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The problem of determining the largest area a plane hexagon of unit diameter 
can have, raised some 20 years ago by H. Lenz, is settled. It is shown that such 
a hexagon is unique and has an area exceeding that of a regular hexagon of 
unit diameter by about 4 %. 

INTRODUCTION 

Given any n-gon of unit diameter in the plane, it is natural to inquire 
how large an area it can have. In 1922, Reinhardt [8] showed that for 
odd II, the obvious configuration is optimal, namely, among all n-gons 
of diameter 1, the regular n-gon has the maximum area. It was noted, 
however, that this is not the case for n even.l In particular, H. Lenz [7] 
raised the question of finding the largest area, denoted by F6, a plane 
hexagon of unit diameter can have.2 In this note we answer this question. 
It is shown that F6 satisfies a 10th degree irreducible polynomial over the 
integers and is approximately equal to 0.674981. Furthermore, there is a 
unique unit diameter hexagon with area F6 . 

THE DIAMETER GRAPH D(X) 

For a subset X of the Euclidean plane P, let CH(X) denote the convex 
hull of X. If ii is an arbitrary unit vector and t is a real number, we let 
X + tu denote the set {X + tti: Z E X). 

FACT 1. If A and B are bounded convex subsets of IE2 then the real 
function G(t) defined by 

G(t) = area CH(A u (B + tii)), 
is convex. 

l For n = 4, the square with diagonal 1 has the maximum possible area of 3 but it is 
not the unique quadrilateral with this property (cf. [9]). 

* A theorem of Blaschke [4] guarantees the existence of a hexagon with area FB . 

165 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



166 R. L. GRAHAM 

This is proved in [2] and holds more generally in P. 
For X C lE2 finite, define a graph (see [5] for standard graph theory 

terminology) D(X), called the diameter graph of X, as follows. The 
vertices of D(X) are the points of X. A pair of vertices (x1 , x2} is an edge 
of D(X) if the Euclidean distance d(x, , x2) between x1 and x2 is equal to 
diam(X), the diameter (i.e., SUP,,,,~ d(x, y)) of X. 

FACT 2. Suppose XL [E2 with D(X) disconnected. Then there exists 
X’ C lE2 such that: 

(i) diam(X’) = diam(X); 

(ii) area CH(X’) 3 area CH(X); 

(iii) D(X’) is connected. 

The proof is a simple application of Fact 1, using induction on the 
number of components of D(X). Thus, in searching for a 6 element set X, 
with area CH(X,) = Fe , we may restrict ourselves to those X with D(X) 
connected. In fact, it will be seen that the unique extremal X, has this 
property. We note that D(X,) has at least 5 edges (since D(X,) is connected) 
and at most 6 edges (by a result of ErdGs [l]). It is also not difficult to see 
that if x1, x2 , y1 , y2 E X with d(x, , x2) = d(y, , us) = 1 = diam(X) 
then the closed line segments joining x 1 , x2 and y1 , y2 intersect in exactly 
one point, which is either a common end point or a common interior 
point. 

LINEAR THRACKLES 

A graph G is said (by John Conway) to have a linear thrackleation G* 
if G can be represented as a graph G* with the following properties: 

(a) The vertices of G* are points in E2; 

(b) The edges of G* are straight line segments connecting certain 
pairs of vertices of G*; 

(c) Any two edges of G* have exactly one common point, which is 
either a common vertex of each edge or an interior point of each edge. 

By the facts noted in the preceding section, it follows that D(X,) has 
a linear thrackleation. Hence, by a result of Woodall [II], D(&) must be 
one of the 10 graphs shown in Fig. 1. 

In Fig. 2 we illustrate linear thrackleations for the 10 cases shown in 
Fig. 1. 
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FIG. 1. Possibilities for I&I’,). 

(b) 

(s) (h) (il (j) 

FIG. 2. Linear thrackleations for the 10 cases shown in Fig. 1. 

DETERMINATION OF Fe 

The problem of determining Fe is now reduced to an examination of the 
10 cases mentioned in the preceding section, as the 6 points X in each case 
continuously vary without changing the correspondingD(X).A critical fact 
to notice is that for a fixed diameter graph D(X) it is sufficient to examine 
the local maxima of area CH(X). This follows from the fact that the 
constraints on the xi E X are all of the form 0 < d(xi , xj) < 1. Any 
maximum of area CH(X) which is not a local maximum would either be 
found for 1 X 1 < 6 (when d(q , xj) = 0) or a different diameter graph 
(when d(q) xj) = 1). 

FIGURE 3. 
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In all cases except (f) and (j), elementary geometrical considerations 
show that area CH(x,) < 0.64. For case (f), the following argument, 
due to J. J. SchSer and W. No11 [lo], shows that no local maximum occurs. 

In Fig. 3, let B and E have coordinates (-$, O) and (+, 0), respectively, 
where all line segments have unit length. Then the coordinates of the 
remaining points are given by 

A = (Q - cos a’, -sin a’), 

F = (-8 + cos (II, -sin ol), 

Thus, 

D = (+ - cos cd + cos /3’, -sin a’ + sin fi’), 

C = (-4 + cos a - cos /I’, -sin 01 + sin fi). 

2 area R = 2 sin(cll + cu’) - sin 01 - sin 01’ + sin@ + /?J’) 

+ sin /3 + sin /I’ - sin(cu’ + /3) - sin(ol + /I’). 

Letting u = (a + 01’)/2, v = (a - a’)/2 and considering area R as a 
function of the variables U, 0, /3, /3’, an easy calculation shows 

2(a2(area R)/h2) = sin LY. + sin 01’ + sin(ol + p’) + sin(m’ + 6). 

However, we must have 0 < 01, (II’ < 7~13, 0 < /I, /3’ < n and in this case 
(a2(area R)/av2 > 0. Hence, no local maximum occurs for case (f). 

We are left with the last, but not least (in fact, most), case which is (j). 
This is shown in Fig. 4. 

FIGURE 4. 

It is immediate that in order to maximize area RI , it is necessary that 
01~ = ~1~ . It is slightly less immediate (but equally true) that it is also 
necessary that 8, = ti2 . (The details are not particularly interesting and 
are omitted.) Thus, we are left with the symmetric configuration R,(x). 
Here, there is just one degree of freedom and area R,(x) can be written as 

area R,(x) = (4 - x)(1 - x2)li2 + x(1 + (1 - (x + &)2)1/2). 
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This expression has a unique local maximum for x E (0, $) which can be 
obtained by setting the first derivative of area R,(x) equal to zero and 
solving. The resulting root x0 = 0.343771... has a minimal polynomial 
P(x) of degree 10. The corresponding expression area R(x,,) = 0.674981... 
also has a minimal polynomial Q(x) of degree 10 which can be found 
choosing the appropriate factor for the 40th degree resultant of P(x) 
and the rationalized expression for area R(x) (this was done quite cleverly 
by S. C, Johnson; see [6]). Q(x) is given by 

Q(x) = 4096xlO + 8192x9 - 3008x8 - 30848x’ 
+ 21056x6 + 146496x5 - 221360x4 

+ 1232x3 + 144464x2 - 78488x + 11993. 

This is the minimal polynomial for F6 = 0.674981.... 
We note that if a configuration X has area CH(X) = F, , diam(X) < 1 

and D(X) not connected, then by a suitable translation (from Fact l), we 
could obtain an X’ with area CH(X’) = Fe, diam(X’) < 1 and D(X) 
not equal to the graph of case (j), which is impossible. Hence, the optimal 
configuration X, is unique. We show it in Fig. 5. 

X6 Regular hexagon 
area = 0.67498... area = 0.64952... 

FIG. 5. Comparison of X, and regular hexagon. 

We remark that the value of F6 has found recent application in some work 
of Guy and Selfridge [3]. 

CONCLUDING REMARKS 

In principle, the preceding techniques may be applied to the determi- 
nation of F2m in general. However, it is not hard to show that for m > 2 
there are exactly 

& c @(d)4”l* + 41”-2 + 2+1- 1, 
dim d odd 

distinct diameter graphs @X2,) to consider, where @ denotes the familiar 
totient function of Euler. Most of these, however, could be trivially 
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eliminated from consideration as serious candidates for an optimal 
solution. 

It is conjectured that the optimal solution has the diameter graph 
D(Xs,) which consists of a circuit of length 2m - 1 together with a single 
edge from one vertex (generalizing case (j)). However, at present, it is 
not even known that an optimal configuration must have an axis of 
symmetry. 

It would also be interesting to look at the corresponding questions in 
IE’ although, no doubt, some new ideas will be needed. 
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