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Coexistence of cooperators and defectors is common in nature, yet the
evolutionary origin of such social diversification is unclear. Many models have
been studied on the basis of the assumption that benefits of cooperative acts
only accrue to others. Here, we analyze the continuous snowdrift game, in
which cooperative investments are costly but yield benefits to others as well as
to the cooperator. Adaptive dynamics of investment levels often result in
evolutionary diversification from initially uniform populations to a stable state
in which cooperators making large investments coexist with defectors who
invest very little. Thus, when individuals benefit from their own actions, large
asymmetries in cooperative investments can evolve.

Cooperation is an enduring evolutionary

conundrum (1–3). Its essence is captured by

social dilemmas, in which groups of cooper-

ators do better than groups of defectors, yet

defecting individuals outcompete cooperative

individuals in mixed groups. Considerable

efforts have been expended trying to under-

stand the evolution of cooperation on the basis

of the prisoner_s dilemma (3–9), which

describes situations in which cooperative acts

incur costs to the acting individuals, whereas

benefits only accrue to others. In this case,

cooperators are doomed in the absence of

supporting mechanisms (3–9). In contrast, the

social dilemma is relaxed if benefits of costly

cooperative acts accrue not only to others but

also to the cooperator itself. In classical game

theory, this situation is described by the

snowdrift game (also called hawk-dove game

or chicken game), in which two drivers are

trapped on either side of a snowdrift and have

the options of staying in their cars or re-

moving the snowdrift. Letting the opponent

do all the work is the best option, but if both

players refuse to shovel they can_t get home.

The essential feature of the snowdrift game is

that defection is better than cooperation if the

opponent cooperates but worse if the oppo-

nent defects. This maintains cooperation at a

mixed stable state (10–12).

Cooperative interactions in which benefits

accrue to both donor and recipient are

common (3). They arise when individuals in

a population can produce a common resource

that is accessible to everybody. For example,

yeast produce an enzyme to hydrolyze

sucrose, and the enzyme secreted by a single

individual can be used by the individual pro-

ducing it as well as by others (13). It is natural

to assume that cooperative investments, i.e.,

the time and effort spent in producing the

common good, can vary continuously within a

certain range and hence to extend classical

games to evolutionary scenarios in which

individuals can make continuously varying

cooperative investments (14–16). Here, we

define the continuous snowdrift game for the

evolution of cooperative investments that

incur costs to the donor and accrue benefits

to both the donor and the recipient. Each

individual has a continuous strategy, or trait,

which we take to be a real number, x, between

0 and an upper limit, x
max

, and which represents

the amount of investment that the individual

makes in the cooperative enterprise. For

simplicity, we assume that all interactions

are pairwise, but the theory presented below

immediately extends to interactions in

groups of arbitrary size N ESupporting

Online Material (SOM) Text^. We define

the payoff to an x strategist interacting with a

y strategist to be P(x,y) 0 B(x þ y) – C(x),

where B(x þ y) specifies the benefit that the

x strategist obtains from the total cooperative

investment made by both agents and C(x)

specifies the cost incurred by the x strategist

due to its own investment. We assume that

B(x) and C(x) are smooth, strictly increasing

functions satisfying B(0) 0 C(0) 0 0.

In the continuous prisoner_s dilemma (16),

an x strategist facing a y strategist obtains the

payoff Q(x,y) 0 B(y) – C(x). Because in this

case investments incur costs but no benefits to

the investing player, investments always

evolve to zero (16). In contrast, in the con-

tinuous snowdrift game one could expect that

investments evolve away from zero to some

intermediate level provided that benefits

outweigh costs EB(x) 9 C(x)^ for small x. We

will see, however, that the continuous snow-

drift game displays much richer evolutionary

dynamics.

We use adaptive dynamics (17–19) (SOM

Text) to analyze the evolution of the strategy

x. Consider a monomorphic population in

which every individual adopts the same

strategy, x. It follows from replicator dynam-

ics (20) that the growth rate of a rare mutant

strategy, y, in the resident x population is

f
x
( y) 0 P( y,x) – P(x,x) 0 B(x þ y) – C( y) –

EB(2x) – C(x)^. The evolution of the trait x

is then governed by the selection gradient

D(x) 0 ¯f
x
/¯y k

y 0 x
0 B¶(2x) – C ¶(x), and the

adaptive dynamics of x is described by ẋx 0
DðxÞ (17–19) (SOM Text).

Equilibrium points of the adaptive dy-

namics are called singular strategies and are

solutions of D(x*) 0 B¶(2x*) – C(x*) 0 0. If

there is no such solution, the trait x montoni-

cally increases or decreases over evolutionary

time, depending on the sign of D(x). If

x* exists, it is convergent stable and, hence

an attractor for the adaptive dynamics, if

dD/dxk
x 0 x*

0 2Bµ(2x*) – Cµ(x*) G 0 (17–19)

(SOM Text). If this inequality is reversed, x*

is a repeller.

Initially, the population will converge to

an attracting singular point x*, but its

subsequent evolutionary fate depends on

whether x* is a maximum or minimum of

the invasion fitness f
x
(y). If x* is a maxi-

mum, i.e., if ¯2f
x*

/¯y2k
y 0 x*

0 Bµ(2x*) –

Cµ(x*) G 0, then x* is an evolutionary stable

strategy (ESS), representing an evolutionary

end state in which all individuals make

intermediate cooperative investments. If,

however, Bµ(2x*) – Cµ(x*) 9 0, then a

population of x* strategists can be invaded

by mutant strategies on either side of x*. In

this case, the population undergoes evolu-

tionary branching (18, 19) and splits into two

distinct and diverging phenotypic clusters.

For example, such dynamics can be ob-

served for quadratic cost and benefit functions

B(x) 0 b
2
x2 þ b

1
x and C(x) 0 c

2
x2 þ c

1
x. In

this case, the singular point is unique if it ex-

ists and is given by x* 0 c1 j b1

4b2 j 2c2
; it is an evo-

lutionary branching point if 2b
2
G c

2
G b

2
G 0

(SOM Text). If evolutionary branching

occurs, the two phenotypic clusters diverge

and evolve to the borders of the trait interval

(Fig. 1A) (SOM Text). The population

emerging from this evolutionary process

contains both defectors that do not make any

investment at all and cooperators making the

maximal investment (Fig. 1A). In this state,

the continuous snowdrift game transforms

into its traditional form with two coexisting

strategies (SOM Text). Therefore, adaptive

dynamics of continuous strategies yields a

natural explanation of the evolutionary emer-

gence of the pure cooperator and defector

strategies of the traditional snowdrift game

(21).

A complete classification of the adaptive

dynamics for quadratic cost and benefit func-

tions is provided in Fig. 1: evolutionary
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branching (Fig. 1A), convergent stable ESS

(Fig. 1B), evolutionary repellor leading to bi-

stable evolutionary dynamics (Fig. 1C), and,

in the absence of a singular strategy, either

uniform selection for defectors (Fig. 1D) or

cooperators (Fig. 1E). We note that maximal

mean payoffs in monomorphic populations

cannot be used as a predictor of the evolu-

tionary outcome (Fig. 1 and SOM Text). This

is obvious in cases of evolutionary branching,

but it is also generally true if the system

exhibits an attracting ESS or unidirectional

evolutionary dynamics (Fig. 1).

We illustrate the connection between the

adaptive dynamics of the continuous snow-

drift game and traditional game theory by

considering local games between two strate-

gies with similar investment levels (Fig. 2).

For traditional two-player games, there are

three basic types of outcomes (22): (i) one

strategy dominates and reaches fixation, (ii) a

globally stable mixed equilibrium occurs (as,

for example, in the classical snowdrift game),

or (iii) the game exhibits bistability, with one

or the other strategy going to fixation depend-

ing on initial conditions.

Away from the vicinity of a singular point,

the adaptive dynamics is directional, and the

local game between a resident, x, and a

nearby mutant, x þ ( (( small, 9 0), is of

the first type, so that one of the two in-

vestment strategies is dominant. If an attract-

ing singular point exists, successive local

games exhibit dominance and induce evolu-

tionary convergence to the vicinity of the

singular strategy (Fig. 2A). Near the singular

point, local games can be of any type. If the

singular strategy is an ESS, local games

between the singular strategy and neighboring

strategies exhibit either domination by the

ESS or bistability, and hence neighboring

strategies cannot invade. In contrast, if the

singular strategy is an evolutionary branching

point, local games between the singular

strategy and neighboring strategies always

exhibit a mixed stable state; in particular,

neighboring strategies can invade (Fig. 2A,

insets). On the other hand, evolutionary

repellors are characterized by the fact that

local games on either side of the repellor

again exhibit dominance but now induce

directional evolution away from the singular

point (Fig. 2B). This results in bistability of

the global evolutionary dynamics.

More complicated evolutionary scenarios

than those shown in Fig. 1 are possible with

other cost and benefit functions. For example,

the equation B¶(2x*) – Cµ(x*) 0 0 may have

more than one solution, in which case there

are several singular points of the adaptive

dynamics. Figure 3 shows two cases of an

evolutionary branching point co-occurring

with a repellor and illustrates that evolution

does not always drive the phenotypic clusters

emerging through evolutionary branching to

the boundaries of the strategy space. Our

numerical simulations (SOM Text) confirm

that evolutionary branching is a generic and

robust outcome for many different cost and

benefit functions, C(x) and B(x), and always

occurs under suitable conditions, i.e., when-

ever a singular point x* satisfies 2Bµ(2x*) G
Cµ(x*) G Bµ(2x*) G 0. These conditions

require that both cost and benefit functions

are saturating, i.e., have negative curvature,

near the singular point. Saturating benefits are

clearly realistic, whereas costs could often be

expected to accelerate. However, diminishing

additional costs of larger cooperative invest-

ments are reasonable whenever the initiation

of cooperative acts, such as turning on

enzyme production machinery, is more costly

than subsequent increases in cooperative

investments. Given an instance of evolution-

ary branching, it is in principle possible that

further branching events occur that would

lead to the establishment of more than two

phenotypic clusters in the population (18, 19).

In the case of quadratic cost and benefit

functions, such secondary branching does not

occur (SOM Text).

The paradox of altruism, of which the

tragedy of the commons (23) is a celebrated

avatar, is that although populations of altru-

ists outperform populations of nonaltruists,

selection will act to eliminate altruism

altogether. Here, we have unveiled a different

paradox of cooperation, which could be

termed the Btragedy of the commune[: In a

cooperative system, in which every individu-

al contributes to a common good and benefits

from its own investment, selection does not

always generate the evolution of uniform and

intermediate investment levels but may in-

stead lead to an asymmetric stable state, in

which some individuals make high levels of

cooperative investment and others invest little

or nothing.

In practice, it is often difficult to deter-

mine the payoffs in social interactions and

hence to distinguish prisoner_s dilemma and

Fig. 1. Classification of evolutionary dynamics for quadratic cost and
benefit functions B(x) 0 b2x2 þ b1x and C(x) 0 c2x2 þ c1x. The top row
shows the evolutionary dynamics of the trait distribution; darker shades
indicate higher frequencies of a trait value. The singular strategies
(dashed vertical lines) are indicated where appropriate. The bottom row
shows the cost C(x) (dotted line) and benefit B(2x) (dashed line) accrued
in monomorphic populations, together with the mean payoff B(2x) – C(x)
(solid line; the dash-dotted vertical line indicates maximal mean payoffs).
(A) Evolutionary branching. (B) Evolutionarily stable singular strategy;
note that population payoff is not maximized at the ESS. (C) Evolu-
tionary repellor; depending on the initial conditions, the population
either evolves to full defection or to full cooperation (two distinct sim-
ulations shown). (D and E) Unidirectional evolutionary dynamics in the

absence of singular strategies; in (D), cooperative investments decrease
to zero, just as in the continuous prisoner’s dilemma (16); in (E), full
cooperation evolves. Results were obtained from numerical simulations
of the continuous snowdrift game in finite populations (SOM Text).
Parameter values were as follows: population size N 0 10,000, standard
deviation of mutations G 0 0.005, mutation rate 6 0 0.01 (i.e., on average
one mutation in the investment level per 100 offspring), and the fol-
lowing cost and benefit parameters: (A) b2 0 –1.4, b1 0 6, c2 0 –1.6, c1 0
4.56; (B) b2 0 –1.5, b1 0 7, c2 0 –1, c1 0 4.6; (C) b2 0 –0.5, b1 0 3.4, c2 0 –1.5,
c1 0 4.0; (D) b2 0 –1.5, b1 0 7, c2 0 –1, c1 0 8.0; (E) b2 0 –1.5, b1 0 7, c2 0
–1, c1 0 2. For all panels, the maximum investment was set to xmax 0 1
and the parameters were chosen such that B(x) and C(x) are mono-
tonically increasing functions on the interval [0,1].
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snowdrift interactions Ea phage system marks

a rare exception, but interestingly, selection

turns the prisoner_s dilemma into a snowdrift

game (24)^. Nevertheless, the mere existence

of high- and low-investing individuals has

often been taken as prima facie evidence that

the interaction is governed by a prisoner_s
dilemma, with some additional mechanism,

such as reciprocity, responsible for the co-

existence of altruists and nonaltruists. The

tragedy of the commune, however, provides

a quite different and, in many ways, simpler

explanation for the coexistence of high- and

low-investing individuals, which potentially

applies to a wide range of cooperative and

communal enterprises in biological systems.

For example, in the aforementioned case

of enzyme production in yeast, the tragedy of

the commune suggests evolution toward a

state in which some cells produce the enzyme

whereas others do not and instead simply

exploit the common resource. Exactly this

situation has been found experimentally (13).

The same mechanism may drive the evolution

of defective interference in viruses (25).

When viruses coinfect a cell, the replication

enzymes they produce are a common re-

source. Selection could then favor diversifi-

cation into two coexisting viral types: one

producing the replicase and the defective

interfering particles in which replicase pro-

duction is down-regulated (25). Similar

remarks apply to social dilemmas in RNA

phages due to coinfection of host cells (24).

In all these examples, differences between

cooperators and defectors have their basis

in complex regulatory processes. Therefore,

these differences likely involve multiple

genetic changes, allowing for gradual evolu-

tion of different cooperative investment lev-

els. We also note that one can draw interesting

parallels between the tragedy of the commune

and models for the evolution of anisogamy

(i.e., for the emergence of asymmetric invest-

ments into gamete size (26, 27)), which

represents a common good in sexual species.

In behavioral ecology, classical examples

of cooperation include collective hunting and

territory defense in lions (28), predator in-

spection in sticklebacks (29), and alarm calls

in meerkats (30). In theoretical discussions of

these examples, the existence of cooperators

providing a common good and defectors ex-

ploiting it has been assumed a priori. The trag-

edy of the commune, however, suggests an

evolutionary mechanism for the emergence

of distinct behavioral patterns with differing

degrees of provisions to the common good.

This mechanism may also apply to cultural

evolution in human societies, in which large

differences in cooperative contributions to

communal enterprises could give rise to con-

flicts on the basis of accepted notions of

fairness.
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if the population starts to the right of the repellor at x̂ , 3:9, cooperative investments continue to
increase until the upper limit of the trait interval is reached (inset). However, if started below x̂,
the population evolves to the evolutionary branching point x* , 0.7, where it splits into coexisting
high-investing cooperators and low-investing defectors. In the defector branch investments do not
evolve to zero, and due to the existence of the defector branch, the cooperator branch no longer
‘‘feels’’ the repellor. (B) B(x) 0 b[1 – exp(–x)], C(x) 0 ln(cx þ 1), (b 0 5 and c 0 10); the defective
state is locally convergent stable (inset). Only populations that start out above the repellor x̂ , 0:2
evolve toward the branching point at x* , 0.7 and subsequently split into cooperators and
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G 0 0.005, and mutation rate 6 0 0.01.
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small) induce convergence to an attracting sin-
gular point from below (cooperation dominates)
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is an evolutionary branching point or an ESS
(insets). (B) If the singular point is a repellor, local
games between investment strategies x and x
þ ( (( small) induce evolutionary divergence
away from the repellor on either side.
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A PINOID-Dependent Binary
Switch in Apical-Basal PIN Polar
Targeting Directs Auxin Efflux

Jiřı́ Friml,1 Xiong Yang,2,3 Marta Michniewicz,1 Dolf Weijers,1,2

Ab Quint,2 Olaf Tietz,4 René Benjamins,2,6

Pieter B. F. Ouwerkerk,2 Karin Ljung,5 Göran Sandberg,5

Paul J. J. Hooykaas,2 Klaus Palme,4 Remko Offringa2*

Polar transport–dependent local accumulation of auxin provides positional
cues for multiple plant patterning processes. This directional auxin flow
depends on the polar subcellular localization of the PIN auxin efflux
regulators. Overexpression of the PINOID protein kinase induces a basal-to-
apical shift in PIN localization, resulting in the loss of auxin gradients and
strong defects in embryo and seedling roots. Conversely, pid loss of function
induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence
apex, accompanied by defective organogenesis. Our results show that a
PINOID-dependent binary switch controls PIN polarity and mediates changes
in auxin flow to create local gradients for patterning processes.

The plant signaling molecule auxin plays a

central role in a wide variety of development

processes. A major determinant in auxin-

mediated plant growth is the directed trans-

port of auxin from foci of biosynthesis to

sites of action. This polar auxin transport

mediates vectorial gradients that underlie

tropic growth responses and provide posi-

tional cues for apical-basal patterning, or-

ganogenesis, and vascular differentiation

(1–4). The molecular characterization of

the Arabidopsis thaliana pin-formed ( pin1)

mutant, which is defective in auxin transport

and develops pin-like inflorescences, led to

the identification of the PIN family of

transporter-like membrane proteins. A sub-

stantial amount of data demonstrates that

PIN proteins are important regulators of

polar auxin transport that possibly function

as auxin efflux carriers (4). PIN proteins

display asymmetric subcellular localization

at the plasma membrane, which determines

the direction of polar auxin transport and

thus establishes the local auxin gradients

that influence different developmental pro-

cesses. The polarity of PIN proteins can be

rapidly modulated in response to external or

developmental cues (1, 3, 5), a process that

is enabled by continuous GNOM ARF

GEF–dependent cycling of PINs between

endosomes and the plasma membrane (6)

(GNOM, Arabidopsis GNOM protein; ARF,

ADP ribosylation factor; GEF, guanine

nucleotide exchange factor).

Loss-of-function mutants of the protein

serine-threonine kinase PINOID (PID) dis-

play apical organogenesis defects similar to

those of the pin1 mutant (7). Constitutive

overexpression of PID (35S::PID), but not of

the kinase-negative MPID (35S::MPID),

leads to hypocotyl and root agravitropy and

to loss of the primary root meristem function

(8, 9). The collapse of the root meristem in

35S::PID seedlings, which is characterized

by the loss of meristem initials followed by

terminal differentiation, is restricted to the

primary root and is preceded by a reduction

in auxin-responsive DR5::GUS expression

(Fig. 1, A and B) (9). Measurements of

indole-3-acetic acid (IAA) in intact root tips

showed that IAA levels are significantly re-

duced in 35S::PID primary root tips as com-

pared to wild-type root tips (Fig. 1E). In

contrast, free IAA concentrations in lateral

root tips of 8- to 11-day-old 35S::PID and

wild-type seedlings do not differ significant-

ly (Fig. 1E), and accordingly the DR5::GUS

expression peak is unchanged (Fig. 1, C and

D). These data confirmed that PID over-

expression results in reduced auxin accu-

mulation in the primary root tip, thereby

causing a reduction in the DR5 expression

peak in the root meristem and eventually

the collapse of this structure. Treatment with

the auxin efflux inhibitor naphthylphtalamic

acid (NPA) restores the DR5 expression peak

and prevents root meristem collapse (9),

whereas treatment with auxin itself has no

effect. These data suggest that PID is a regu-

lator of NPA-sensitive polar auxin transport.

We used the timing of root collapse as an

assay to address whether PID action on auxin

transport occurs through PIN efflux regula-

tors. 35S::PID plants were crossed with loss-

of-function mutants of PIN genes known to

mediate root development, these being PIN2,

PIN3, and PIN4 (5, 10, 11). In the pin2/eir1-1

and pin4 mutant backgrounds, the 35S::PID-

mediated root collapse was significantly

delayed, whereas the pin3 mutation resulted

in a mild delay in root collapse around 4 to 5

days after germination (Fig. 1F). Both pin2

and pin4 mutations result in increased auxin

concentrations in the root: pin2 elevates auxin

concentrations because of the lack of redistri-

bution of auxin via basipetal transport from

the root tip to the elongation zone (12), and

pin4-elevated auxin levels result from the

absence of a focused PIN4-driven auxin sink

in the first columella tier (11).

These results imply that PID gain of

function changes auxin concentrations in the

root tip through the PIN proteins. Conceiv-

ably, PID could regulate either the expres-

sion of PIN proteins, the polarity of their

subcellular localization, or their activity. Be-

cause an activity assay for PIN proteins is so

far not available, we focused on testing the

expression and subcellular localization of

PIN proteins, by immunolocalizing various

PIN proteins in primary and lateral root tips of

wild-type and 35S::PID lines. This showed

that the tissue-specific expression domains of

the PIN proteins are unchanged in 35S::PID

root tips. Although quantitative changes can-

not be excluded, this suggests that regulation

of PIN gene expression or protein stability is

not a primary target of PID action. 35S::PID

expression did, however, lead to a basal-

to-apical shift in the subcellular polarity of

PIN proteins. This apical shift was most ap-
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1 Adaptive Dynamics

The evolution of a continuous traitx under mutation and selection can be analyzed using the

mathematical framework of adaptive dynamics (S1, S2, S3). The central concept is that ofin-

vasion fitnessfx(y), which denotes the growth rate of a rare mutanty in a resident population

that is monomorphic for traitx. The adaptive dynamics of the traitx is then governed by the

selection gradientD(x) = ∂fx/∂y|y=x, so thatẋ = D(x). For a detailed discussion of the

underlying assumptions of this dynamic equation we refer to (S1, S2, S3). Note that in general,

ẋ = mD(x), wherem depends on population size and reflects the mutational process pro-

viding the raw material for evolutionary change. For constant population sizes,m is simply a

parameter that scales time, and one can setm = 1 without loss of generality.

Singular points of the adaptive dynamics are given by solutions ofD(x∗) = 0. If there is no

such solution, the traitx either always increases or decreases evolutionarily, depending on the

sign ofD(x). If a singular traitx∗ exists, it is convergent stable – and hence an attractor for the

adaptive dynamics – ifdD/dx|x=x∗ < 0. If this inequality is reversed,x∗ is a repellor, i.e. the

trait x evolves to ever lower values if the initial trait of the populationx0 is x0 < x∗, and to ever

higher values ifx0 > x∗.

Very interesting evolutionary dynamics can occur because convergence stability does not

imply evolutionary stability. Generically, a convergent stable singular pointx∗ is either a
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maximum or a minimum of the invasion fitnessfx(y) (S2, S3). If x∗ is a maximum, i.e., if

∂2fx∗/∂y2|y=x∗ < 0, thenx∗ is evolutionarily stable, i.e., it cannot be invaded by any mutant.

If, however,x∗ is a minimum, i.e., if∂2fx∗/∂y2|y=x∗ > 0, then a population that is monomor-

phic for x∗ can be invaded by mutants with trait values on either side ofx∗. In this case, the

population first converges evolutonarily towardsx∗, but subsequently splits into two distinct

and diverging phenotypic clusters. This phenomenon is called evolutionary branching, and the

singular point is called an evolutionary branching point.

1.1 Continuous Snowdrift Game

In the Continuous Snowdrift game, the quantitative traitx represents the level of cooperative

investments. The growth rate of a rare mutant strategyy in a monomorphic residentx is de-

termined by replicator dynamics (S4), and the invasion fitness of the rare mutanty is given by

fx(y) = P (y, x) − P (x, x), whereP (y, x) is the payoff ofy playing againstx, andP (x, x) is

the payoff ofx playing against itself. In the Continuous Snowdrift game the payoff is given by

P (x, y) = B(x + y)− C(x) whereB(x) andC(x) are the benefit and cost functions.

The adaptive dynamics of the continuous traitx is then given byẋ = D(x) = B′(2x) −

C ′(x), and singular strategies are solutions ofB′(2x∗) = C ′(x∗). If a singular strategyx∗

exists, it is convergent stable ifdD/dx|x=x∗ = 2B′′(2x∗)−C ′′(x∗) < 0, and it is evolutionarily

unstable if∂2fx∗/∂y2|y=x∗ = B′′(2x∗) − C ′′(x∗) > 0. Consequently,x∗ is a branching point

if 2B′′(2x∗) < C ′′(x∗) < B′′(2x∗) < 0. Note that adaptive dynamics never maximizes the

monomorphic population payoff given byB(2x)−C(x), because maximizing this payoff would

yield the gradient dynamics2B′(2x) − C ′(x), which is different form the adaptive dynamics

given above.

1.1.1 Quadratic Cost and Benefit Functions

If the cost and benefit functionsB(x) andC(x) are linear, the gradientD(x) is constant and

the evolution of the traitx is always directional, either leading to ever higher or ever lower

investments (except in the degenerate case wherex is a neutral trait). However, richer dynamics

are already observed for quadratic cost and benefit functionsC(x) = c2x
2 + c1x andB(x) =
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b2x
2 + b1x, for which the adaptive dynamics are given byẋ = 4b2x + b1 − 2c2x − c1. The

singular strategy (if it exists) is given byx∗ = c1−b1
2(2b2−c2)

and is convergent stable if2b2 − c2 < 0

and evolutionarily stable ifb2 − c2 < 0.

The existence of a positivex∗ requires either (i) 4b2 − 2c2 > c1 − b1 > 0 or (ii ) 4b2 − 2c2 <

c1 − b1 < 0. In the first case,x∗ is always a repellor. Whether the repellor is evolutionarily

stable or not is irrelevant as this state is never reached from generic intitial conditions. In the

second casex∗ is always convergent stable. If, in addition,b2− c2 < 0, thenx∗ is evolutionarily

stable strategy (ESS). In this case, the population evolves towards the evolutionary end statex∗

in which all individuals make intermediate cooperative investments. If, however,b2 − c2 > 0,

thenx∗ is an evolutionary branching point, and after converging towardsx∗, the population

splits into two distinct and diverging phenotypic clusters.

1.1.2 Adaptive Dynamics after Branching

After evolutionary branching, the adaptive dynamics can be calculated based on the equilibrium

frequencies of the two co-existing strategiesx > x∗ > y (wherex∗ is the branching point).

According to traditional replicator dynamics (S4) the equilibrium frequencyp∗ of strategyx is

the solution ofp∗P (x, x)+(1−p∗)P (x, y) = p∗P (y, x)+(1−p∗)P (y, y). With quadratic cost

and benefit functions, this yieldsp∗ = c1−b1+x(c2−b2)+y(c2−3b2)
2b2(x−y)

. The invasion fitness of a mutant

v with respect to the two resident branchesx andy is then given byfx,y(v) = p∗P (v, x) + (1−

p∗)P (v, y)−P̄ (x, y) whereP̄ (x, y) = p∗P (x, x)+(1−p∗)P (x, y) = p∗P (y, x)+(1−p∗)P (y, y)

denotes the average population payoff. Adaptive dynamics in the two branches is then given by

ẋ = m1(x, y)∂fx,y(v)
v

∣∣∣
v=x

andẏ = m2(x, y)∂fx,y(v)
v

∣∣∣
v=y

, respectively, wherem1(x, y) ∝ p∗ and

m1(x, y) ∝ 1− p∗ are positive quantities describing the mutational process in the two branches

(S2, S3). For the quadratic cost and benefit functions one findsẋ = m1(x, y)(b2 − c2)(x − y)

and ẏ = −m2(x, y)(b2 − c2)(x − y). This implies that after branching, evolution is always

directional and drives the trait values in the two branches to the boundaries of the strategy

range. With more complicated cost and benefit functions, such as those used for Fig. 3 (see

main text), analytical solutions forp∗, and hence for the 2-dimensional adaptive dynamics, can

in general not be obtained.
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1.1.3 Groups ofN Interacting Individuals

The Continuous Snowdrift can be generalized to groups ofN > 2 interacting individuals, in

which theN individuals make cooperative investmentsx1, . . . , xN towards a common good.

There are a number of ways in which this can be done, but perhaps the most straightforward

approach is to assume that the payoff to thei-th player is 1
N

B(
N∑

j=1
xj) − C(xi), reflecting the

fact that the benefit accrued from the sum of the individual investments is equally shared among

the N interacting players. In principle, the factor1/N can be incorporated into the benefit

function, but explicitly retaining it facilitates comparison of results for different group sizesN

(see below). The payoff of a mutanty in a monomorphic resident population with strategyx

is P (y, x) = 1
N

B((N − 1)x + y) − C(y). Using similar arguments as above, this yields the

adaptive dynamicṡx = 1
N

B′(Nx)−C ′(x). Singular strategiesx∗ are now given as solutions of

1
N

B′(Nx∗) − C ′(x∗) = 0. A singular strategy is convergent stable ifB′′(Nx∗) − C ′′(x∗) < 0,

and it is evolutionarily stable if1
N

B′′(Nx∗) − C ′′(x∗) < 0. The condition for evolutionary

branching becomesB′′(Nx∗) < C ′′(x∗) < 1
N

B′′(Nx∗) < 0.

With quadratic cost and benefit functions, the singular strategy forN -player games is thus

given byx∗ =
c1− 1

N
b1

2(b2−c2)
. In complete analogy to pairwise interactions, the existence ofx∗ requires

either (i) 2(b2 − c2) > c1 − 1
N

b1 > 0 or (ii ) 2(b2 − c2) < c1 − 1
N

b1 < 0. In the first case,x∗

is again a repellor. In the second case it is an ESS ifb2 − c2 < 0, while x∗ is an evolutionary

branching point ifb2 < c2 < 1
N

b2 < 0. It follows that the range of parameters generating

evolutionary branching increases with group sizeN .

2 Individual-Based Simulations

The analytical predictions derived from adaptive dynamics can be illustrated and verified through

individual-based simulations of the Continuous Snowdrift game in finite populations of fixed

sizeNpop (S5). These simulations emulate replicator dynamics in populations in which individ-

uals are characterized by their investment strategyx. The population is updated asynchronously

by sequentially choosing a random focal individualx to be replaced by an offspring as follows.

The payoff of the focal individual,Px = P (x, z), is determined through a single interaction
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with a random memberz of the population. Px is then compared to the payoff of another

randomly chosen individualy, whose payoffPy is also obtained through a random interac-

tion. With a probabilityw proportional to the payoff difference,w = (Py − Px)/α (where

α = maxx,y,u,v |P (x, y) − P (u, v)| ensuresw ≤ 1), the offspring replacing the focal individ-

ual hasy as parent; otherwise the parent is the focal individual itself (which is also the case

if Py < Px). The offspring inherits the parental strategy, except if a mutation occurs (which

happens with probabilityµ), in which case the offspring strategy is drawn from a Gaussian dis-

tribution with the parental strategy as mean and a small standard deviationσ. This numerical

scheme implements the deterministic replicator dynamics in the limit of large population sizes

Npop (S6). Our individual-based models of the Continuous Snowdrift game can be explored

interactively at http://www.univie.ac.at/virtuallabs.
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