Picard-Lindelöf Theorem
 Lecture 4
 Math 634
 9/8/99

Theorem The space $\mathcal{C}([a, b])$ of continuous functions from $[a, b]$ to \mathbb{R}^{n} equipped with the norm

$$
\|f\|_{\infty}:=\sup \{|f(x)| \mid x \in[a, b]\}
$$

is a Banach space.
Definition Two different norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on a vector space \mathcal{X} are equivalent if there exist constants $m, M>0$ such that

$$
m\|x\|_{1} \leq\|x\|_{2} \leq M\|x\|_{1}
$$

for every $x \in \mathcal{X}$.
Theorem If $\left(\mathcal{X},\|\cdot\|_{1}\right)$ is a Banach space and $\|\cdot\|_{2}$ is equivalent to $\|\cdot\|_{1}$ on \mathcal{X}, then $\left(\mathcal{X},\|\cdot\|_{2}\right)$ is a Banach space.

Theorem A closed subspace of a complete metric space is a complete metric space.

We are now in a position to state and prove the Picard-Lindelöf ExistenceUniqueness Theorem. Recall that we are dealing with the IVP

$$
\left\{\begin{array}{l}
\dot{x}=f(t, x) \tag{1}\\
x\left(t_{0}\right)=a .
\end{array}\right.
$$

Theorem (Picard-Lindelöf) Suppose $f:\left[t_{0}-\alpha, t_{0}+\alpha\right] \times \overline{\mathcal{B}(a, \beta)} \rightarrow \mathbb{R}^{n}$ is continuous and bounded by M. Suppose, furthermore, that $f(t, \cdot)$ is Lipschitz continuous with Lipschitz constant L for every $t \in\left[t_{0}-\alpha, t_{0}+\alpha\right]$. Then (1) has a unique solution defined on $\left[t_{0}-b, t_{0}+b\right]$, where $b=\min \{\alpha, \beta / M\}$.

Proof. Let \mathcal{X} be the set of continuous functions from $\left[t_{0}-b, t_{0}+b\right]$ to $\overline{\mathcal{B}}(a, \beta)$. The norm

$$
\|g\|_{w}:=\sup \left\{e^{-2 L\left|t-t_{0}\right|}|g(t)| \mid t \in\left[t_{0}-b, t_{0}+b\right]\right\}
$$

is equivalent to the standard supremum norm $\|\cdot\|_{\infty}$ on $\mathcal{C}\left(\left[t_{0}-b, t_{0}+b\right]\right)$, so this vector space is complete under this weighted norm. The set \mathcal{X} endowed with this norm/metric is a closed subset of this complete Banach space, so \mathcal{X} equipped with the metric $d\left(x_{1}, x_{2}\right):=\left\|x_{1}-x_{2}\right\|_{w}$ is a complete metric space.

Given $x \in \mathcal{X}$, define $T(x)$ to be the function on $\left[t_{0}-b, t_{0}+b\right]$ given by the formula

$$
T(x)(t)=a+\int_{t_{0}}^{t} f(s, x(s)) d x
$$

Step 1: If $x \in \mathcal{X}$ then $T(x)$ makes sense.
This should be obvious.
Step 2: If $x \in \mathcal{X}$ then $T(x) \in \mathcal{X}$.
If $\overline{x \in \mathcal{X}}$, then it is clear that $T(x)$ is continuous (and, in fact, differentiable). Furthermore, for $t \in\left[t_{0}-b, t_{0}+b\right]$

$$
|T(x)(t)-a|=\left|\int_{t_{0}}^{t} f(s, x(s)) d s\right| \leq\left|\int_{t_{0}}^{t}\right| f(s, x(s))|d s| \leq M b \leq \beta
$$

so $T(x)(t) \in \overline{\mathcal{B}(a, \beta)}$. Hence, $T(x) \in \mathcal{X}$.
Step 3: T is a contraction on \mathcal{X}.
Let $x, y \in \mathcal{X}$, and note that $\|T(x)-T(y)\|_{w}$ is

$$
\sup \left\{e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t}[f(s, x(s))-f(s, y(s))] d s\right| \mid t \in\left[t_{0}-b, t_{0}+b\right]\right\}
$$

For a fixed $t \in\left[t_{0}-b, t_{0}+b\right]$,

$$
\begin{aligned}
& e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t}[f(s, x(s))-f(s, y(s))] d s\right| \\
& \leq e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t}\right| f(s, x(s))-f(s, y(s))|d s| \\
& \leq e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t} L\right| x(s)-y(s)|d s| \\
& \leq L e^{-2 L\left|t-t_{0}\right|}\left|\int_{t_{0}}^{t}\|x-y\|_{w} e^{2 L\left|s-t_{0}\right|} d s\right| \\
& =\frac{\|x-y\|_{w}}{2}\left(1-e^{-2 L\left|t-t_{0}\right|}\right) \\
& \leq \frac{1}{2}\|x-y\|_{w}
\end{aligned}
$$

Taking the supremum over all $t \in\left[t_{0}-b, t_{0}+b\right]$, we find that T is a contraction (with $\lambda=1 / 2$).

By the contraction mapping principle, we therefore know that T has a unique fixed point in \mathcal{X}. This means that (1) has a unique solution in \mathcal{X} (which is the only place a solution could be).

