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THE COMPUTATION OF LOGARITHMS BY HUYGENS

E. M. Bruins

In 1627, after nearly three decennia of arduous computation, the first
complete 10-place table of logarithms for the basis 10 was published [1].
It allowed to find logarithms up to 10 places at most. Huygens, born in
1669, indicated in 1661 how one could compute the logarithm of any num-
ber, with any accuracy wished for any basis. In fact he approximated the
logarithm by a rational function.

Huygens refused to apply calculus and restricted himself to the use of
infinitesimals. Indeed his geometrical methods were, for most of the then
actual problems, much more powerful than calculus could provide. When-
ever Huygens wished to compute some mathematical function or a quantity
he reduced the problem to funding the area below a curve. Thus for a
logarithm one has the relation for an increment D of the argument x and
looks for the function y(x) such that

yD =Log (x+D)—Log x=Log (14 D/x).
A difficulty in determining the derivative of a logarithm was the disconti-
nuity at =0 of the variant
(1+4n)tn,

which for n tending to zero approaches a limit, which is different from
what one obtains in putting n=0, leading to an infinite power of 1, and
thus to unity. Huygens plotted a curve showing negative powers of 2 and —
if one sees his manuscripts — drew with emphasis a tangent to this curve
at the point (0, 1), which turning the drawing over 90° shows a logarith-
mic curve with a tangent at (1, 0). Thus we have

Log (1+D/x)=MD|x,
and dividing by the infinitesimal D, the curve searched for is found:
xy=M.

Computing the area below such a curve leads to a logarithm with as
yet an unknown basis. One has to divide by Log B for this same unknown
hasis in order to obtain logarithms for the basis B. Huygens chooses M=1
for his “fundamental logarithms”, which are then natural logarithms.
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Huygens determined several times an area by means of the properties
of a centre of gravity. For the equilateral hyperbola

2—y2=1

the abscissa X of the centre of gravity of a segment with area F, delimited
by the line of points with abscissa x, leads to

A,F= 3! nyDA.= b2 2_1/20}’ = (2/3)y3/2= (2/3)(x2 A 1)3/2, >

as is evident from Archimede’s result in the “Squaring the parabola”.
On the other hand, the area of the triangle with the same basis and
the same “vertex” is

T=y(x—1)=(x?—-1)P/(x+1)
and finally
3XF=2(x+1T.

The exact position of the centre of gravity leads to an exact value of the
logarithm. Huygens remarks that the centre of gravity will be not much
different from the centre of gravity of a parabola having the same basis
and the same vertex as the segment of the hyperbola, and using the known
position for the centre of gravity of a parabola, dividing the sagitta in a
ratio 3:2, one has to compute the area 7  of the triangle, multiply that .into
known constants and to subtract it from the area of a trapezium in order
to have the approximate value of the logarithm. This leads to the formula
in modern symbols

n—1 3n—n2—1+12(n+1\n
n \8(n+1)+-24yn

Logn~

Putting here n=1+x and approximating the square root by a (part of a)
binomial series, this rational function of » leads to [2]

Log (14+x)=x—x%/2+ x3/3 — x*/4+ x5/5— x6/6+(3199/3200(x"/7)‘
—(799/800)(x8/8)
from which it is clear that for small x the error is about
' — x7/22400 + x/6400.

Huygens wished to have Briggs’ logarithms and therefore didn’t need to
consider the basis of his logarithms he computed in the areas, as he simply
had to divide all values by the logarithm of 10.

Remark 1. Just as Huygens explicitly indicated in other solutions
of the problems, he could have shown that his computation yields always
too small values. Making the points of intersection with the line x=a for
yi=x?—1 and y?=2p(x—1) the same one finds 2p=(a+1) and then follows
yyi=(a+1)(x-1)/(x2=D=(a+1)/(x+1)>1, from which it is clear that
the centre of gravity of the hyperbola is nearer to the basis than that of
the parabola, which means that Huygens' formula always gives foo small
a value of the logarithm.

Remark 2. The accuracy of the formula can easily be checked. Tak-
ing n=1.21 there is no rounding off of intermediary values and the result-is
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Log 1.21=15.264459/80.0778 =0.19062035902 .
Again taking n=1.1, with one square root follows
Log 1.1 =0.0953101798012 . ..

and the double of this value deviates by 5.8X10~1° from Log1.21 which
was computed.

One can easily understand Huygens’ enthusiasm for this method of
computing logarithms and his announcing that his method is “much shorter
than those which were applied till now” ... and he indicates that one
needs at most 6 square roots... It is, however, clear that for the loga-

rithms this is much more than is needed:
n=2, Log2=121.9116882/175.8822510=0.6931437, error 3.4X10-¢

obtained with only one square root.

‘From the fourth and eighth roots, respectively, 1.18920711551 and
1.090507733 one finds a quarter of Log 2 as 0.1733867949, from which
Log 2=0.69314717968 ..., error 8.8 1071, This shows that Huygens’ indica-
tion as to the number of roots needed for the computation of Logarithms
is by far too high.

' We think that this indication arose by the inverse problem, the com-
putation of “antilogarithms”. If one has given a quantity Loga, and wishes
to determine @, one can choose a snnple value near to a,, say a,=a+D,

and then
u="Log(a+D)—Log a=Log(l+Dja)~ Dja—(D]a)?/2

Jeads, following Halley’s well-known procedure by solving a quadratic [3]
equation, to

D~a(u+u?2+u38...).

For the determination of the basis of Huygens’ logarithms one chooses e. g.*

Jn=101575, thus n=1.03174 80625 and n2, also known with all di-
gits, exactly to be 1.06450406447250390625, and then the formula of Huy-

gens yields
Log 1.03174 80625=0.03125 45117 71396 8924 ...
=0.03125+4.5117713968924 % 10—,
Therefore the 32nd root of Euler’s e is found to be
1.0317480625—4.65501139714 < 10—6+41.050117 x 10—11
=1.03174940749910403 . . ., error 1.26 1015,

For this computation and with this accuracy one has to consider the 32nd
roots, which is just one root less than Huygens’ cautiously indicated for
logarithms . .. whereas it holds true for the supplementary computation
of antilogarithms, because the logarithm of the 64th root of 10, viz.

¥ This first approximation in obtained by the square root of 140.03125+4(0.03125)%/2
~ 1.015745.
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1.036632928 . . . leads to an error of 3.9 10715, giving still six places more
than Huygens wished to guarantee ... and splitting off factors 10 one never
has to consider quantities greater than 10.
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