic reals and introducing the notation: (w) for the collection of all algebraic
reals, and (v) for the collection of all natural numbers. Next he states the property
mentioned in the article’s title; namely, that the collection (w) can be placed into a
one-to-one correspondence with the collection (v), or equivalently:

... the collection (w) can be thought of in the form of an infinite sequence:
2) W, 0,0, 0y, ...
which is ordered by a law and in which all individuals of (w) appear, each of them being located

at a fixed place in (2.) that is given by the accompanying index.

Cantor states that this property of the algebraic reals will be proved in Section 1 of
his article, and then he outlines the rest of the article:

To give an application of this property of the collection of all real algebraic numbers, I
supplement Section 1 with Section 2, in which I show that when given an arbitrary sequence of

real numbers of the form (2.), one can determine, in any given interval (@ -+ B8), numbers 7
that are not contained in (2.). Combining the contents of both sections thus gives a new proof of
the theorem first demonstrated by Liouville: In every given interval (« --- B), there are

infinitely many transcendentals, that is, numbers that are not algebraic reals. Furthermore, the
theorem in Section 2 presents itself as the reason why collections of real numbers forming a
so-called continuum (such as, all the real numbérs which are > 0 and < 1), cannot correspond
one-to-one with the collection (v); thus I have found the clear difference between a so-called
continuum and a collection like the totality of all real algebraic numbers.

To appreciate the structure of Cantor’s article, we number his theorems and
corollaries:

Theorem 1. The collection of all algebraic reals can be written as an infinite
sequence.

Theorem 2. Given any sequence of real numbers and any interval [a, Bl, one can
determine a number m in [a, B] that does not belong to the sequence. Hence, one can
determine infinitely many such numbers m in [a, B]. (We have used the modern
notation [a, 8] rather than Cantor’s notation (a - - B).)

Corollary 1. In any given interval [a, B, there are infinitely many transcendental
reals.

Corollary 2. The real numbers cannot be written as an infinite sequence. That is, they
cannot be put into a one-to-one correspondence with the natural numbers.

Observe the flow of reasoning: Cantor’s second theorem holds for any sequence
of reals. By applying his theorem to the sequence of algebraic reals, Cantor obtains
transcendentals. By applying it to any sequence that allegedly enumerates the
reals, he obtains a contradiction—so no such enumerating sequence can exist. Kac
and Ulam reason differently [20, p. 12-13]. They prove Theorem 1 and then
Corollary 2. By combining these results, they obtain a non-constructive proof of the
existence of transcendentals.
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Cantor’s theorems are worded constructively, but are they proved construc-
tively? Since Cantor’s original proof of Theorem 2 is not commonly known, we
present it before answering this question.

Proof of Theorem 2: Recall that we have been given an interval [a, 8] and a
sequence of real numbers w,. We must find an 7 in [, 8] that does not belong to
this sequence. Cantor assumes that the members of the sequence are distinct; to
handle an arbitrary sequence, we can either eliminate duplicates from the se-
quence or modify his proof to handle arbitrary sequences.

Cantor begins his proof by finding the first two numbers in the given sequence
that belong to [a, B]. Denote the smaller of these numbers by a, and the larger by
B;- Now form the interval [a,, B;], and locate the first two numbers in the
sequence that belong to [a;, B;]. Denote the smaller of these numbers by a, and
the larger by B,. Then form the interval [a,, B,], and continue this procedure of
generating intervals.

We have two cases: Cantor’s procedure yields finitely many intervals [«,,, B8,,] or
infinitely many such intervals. In the first case, let [a,, By] be the last interval
generated. Since there can be at most one w, in [a,, By], any 7 in the interval
besides this w, and the endpoints of the interval will satisfy the conclusion of the
theorem. In the second case, let a, =lim,_,, @, and B, = lim, . B,. These
limits exist since the «,’s form an increasing sequence that is bounded from above,
and the B,’s form a decreasing sequence that is bounded from below.

The second case breaks into two cases: Either a,, = 8, or a,, < .. At this point
in his proof, Cantor notes that «, = B, holds for the sequence of algebraic reals
[3, p. 261; 5, p. 308-309]. So Cantor not only applies his theorem to the sequence
of algebraic reals, but he also analyzes how his proof handles this particular
sequence.

To complete the proof, we must produce a suitable i for the two remaining
cases. In the case where a,, = B, let n be this common limit. Note that n cannot
be a member of the given sequence since for every k,w, does not belong to
[ay41 Bis1) In the case where a, < B,, let m be any number in the interval
[a., B..).

Cantor’s proof is constructive—he uses the given sequence w, to define the
sequences «, and B,, breaks his argument into three cases depending on the
behavior of these sequences, and constructs a suitable n for each case.* If
the sequence w, contains all the algebraic reals, then «, and B, are converging
nested sequences whose common limit 7 is a transcendental number.

Perhaps the most convincing way to show that Cantor’s argument produces a
transcendental is by computing one. Using the methods in Cantor’s proof, we have
written a computer program that generates the digits of a transcendental in the
interval (0,1). Output from our program is given in Figure 1. Our program
generates the sequence w, by enumerating the polynomials with integer coeffi-
cients and approximating their roots. We approximate roots by using Sturm’s
theorem and Horner’s method [31, p. 138-156]. (For a precise description of the
w,, sequence generated by our program, see the appendix below.)

*We call a proof “constructive” if it constructs an object using methods acceptable to most
mathematicians. For a proof of Cantor’s Theorem 2 that meets the demands of constructive mathemati-
cians, see [2, p. 27].
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Approximation Associated Polynomial
= =.50 2x -1
Bi= w, = .61... 2+ x—-1
a,= wp = .561... x2+3x -2
By= w9 =.577... 3x2 -1
ay= w4y =.569... x3— x?2+2x-1
Bi= wg =.574... x3+2x2+2x -2
a, = wg = .57318... 2x3 - 2x2-3x+2
Bys= w350 = .57347... 2x3 4+ x2+4x -3
s = @55z = .573402... 4x* = 3x3 +3x2+2x - 2
Bs= wys = .573416... 2x* —4x3 — 4x?2 - 2x + 3
g = wisgs19 = -5734104... 3x5 +5x% — x3+4x2+2x -3
Bi= gy = -5734122... 3x5+3x* - 2x3 - 3x2-2x+2
@7 = @70 = 57341146. .. x0— X3+ 2x*+3x% - x%+ x-1
B; = wigsyegy = 5T341183... x0—4x% — x*+5x3+2x24+3x -3

Figure 1. Generating a transcendental using Cantor’s 1874 method.

While generating the w, sequence, our program also generates the sequences
a,, and B,, which approximate our transcendental n. Figure 1 shows the first seven
members of a, and B,. As Cantor points out in his proof, these sequences have a
common limit—so our program will produce closer approximations. In fact, we can
calculate a bound on the number of algebraic reals that need examining in order to
find an «, and B, that approximate 7 to within 1/k. This calculation requires a
look at our enumeration of the algebraic reals.

For ease of programming, we use a different enumeration of the algebraic reals
than Cantor’s. Cantor enumerates the polynomials with integer coefficients by
their height, where the height of the polynomial agx* + -+ +a, is k — 1 + |ay
+ - -+ +|a,l, and then he enumerates the roots of these polynomials. We enumer-
ate polynomials by their size, which for the polynomial just mentioned is
max(k, lag, .. .,la.]). Polynomials of the same size are ordered by treating them as
(k + 1)-digit numbers whose digits range from —k to k. For example, the
polynomials 20x — 1 and x* — 1 are both size 20 and the first precedes the
second in this ordering. Our enumeration of polynomials generates an enumera-
tion of their roots; when a polynomial has more than one real root, we enumerate
its roots in numerical order.

To obtain an «, and B, such that 8, — @, < 1/k, we first enumerate those
roots of polynomials of size 2k or less that are in the interval (0, 1). Applying the
procedure in Cantor’s proof to this enumeration, we obtain the finite sequence
ay, By, a5, By, By Now if B, —a, > 1/k, then we would have a, <
j/Qk) < (j +1)/Q2k) < B, for some j between 1 and 2k — 2. Since j/(2k) and
(j + 1)/(Q2k) are roots of polynomials of size 2k, we have found two roots of our
enumeration between «, and B,. But Cantor’s procedure allows at most one of
these roots to be between «,, and B,. Hence, we must have B, — a, < 1/k. Since
there are (4k + 1)?**! — (4k + 1) polynomials of size 2k or less, and since each
one has at most 2k roots, we need to examine at most 2k[(4k + 1)***! — (4k + 1)]
algebraic reals in order to approximate our transcendental » to within 1/k.

This simple argument produces a poor bound. Figure 1 shows that we do not
need to enumerate polynomials of size 200 to obtain approximations differing by
less than 1/100. Nevertheless, our computer program generates digits inefficiently

822 GEORG CANTOR AND TRANSCENDENTAL NUMBERS [November



—asymptotically, it takes at least O(2V") steps to generate n digits of our
transcendental number [18]. Any program requiring this many steps is regarded as
inefficient by computer scientists [16, p. 6-9].

Cantor’s proof leads to a computer program that generates a transcendental,
but a program is not necessary for understanding his article. The constructive
nature of Cantor’s article is clear from the wording and proof of Theorem 2. This
theorem separates the constructive part of his article from the proof-by-contradic-
tion needed to establish the uncountability of the set of reals. Since we will be
referring to Theorem 2 throughout our article, we shall give it a name—Cantor’s
theorem on real sequences.

We are far from the first to point out that Cantor’s article is constructive. In
1930, Fraenkel stated that the method in this article is “a method that incidentally,
contrary to a widespread interpretation, is fundamentally constructive and not
merely existential” [15, p. 237].

Exercise. The sequence 1/2, 1/3, 2/3, 1/4, 2/4, 3/4,... . contains all the
rationals belonging to (0, 1). Apply the algorithm in Cantor’s proof to this sequence
to generate the digits of an irrational. If you are using pencil and paper, just
compute a;, B;, a,, and B,.

3. CANTOR’S DIAGONAL PROOF. We now turn to Cantor’s 1891 article [9],
which contains his well-known diagonal proof. Cantor begins by discussing his 1874
article. He points out that it contains a proof of the theorem: There are infinite
sets that cannot be put into one-to-one correspondence with the set of positive
integers. Then he asserts that this theorem has a much simpler proof than the one
given in 1874. His new proof uses the set M of elements of the form E =
(x4, x5,...,%,,...), where each x, is either m or w. Cantor states that M is
uncountable, and notes that this result is implied by the following theorem:

IfE,E,,...,E,, ... is any simply infinite sequence of elements of the set M,
then there is always an element E, of M which corresponds to no E,,.

Cantor proves his theorem by using the diagonal method to construct E,. Note
that, once again, Cantor states a theorem that separates the constructive content
of his work from the proof-by-contradiction needed to establish uncountability.

By introducing sequences of abstract symbols, Cantor shows that the phe-
nomenon of uncountability does not depend on properties of the real numbers,
such as the existence of limits for bounded increasing (or decreasing) sequences of
reals. Thus, Cantor shows that uncountability is a fundamental phenomenon of set
theory. Also, his 1874 theorem on real sequences follows easily from his new
theorem. Take any sequence of real numbers and expand its members into their
binary representations. (A real of the form m /2" must be expanded into both of
its binary representations.) This gives us a sequence of binary representations.
Apply Cantor’s new theorem to obtain the binary representation of a real number
that does not belong to the original sequence.

Cantor’s diagonal method is simpler than his earlier nesting method, and it
generates transcendentals much more efficiently. The diagonal method can gener-
ate n digits of a transcendental in O (n?log? nloglog n) steps [18]. Algorithms
requiring less than O(n?) steps are considered practical by computer scientists [16,
p. 9].
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Figure 2 contains output from a computer program that uses Cantor’s diagonal
method to generate the digits of a transcendental in (0, 1). Our program generates
the same w, sequence as our program in Section 2. It uses this sequence to
generate the digits of a diagonal number as follows: Let d be the nth digit of w,,.
Our program sets the nth digit of our diagonal number to d + 1 unless d is 9; in
this case, it sets the nth digit to 0. Cantor’s diagonal argument guarantees that the
decimal representation of our diagonal number differs from the representations we
use for the algebraic reals. But as Figure 2 shows, our program does not generate
both representations of fractions such as 1/2. Hence, we cannot conclude that our
diagonal number is transcendental until we show that it differs from all fractions
having two decimal representations. Our diagonal number does differ from these
fractions because its decimal expansion contains infinitely many 2’s—the decimal
expansions of 1/9,1/90,1/900,... generate 2’s on the diagonal.

Note that our diagonal number can be written as:

i rem([10" - w,| + 1,10)
n=1 10"

where w,, is the nth member of our sequence of algebraic reals; rem(m, n) is the
remainder left after dividing m by n; and | x| is the floor of x (the largest integer
equal to or less than x).

Exercise. Write the rationals in (0,1) as a sequence: 1/2, 1/3, 2/3, 1/4, 2/4,
3/4,... . By applying the diagonal method to this sequence, generate an irrational
number in (0, 1). Compute the first 10 digits of this number, compute the 25th

Associated Approximation to
Algebraic Real Polynomial Transcendental
w; =35 2x -1 .6
w, = 61... X2+ x-1 .62
w3 =.732... x2+2x-2 .623
w, = 4142... x2+2x -1 6233
ws =.70710... 2x2 —1 .62331
wg = .780776.. .. 2x%2+ x -2 .623317
w7 = .3660254 ... 2x2+2x—1 .6233175
wg = .66666666 . .. 3x -2 62331757
wg = .333333333... 3x -1 .623317574
wqy = .3819660112. .. x2-3x+1 .6233175743
wqy = 79128784747 ... x2+3x-3 .62331757438
wq, = 561552812808 ... x2+3x -2 623317574389
w3 = .3027756377319. .. x2+3x -1 .6233175743890
wq, = .82287565553229. .. 2x2+2x -3 .62331757438900
w5 = .686140661634507 . .. 2x2+3x -3 .623317574389008

Figure 2. Generating a transcendental using Cantor’s diagonal method.
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digit. Verify that this number can be written as:

m
o n-1 rem(llOf(’"’”)' ;j + 1,10)
r X

f(m,n)
n=2m=1 10

where f(m,n) =(n — 2)(n — 1)/2 + m.

4. ALL TRANSCENDENTALS LIVE ON DIAGONALS. As we have seen, Cantor’s
diagonal method does construct transcendentals—but which ones? To answer this
question, we first observe that the digits generated by the diagonal method depend
on the enumeration of algebraic reals we use. Different enumerations usually lead
to different transcendentals. Since there are 2% transcendentals and 2% enumera-
tions of the algebraic reals, perhaps all transcendentals live on diagonals. In a
precise sense, they do.

Before we can state our theorem about diagonals and transcendentals, we need
some definitions. Let b(n) denote the nth digit of b, where b is the binary
representation of a real number. We define the diagonal number of the sequence
by, by, bs,... of binary representations to be the real number whose binary
representation d is obtained by the following rule: d(n) = 0 if b,(n) = 1, and
d(n) = 1 if b, (n) = 0. (With binary representations, there is only one way to
change a digit, so there is only one diagonal number associated with a sequence.
To work with other representations, we would have to talk about the diagonal
numbers of a sequence.) We say that a sequence consists of all the binary
representations of algebraic reals if it contains all the binary representations of the
algebraic reals (including both representations of the fractions m/2") and if it
does not contain any representations of non-algebraic reals. Such a sequence may
contain the same representation more than once. Using the above definitions, we
can express the relationship between transcendentals and diagonal numbers:

Theorem 3. A real number in the interval (0,1) is transcendental if and only if it is
the diagonal number of a sequence that consists of all the binary representations of
algebraic reals in (0, 1).

Proof: By Cantor’s diagonal argument, the diagonal number of such a sequence is
transcendental.

Now assume that ¢ is transcendental. Let a, be any sequence consisting of all
the binary representations of algebraic reals in the interval (0, 1). We will define a
sequence b, that is a permutation of the sequence a, and that generates ¢ as its
diagonal number.

Throughout our proof, we use the same notation to denote a real number and
its binary representation. We start by finding the first a, such that a,(1) # #(1).
Our search is bounded by the binary representations of 1/2 since one of these
representations starts with 1 and the other starts with 0. After finding our a,, we
mark it as used and set b, = a,. Now assume that we have found b,, b,,...,b,_;.
To obtain a suitable b,, we look for the first unused a, such that a,(n) # t(n). If
t(n) = 0, then our search is bounded by the binary representations of 1/2" +
1/2"*" where i = 1,..., n. The representations of these numbers have a 1 in their
nth place and at least one of them is unused. Similarly, if ¢(n) = 1, then our search
is bounded by the binary representations of 1/2"*" where i =1,...,n. After
finding our a,, we mark it as used and set b, = a,.
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To complete our proof, we must show that the sequence b, is a permutation of
the sequence a,. Assume that some a, was not used, and let a, be the unused one
with the least index. Now each a;, for i < k, was used to define a b;. Let N be
greater than the indices of these b,’s. (If k = 1, then there are no such b/’s so we
let N be 1.) By our definition of the sequence b,, the only way for a, to stay
unused is for the equality a,(n) = ¢(n) to hold for all n > N. Hence, ¢t — a, is
rational. Since ¢ is transcendental, a, must also be transcendental—but this
contradicts the fact that a, is an algebraic real. Thus, the sequence b, is a
permutation of the sequence a,,.

If we apply the method in our proof to a transcendental ¢ whose digits are
computable, then we can compute a sequence of algebraic reals whose diagonal
number is ¢. For example, we have written a computer program that uses the
binary representation of 1/e to generate a sequence of algebraic reals whose
diagonal number is 1/e. Output from this program is given in Figure 3. The
sequence generated by our program is a permutation of a sequence w, that
consists of all the binary representations of algebraic reals in the interval (0, 1).
This w,, sequence is similar to the w, sequence of our previous programs—the key
difference is that our new sequence consists of representations rather than
numbers. Since our new sequence contains both binary representations of the
fractions m /2", its numbering differs from that of our previous sequence. For
example, in Figure 3, both w, and w, are binary representations of 1/2.

Approximation Binary Representation Associated

tol/e of Algebraic Real Polynomial
.0 w, =.1 2x -1
.01 w;=.10... 2+ x—1
010 w; = .0I1... 2x — 1
.0101 ws = .0110... x?+2x -1
01011 wg = .10110. .. 2x2 -1
010111 wg = .101110... x2+2x -2
0101111 wg = 0101110 .. 2x2+2x -1
01011110 w4 = .11000111... 2x2+ x—2
.010111100 wy = .101010101... 3x -2
.0101111000 o = .0101010101... 3x:i 1

Figure 3. Generating a sequence whose diagonal number is 1 /e.

Exercise. Construct a sequence consisting of all the binary representations of
rationals in (0, 1) by expanding the rationals 1/2,1/3,2/3,1/4,2/4,3/4,... into
their binary representations. Now use the algorithm in the proof of Theorem 3 to
generate the first 10 members of a sequence of binary representations whose
diagonal number is the irrational V2 — 1. (The binary representation of V2 —1is
0.0110101000... .)

5. CANTOR’S UNPUBLISHED PROOF. In Section 2, we saw that Cantor’s ideas
can be used to write either a direct (constructive) proof or an indirect (non-con-
structive) proof of the existence of transcendentals. We now investigate whether
Cantor knew that his ideas could produce such different proofs.

826 GEORG CANTOR AND TRANSCENDENTAL NUMBERS [November



The thinking that led to Cantor’s 1874 article can be found in the correspon-
dence between Cantor and Dedekind [11, p. 187-191; 28, p. 12-16]. We start with
Cantor’s letter of November 29, 1873, in which he asks Dedekind the following
question:

Take the collection of all positive whole numbers »n and denote it by (n); further, imagine the
collection of all positive real numbers x and denote it by (x); the question is simply whether (n)
and (x) can be corresponded so that each individual of one collection corresponds to one and
only one individual of the other.

Cantor says that at first glance it appears that no such correspondence could exist
—after all, one collection is discrete and the other continuous. But then he brings
out the subtlety of his question by stating that it is easy to construct a one-to-one
correspondence between the collection of positive integers and the collection of
rational numbers. Cantor also states that a one-to-one correspondence can be
constructed between the collection of positive integers and general collections of
the form (a,, . . ), where the indices ny, n,,...,n, and v are positive integers.

Dedekind replies that he is unable to answer the question, but he does give
Cantor a one-to-one correspondence between the collection of algebraic numbers
and the collection of positive integers. Dedekind also advises Cantor not to waste
too much time on his question because it has no “particular practical interest.”

In his next letter, dated December 2nd, Cantor acknowledges Dedekind’s advice
but points out that his question is of interest: “It would be nice if it could be
answered; for example, provided that it were answered no, one would have a new
proof of Liouville’s theorem that there are transcendental numbers.”

Cantor’s letter of December 7th contains the result he is seeking. His proof
starts:

Suppose that the positive numbers w < 1 can be broken up into the sequence:

(I) Wi, Woyeooy Wyyoon

After an involved argument, Cantor obtains a contradiction.
In his next letter, dated December 9th, Cantor outlines the proof he will
publish:

I show directly that if I start with a sequence

€)) [ T AR S

I can determine, in every given interval (@..8), a number 7 that is not included in (I). Hence, it
follows immediately that the collection (x) cannot correspond one-to-one with the collection

(n)...

Taken together, Cantor’s letters of December 2nd and 7th provide an indirect
proof of the existence of transcendentals. But his letter of December 9th contains
his theorem on real sequences, which provides a direct construction of transcen-
dentals.

6. WHY IS CANTOR’S ARTICLE MISINTERPRETED? Cantor’s correspondence
with Dedekind, which contains his indirect existence proof, was not published until
1937 [17, p. 104]. By then, other mathematicians had rediscovered the proof. Klein
outlined it in 1894 [21, p. 51]. Since Klein (as far as we know) published the proof
first, we will call it Klein’s proof. In 1907, Osgood presented Klein’s proof,
but called it “Cantor’s proof for the existence of non-algebraic numbers”
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[29, p. 159-160].* In 1921, Perron presented Klein’s proof, attributed it to Cantor,
and then critiqued it [30, p. 161-162]:

... Cantor’s proof for the existence of transcendental numbers has, along with all its simplicity
and elegance, the great disadvantage that it is only an existence proof; it does not enable us to
actually specify even a single transcendental number. Free from this disadvantage is another—in
fact, the oldest—existence proof due to Liouville. ..

Perron’s critique is similar to the one given by Kac and Ulam (see Section 1). So
this view of Cantor’s work has been around for many years. Why do some
mathematicians misinterpret Cantor’s article? Undoubtedly, there are a variety of
reasons. We will only discuss how these misinterpretations are encouraged by some
commonly-held views about mathematics and its history.

One such view states that Cantor’s set theory was initially attacked by many
mathematicians of his time. The problem with this view is that it fails to distinguish
the parts of Cantor’s work that were attacked, from those that were not. For
example, consider the following statement by Birkhoff and MacLane [1, p. 436—437]:

Cantor’s argument for this result [“Not every real number is algebraic”’] was at first rejected by
many mathematicians, since it did not exhibit any specific transcendental number.

If Cantor’s argument was rejected, then it would be reasonable to suspect that his
argument is non-constructive and that this was the reason for its rejection.
However, we have found no evidence indicating that Cantor’s argument was
rejected. Kronecker—the mathematician most likely to reject it—had a chance to,
but did not.

Cantor sent the article containing his existence proof to Crelle’s Journal
(Journal fiir die reine und angewandte Mathematik), even though he knew that
Kronecker, as one of the journal’s editors, could reject or delay the article.
Previously, Kronecker had delayed the publication of an article written by Heine,
one of Cantor’s colleagues. In fact, Kronecker had even tried to persuade Heine to
withdraw his article [12, p. 67 and p. 308-309]. Cantor’s experience was different
—his article was printed quickly. Apparently, Kronecker found it to be no worse
(from his point of view) than other articles appearing in Crelle’s Journal.

Cantor’s article does contain revolutionary ideas, but Cantor rephrases these
ideas using terminology familiar to his contemporaries. For example, he introduces
the concept of a collection of reals corresponding one-to-one with the collection of
positive integers, and then he provides an equivalent formulation—namely, that
such a collection of reals can be written as a sequence. Also, he states the two
theorems of his article in terms of sequences rather than one-to-one correspon-
dences. Finally, Cantor incorporates a constructive idea into his article—careful
reading reveals that his theorems only deal with sequences that are ordered by a
“law” (see [3, p. 260; 5, p. 308] and our first Cantor quotation in Section 2). Cantor
may have inserted this restriction to avoid problems with Kronecker. Kronecker
required that a sequence or series be generated by an arithmetic rule—in fact,
Kronecker probably objected to Heine’s article because it dealt with arbitrary
trigonometric series [14, p. 71].

*Klein never attributed his proof to Cantor. In 1895, Klein gave an exposition of Cantor’s 1874
article in which he replaced Cantor’s old nesting method with the newer diagonal method. Klein called
the resulting constructive proof “Cantor’s proof” [22, p. 49-54].
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In his next article [4,6], which was published in 1878, Cantor introduces
concepts that apply to all sets—these concepts cannot be rephrased into the
mathematical terminology of his time. Cantor begins this article by introducing the
notion of a one-to-one correspondence between two arbitrary sets, finite or
infinite. Next he defines the ordering that this correspondence induces—that is,
what it means for one set to be of lesser, equal, or greater power (cardinality) than
another. Cantor devotes most of this article to proving that for every positive
integer n, the set of all n-tuples of reals can be put into one-to-one correspon-
dence with the set of reals.

Once again, Cantor submitted his work to Crelle’s Journal—but this time,
publication was delayed. Cantor blamed Kronecker for the delay and never sent
another article to Crelle’s Journal [12, p. 69-70; 17, p. 111-113]. We have no
record of why Kronecker had difficulty with Cantor’s article. However, to under-
stand this article, one must work with countably infinite and uncountably infinite
sets. Kronecker, with his constructive philosophy, could never accept Cantor’s
reasoning.

As Cantor developed his ideas about infinity further, more mathematicians
began to criticize his work. For example, Cantor presented his theory of transfinite
ordinal numbers in his 1883 monograph Foundations of a General Theory of Sets
[7,8]. After reading Cantor’s monograph, Poincaré made the following comment
[13, p. 278; 27, p. 95-96]:

...these numbers in the second, and especially in the third, number-class have the appearance
of being form without substance, something repugnant to the French mind.

(Cantor’s first number class consists of the natural numbers. His second number
class consists of the countable ordinals, which are the ordinals representing the
well-orderings of the first number class. His third number class consists of the
ordinals that represent the well-orderings of the second number class.)

So the popular view of the history of set theory needs to be refined. Criticism of
Cantor’s theory did not begin with the publication of his 1874 article. It began with
his 1878 article, which contains arguments that require the use of infinite sets.
Criticism increased as Cantor introduced new concepts involving the infinite.

A commonly-held view about existence proofs also needs examining— namely,
the view stating that most non-constructive existence proofs are simpler than their
constructive counterparts. Most non-constructive proofs are simpler. However, we
must recognize those cases in which a construction yields the simplest proof. For
example, Perron (see quotation above) mentions the “simplicity and elegance” of
the non-constructive existence proof that we call Klein’s proof. Comparing Klein’s
proof to Liouville’s constructive proof, it is tempting to conclude that the former is
simpler because of its non-constructive nature. However, Cantor’s constructive
approach yields an even simpler proof.

Klein’s proof requires that we first prove that the set of reals is uncountable.
How do we prove this? By assuming that there is a sequence that enumerates the
reals, applying the diagonal method to this sequence, and obtaining a contradic-
tion. Dissecting this proof, we find that it rests upon two facts:

(1) If we apply the diagonal method to a sequence of reals, then we obtain a
real not in the sequence.

(2) If we assume that the reals can be enumerated by a sequence and obtain a
contradiction from this assumption, then no such enumerating sequence
exists.
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Now if we apply the diagonal method to a sequence containing all the algebraic
reals, we only need fact (1) to guarantee that we have constructed a transcenden-
tal. So Cantor’s constructive approach is simpler than the non-constructive one
(and it provides excellent preparation for the uncountability proof).

There may be other views about mathematics and its history that lead some
mathematicians to misinterpret Cantor’s article. We encourage our readers to
explore this subject further.

7. CONCLUSION. We started this article with two conflicting statements about
Cantor’s proof of the existence of transcendentals. We have seen that these
statements are talking about two different proofs of the existence of transcenden-
tals, a constructive proof that goes back to Cantor’s original articles and a
non-constructive proof that appeared later.*

We advocate teaching either both proofs or just the constructive one. As
mentioned in our last section, Cantor’s constructive approach is simpler than the
non-constructive one. Also, while discussing Cantor’s approach, we can give him
the credit he deserves for presenting his work so constructively.

APPENDIX. Figures 1 and 2 (see Sections 2 and 3) contain output from computer
programs that use Cantor’s methods. Both of these programs generate a sequence
w,, of algebraic reals. We now define this sequence precisely so that interested
readers may verify our results.

As discussed in Section 2, we enumerate the polynomials with integer coeffi-
cients by their size and we use this enumeration to generate an enumeration of the
algebraic reals. We only need to enumerate irreducible polynomials; but since
Cantor’s methods do work with sequences containing duplicates, we did not bother
to check for irreducibility. (For those who are interested in testing for irreducibil-
ity, see [23, p. 431-434].) However, to simplify our calculations and avoid many
duplicate roots, we decided to enumerate polynomials p(x) with the following
properties:

(1) p(x) has a root in the interval (0, 1).

(2) The coefficients of p(x) have no common factor greater than one, and the
leading coefficient is positive.

(3) Either p(x) is linear or it has no linear factors.

(4) p(x) and its derivative p’(x) have no common roots.

(5) p(x) and its second derivative p”(x) have no common roots.

The first condition simplifies our calculations. The second and third conditions
eliminate many duplicate roots.

The last two conditions are needed by Newton’s method. As Figure 1 shows (see
Section 2), Cantor’s 1874 nesting method generates digits very slowly. So for this
method, we only used Sturm’s theorem and Horner’s method to approximate roots
[31, p. 138-156]. But the diagonal method generates digits much faster than the
nesting method. To generate a large number of these digits, we need an efficient
approximation algorithm, such as Newton’s method. Now to guarantee that
Newton’s method does converge to a root of p(x), we first use Sturm’s theorem
and Horner’s method to isolate our root to an interval where p’(x) and p”(x) do

*That is, appeared in print later—our study of Cantor’s correspondence (see Section 5) shows that
he knew both proofs.
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not vanish. Since the polynomials in our enumeration do not share roots with their
first or second derivatives, our root does belong to such an interval. After isolating
our root, we set our initial approximation to an endpoint of this interval, and then
we use Newton’s method to generate better approximations (see [31, p. 174-177]
for details—such as, which endpoint to choose for the initial approximation).
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Added in Proof. The quotation of Poincaré in Section 6 is out of context. It comes
from a letter explaining why French mathematicians may not appreciate a pro-
posed translation of Cantor’s 1883 monograph—a monograph that Poincaré twice
calls “beautiful” [13, p. 278]. Poincaré warns that, unless they are given concrete
examples, mathematicians unfamiliar with Cantor’s previous work may find his
ordinals to be “form without substance.”

A quotation that accurately reflects some of the criticism of the time can be
found in an 1883 letter from Hermite to Mittag-Leffler [13, p. 209; 27, p. 96]:

The impression that Cantor’s memoirs makes on us is distressing. Reading them seems, to all of
us, to be a genuine torture ... . While recognizing that he has opened up a new field of research,
none of us is tempted to pursue it. For us it has been impossible to find, among the results that
can be understood, a single one having current interest. The correspondence between the points
of a line and a surface leaves us absolutely indifferent and we think that this result, as long as no
one has deduced anything from it, stems from such arbitrary methods that the author would have
done bettter to withhold it and wait.

Hermite’s “us” includes Appell, who read a draft of the letter, and probably
Picard, who was also critical of Cantor’s recent work [13, p. 212]. The criticism at

the end of the quotation is directed at the major result of Cantor’s 1878 article.
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