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Abstract: Cerebellar Model Articulation Controller (CMAC) has some attractive features: 
fast learning capability and the possibility of efficient digital hardware implementation. 
Although CMAC was proposed many years ago, several open questions have been left 
even for today. Among them the most important ones are about its modelling and gene-
ralization capabilities. The limits of its modelling capability were addressed in the lite-
rature and recently a detailed analysis of its generalization property was given. The results 
show that there are differences between the one-dimensional and the multidimensional 
versions of CMAC. The modelling capability of a multidimensional network is inferior to 
that of the one-dimensional one. This paper discusses the reasons of this difference and 
suggests a new kernel-based interpretation of CMAC. It shows that a one-dimensional 
binary CMAC can be considered as an SVM with second order B-spline kernel function. 
Applying this approach the paper shows that one-dimensional and multidimensional 
CMACs can be constructed with similar modelling capability. Copyright © 2003 IFAC 
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1. INTRODUCTION 

 
The paper deals with CMAC, a special neural ar-
chitecture (Albus, 1975). CMAC has some attractive 
features. The most important ones are its extremely 
fast learning capability (Thompson and Kwon, 1995) 
and the special architecture that lets effective digital 
hardware implementation possible (Miller et al., 
1991; Horváth and Deák, 1993; Ker, et al., 1995). 
CMAC architecture was proposed in the middle of 
the seventies and it has been mentioned as a real 
alternative of MLP (Miller et al., 1990). The price of 
the advantageous properties is that its modelling 
capability is inferior to that of an MLP (Commuri et 
al., 1995). This especially true for multidimensional 
case, as a multidimensional CMAC can approximate 
well only a function belonging to the additive 
function set (Brown, et al., 1993). A further 
deficiency of CMAC is that its generalization 
capability is also inferior to that of an MLP even for 
one-dimensional cases. This drawback was discussed 
in (Szabó and Horváth, 2002), where the real reason 
of this property was discovered and a modified 

training algorithm was proposed for improving the 
generalization capability.  
 
However, the other disadvantage, the limited model-
ling capability in multidimensional cases cannot be 
improved using the proposed modification. This pa-
per will deal with this question. It will show that the 
limited modelling capability comes from the archi-
tecture of the multidimensional CMAC. The archi-
tecture can be modified in such a way that the modi-
fied version will have improved modelling capability 
(Lane at al., 1992). However, this modification 
would increase the network complexity. This in-
creased complexity is unacceptable from the 
viewpoint of realization if the input dimension is 
(much) larger than two.  
 
CMAC can be interpreted as a network where the 
output is formed as a sum of weighted basis func-
tions. The original, binary CMAC applies rectangular 
(first-order B-spline) basis functions of fixed 
positions.  

     



This paper shows that an alternative interpretation 
can also be given, when the network is considered as 
an SVM (support vector machine) with second-order 
B-spline kernel functions, where the positions of the 
kernel functions depend on the training data. This 
interpretation can be applied for higher-order 
CMACs (Chiang Ching-Tsan and Lin Chun-Sin, 
1996), (Ker et al., 1995) with higher order basis 
functions (kth order B-splines). In these cases 
CMACs correspond to SVMs with properly chosen 
higher–order ((2k-1)th order) B-spline kernels. 
 
 

2. A SHORT OVERVIEW OF THE CMAC 
 

CMAC is an associative memory type neural 
network, which performs two subsequent mappings. 
The first one - which is a non-linear mapping - 
projects an input space point u into an association 
vector a. The second mapping calculates the output 
of the network as a scalar product of the association 
vector a and the weight vector w:  

  y(u)=a(u) Tw (1) 

Fig. 1. The mappings of a CMAC 

The association vectors are sparse binary vectors, 
which have only C active elements, C bits of an 
association vector are ones and the others are zeros. 
In this case scalar products can be implemented 
without multiplication; the scalar product is nothing 
more than the sum of the weights selected by the 
active bits of the association vector.  
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CMAC uses quantized inputs, so the number of the 
possible different input data is finite. There is a one-
to-one mapping between the discrete input data and 
the association vectors, i.e. each possible input point 
has a unique association vector representation.  
 
Another interpretation can also be given to the 
CMAC. In this interpretation every bit in the 
association vector corresponds to a binary basis 
function with a finite support of C quantization 
intervals. This means that a bit will be active if the 
input value is within the support of the corresponding 
basis function. This support is often called as the 

receptive field of the basis function. An element of 
the association vector can be considered as the value 
of a basis function for a given input, so the output of 
the binary basis function is one if an input is in its 
receptive field and zero elsewhere:  

  (3) 






=
                         otherwise    0

function basisth   theof
field receptice in the is  if1

)( iai

u
u

The mapping from the input space into the associa-
tion vector should have the following characteristics:  
(i) it should map two neighbouring input points into 
such association vectors, where only a few elements - 
i.e. few bits - are different.  
(ii) as the distance between two input points grows, 
the number of the common active bits in the corre-
sponding association vectors decreases. The input 
points far enough from each other - further then the 
neighbourhood determined by the parameter C - 
should not have any common bits.  
 
This mapping is responsible for the non-linear 
property and the generalization of the whole system. 
The two mappings are implemented in a two-layer 
network architecture. The first mapping implements 
a special encoding of the quantized input data, this 
layer is fixed; the trainable elements, the weight 
values which can be updated using the simple LMS 
rule, are in the second layer.  ai+3
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The way of encoding, the positions of the basis func-
tions in the first layer, determine the generalization 
property of the network. In one-dimensional cases 
every quantization interval will determine a basis 
function, so the number of basis functions is approx-
imately equal to the number of possible discrete 
inputs. However, if we follow this rule in higher 
dimensional cases, the number of basis functions will 
grow exponentially with the dimension, so the 
network may become too complex. As every selected 
basis function will be multiplied by a weight value, the 
size of the weight memory is equal to the total number 
of basis functions, to the length of the association 
vector. In higher dimensional case the weight memory 
can be so huge that it cannot be implemented. To 
avoid this high complexity the number of basis 
functions must be reduced. In a classical higher–
dimensional CMAC this reduction is achieved using 
basis functions positioned only at the diagonals of 
the quantized input space as it is shown in Figure 2.  
 
The shaded regions in Figure 2 are the receptive 
fields of different basis functions. As it is shown the 
basis functions are grouped into overlays. One overlay 
contains basis functions with non-overlapping 
supports, but the union of the supports covers the 
whole input space. The different overlays have the 
same structure; they consist of similar basis functions 
in shifted positions. Every input data will select C 
basis functions, each of them on a different overlay, so 
in an overlay one and only one basis function will be 
active for every input point. The positions of the 

     



overlays and the basis functions of one overlay can be 
represented by definite points.  

Fig. 2. The basis functions of a two-dimensional 
      CMAC 

In the original Albus scheme the overlay-representing 
points are in the main diagonal of the input space, 
while the basis function positions are represented by 
the subdiagonal points as it is shown in Figure 2 
(black dots). In the original Albus architecture the 
number of overlays does not depend on the dimension 
of the input vectors; it is always C. This means that in 
higher dimensional cases the number of basis function 
will not grow exponentially with the dimension. This 
is an advantageous property from the point of view of 
implementation, however this reduced number of 
basis functions is the real reason of the inferior 
modelling capability of the multidimensional CMAC, 
as reducing the number of basis functions the number 
of free parameters will also be reduced (Brown and 
Harris, 1994). To avoid this unwanted effect we can 
get help from the approach of support vector machines 
(SVMs) (Vapnik, 1995). 
 
It should be mentioned that in higher-dimensional 
cases further complexity reduction is required. This 
reduction is achieved by applying a compressing new 
layer (Albus, 1975), which uses Hash coding. 
However, the effect of hashing can be neglected, 
when its features are selected properly (Ellison, 
1991), so we will not deal with this effect.  
 
 
3. A BRIEF SUMMARY OF SVMs AND LS-SVMs 
 
Support Vector Machines (SVMs) were proposed 
recently by Vapnik (1995) and are based on 
Statistical Learning Theory (SLT) and Structural 
Risk Minimization (SRM) principle. SVMs can be 
constructed for linear or non-linear classification 
tasks as well as for linear or non-linear regressions. 
Here only the regression version will be summarized.  
An SVM is constructed using training data 

 similarly to the classical neural networks. 
The goal of an SVM for regression is to approximate 
a (non-linear) function (Smola et al., 1998), where 

the quality of approximation is determined using a 
loss or cost function. The loss function is 
representing the cost of the deviation from the target 
output d

{ }P
iii y 1, =x

i for each xi input. In most cases the ε–
insensitive loss function (Lε) is used, but one can use 
other (e.g. non–linear) loss functions too. The ε–
insensitive loss function is: 
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Using this loss function the approximation errors 
smaller than ε are ignored, while the larger ones are 
punished in a linear way. 
Our goal is to give an  function, which 
represents the dependence of the output y on the 
input x. In the SVM approach first the input vectors 
are projected into a higher dimensional feature space, 
using a set of non-linear functions 

. The dimensionality (M

( )xfy =

( ) MN ℜ→ℜ:xϕ ) of the 
new feature space is not defined, it follows from the 
method (it can even be infinite). The function is 
estimated by projecting the input data to the higher 
dimensional feature space as follows:  
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It is assumed that ϕ0(x)≡1, therefore w0
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 represents a 
bias term b. The goal of approximation is to find the 
parameter vector w in the representation of Eq. (5). 
In this optimization problem we have constraints 
given in Eq. (6) (it comes from the ε–insensitive loss 
function  and a further constraint of ( ),( ii yfL xε

0
2 c≤w  to keep w as short as possible (c0 is a 

constant). To deal with training points outside the ε 
boundary, the  and { }  slack variables are 
introduced:  
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The slack variables are introduced to describe the 
penalty for the training points lying outside the ε 
boundary. The measure of this cost is determined by 
the loss function. This is solved by minimizing the 
following objective function: 
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The first term stands for the minimization of w , 
while the ρ  constant is the trade–off parameter 
between this and the minimization of training data 
errors. This constrained optimization can be defined 
as a Lagrangian function. This is often called as the 
primal problem:  
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We have to minimize (8) according to w 

)

and b and 
maximize according to the Lagrange multipliers. The 
primal problem deals with convex cost function and 
linear constraints, therefore from this constrained op-
timization problem a dual problem can be construc-
ted, which can be solved more easily. The solution 
can be obtained using quadratic programming (QP). 
To do this the Karush–Kuhn–Tucker (KKT) condi-
tions are used (Vapnik, 1995). The dual problem is: 
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With constraints: 
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From the dual problem it can be seen that the 
solution does not depend directly on the ϕ  non-
linear function set. Instead a kernel function is used 
which is formed as:  The 
result of the dual problem is the sets of the Lagrange 
multipliers 
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iα  and iα ′ .  
Finally the response of the SVM can be determined 
as the weighted sum of the values of the kernel 
function.  
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their corresponding input data points as support 
vectors. It can be seen that the response depends only 
on the support vectors and not on all training data. 
This property is an interesting and important feature 
of SVM solutions. It shows that the solution is 
obtained as a sparse approximation.  
For constructing an SVM instead of choosing the 
non-linear functions, the kernel function should be 
selected. To be a kernel a function must satisfy the 
Mercer condition (Vapnik, 1995). The most popular 
kernel functions are the Gaussian functions. In this 
case the SVM corresponds to an RBF network where 
the centre vectors of the Gaussian basis functions are 
the support vectors. So the structure of a support 
vector machine and an RBF may be similar although 
their constructions are quite different.  
 
The main drawback of SVM is its high 
computational burden because of the required 
quadratic programming. Recently a least square (LS) 
version of SVM was proposed by Suykens (2001). 
LS-SVM can also be applied for both classification 
and regression. LS-SVM applies quadratic cost 
function and equality constraints instead of the 

inequality ones given in Eq. (6). The optimisation 
problem of LS-SVM is formulated as follows: 
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where 
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From these equations one can construct the 
Lagrangian, which leads to the following overall 
solution: 
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The response of the "network" can be obtained as  
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It can be seen that the response for a given input can 
be obtained similarly to (11), however, here instead 
of quadratic programming only a matrix inversion is 
required to determine the Lagrange multipliers. It can 
also be seen from (12) that the real problem is to find 
such a weight vector that minimizes the cost 
function. An important difference between Vapnik's 
SVM and LS-SVM is that the latter solution is not 
sparse; all training points are used for getting the 
solution. To get sparse solution, however, many 
different approaches were proposed for example 
(Suykens et al., 2000), (Valyon and Horváth, 2002). 
 
It can also be recognised that LS-SVM and the 
method of ridge regression (Saunders et al., 1998) 
are almost equivalent, as the function to be 
minimized in ridge regression is: 
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with the constraint of  
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This means that the approximation error will be: 
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Again the Lagrangian can be constructed which leads 
to the solution: 
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The only difference between LS-SVM and ridge 
regression is that in ridge regression bias is not used. 
Further it can be shown easily that the solution of 
ridge regression and a regularized LS solution are 
equivalent. The classical LS solution can be obtained 
if (18) is used in (16). In this case the optimal weight 
vector is obtained from the minimization of the 
regularized LS problem. 
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where ),(, jiji xxK=Ω  as before.  
 
The basic difference between the two approaches is 
that in the LS solution the weight vector w, which is 
used in the M-dimensional feature space, is obtained 
directly. Using the Lagrange method the direct 
results are the Lagrange multipliers. The weight 
vector w can be obtained indirectly from α. An 
important feature is that while the dimension of the 
feature space may be arbitrarily large, even infinite, 
the dimension of α is P, which is the number of the 
training samples. A more important feature is that 
using the Lagrange approach the solution (20) is 
expressed as a linear combination of different 
position kernel functions, where the centre parame-
ters of the kernel functions are determined by the 
training points. Using the kernel representation to get 
the response of the network we do not need to 
determine the representation in the feature space. The 
two solutions can be called primal and dual solut-
ions. Primal solution can be preferred when the 
dimension of the feature space is not too high and 
where there are no difficulties with the implementat-
ion of the  non-linear 
functions. On the other hand ridge regression or LS-
SVM approach should be preferred if the dimension 
of the feature space is huge or if the sparse represen-
tation has special advantages.  
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4. CMAC AS A SUPPORT VECTOR MACHINE 

 
The two different approaches discussed previously 
can be applied in the case of the CMAC. The classi-
cal binary CMAC uses rectangular basis functions 
(first-order B-splines) with fixed positions, which 
map the input data into the feature space. The 
association vector corresponds to the feature space 
representation. In one-dimensional case the length of 
the association vector is rather limited, so CMAC 
can be implemented efficiently in the feature space. 
A one-dimensional binary CMAC can also be 
interpreted as an LS-SVM (or more exactly as a 
ridge regression solution, because the classical 
CMAC does not use bias term), where the kernel 
function is obtained from the fixed-position first-
order B-splines: the kernel functions will be second-
order B-splines where the centre parameters are the 
input data points. If the support of the rectangular 
functions is C measured in quantums of the input 
data, the support of a kernel function is 2C. In one-
dimensional case the kernel representation of the 
CMAC has no special advantages. However, in a 
multidimensional case using the primal representa-
tion we have to reduce the number of rectangular 
basis functions, the dimension of the feature space. 
Without this reduction the complexity of the multi-
dimensional CMAC would increase exponentially 
with the input dimension. The reduction of the di-

mension of the feature space in a classical N-dimen-
sional CMAC is achieved by using only C overlays 
of rectangular basis functions instead of CN ones (and 
we apply Hash coding) as it was discussed in Section 
2. But this reduction is the real reason of the limited 
modelling capability of the multidimensional CMAC. 
If we used CN overlays we would get a multidimen-
sional CMAC with the same modelling capability as 
a one-dimensional network. In the primal space a 
CMAC with CN overlays cannot be implemented 
because of its high complexity. However, in the dual 
space we use the kernel function, and the complexity 
will not increase even if the feature (primal) space is 
a very-large dimensional one.  
 
The second-order B-spline kernel function in two-
dimensional case is shown in Figure 3a. This is the 
discretized version of the continuous second-order B-
spline (Figure 3b.) according to the quantized input 
space of the CMAC.  
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                     a.)        b.) 
Fig. 3. Second-order B-spline kernel functions for 

CMAC with C=4. 

The new interpretations have some important 
consequences. First of all there will be no significant 
difference between the one-dimensional and the 
multidimensional cases. The modelling capability of 
the multidimensional version will be the same as that 
of the one-dimensional CMAC without getting so 
complex network architecture that cannot be imple-
mented. In multidimensional cases the SVM (ridge 
regression) representation will not be equivalent to 
the Albus CMAC, as it corresponds to a CMAC with 
exponentially increasing number of overlays. Figure 
4. shows this difference in a simple example. The 
approximation error in the training points of the 2D 
sinc function is shown for the Albus CMAC in 
Figure 4a. and for the kernel-based version in Figure 
4b. It can be seen that in the latter case all training 
points can be represented exactly, while the original 
version are not able to learn exactly all training data.  

a.) 

 

b.) 

Fig. 4. The training error of the 2D CMAC a.) and 
    the kernel network b.) for the 2D sinc function. 

The kernel representation and the ridge regression 
version can be constructed not only for binary 
CMAC but for higher-order networks too. In higher-
order CMACs instead of the rectangular basis 

     



        Conference on Signal Processing Application 
and Technology, Santa Clara Vol. II, pp. 60-65.   

functions higher-order B-splines are used. Using a 
kth-order B-spline in the original CMAC (in the 
primal space), the corresponding SVM versions will 
use (2k+1)th order B-splines as SVM kernels.      

Ker, J.S. - Kuo, Y.H. - Liu, B.D. (1995) "Hardware 
Realization of Higher-order CMAC Model for 
Color Calibration", Proceedings, of the IEEE 
International Conference on Neural Networks, 
Perth, Vol. 4, pp. 1656-1661. 

 
The improved modelling capability has a price. The 
kernel representation needs higher-order functions 
even in the case that corresponds to the binary 
CMAC. Therefore the network cannot be implemen-
ted without using multipliers. This drawback, how-
ever, at least partly can be compensated using some 
effective multiplier architecture (see e.g. Szabó et al., 
2000) and an efficient construction where all advan-
tageous of this multiplier structure can be utilised. 

Lane, S.H. - Handelman, D.A. and Gelfand, J.J 
(1992) "Theory and Development of Higher-
Order CMAC Neural Networks", IEEE Control 
Systems, Apr. 1992. pp. 23-30. 

Miller, T.W. III. Glanz, F.H. and Kraft, L.G. (1990) 
"CMAC: An Associative Neural Network 
Alternative to Backpropagation" Proceedings of 
the IEEE, Vol. 78, pp. 1561-1567.  

Miller, W.T. - Box, B.A. and Whitney E.C. (1991) 
"Design and Implementation of a High Speed 
CMAC Neural Network Using Programmable 
CMOS Logic Cell Arrays", ANIPS 3, pp. 1022-
1027.  

 
5. CONCLUSION 

 
In summary we can conclude that two interpretations 
of the CMAC networks can be used. The first – the 
original one – applies rectangular basis functions, 
where the basis functions implement a mapping from 
input space into a "feature" space, and the solution is 
obtained as a linear mapping from this feature space 
into the output. The SVM approach applies piece-
wise linear B-spline basis functions as kernel func-
tions and the solution is obtained as a mapping from 
the kernel space into the output space. The first ver-
sion is better (the network is rather simple, its trai-
ning is fast, etc) in one-dimensional case, but the se-
cond one can be preferred in multidimensional cases 
as - although it may need more complex training 
algorithm - it has better modelling capability. 

Saunders, C.- Gammerman, A. and Vovk, V. (1998), 
Ridge Regression Learning Algorithm in Dual 
Variables. Machine Learning, Proc of the Fif-
teenth International Conference on Machine 
Learning, pp. 515-521.  

Smola, A.J. and Schölkopf, B. (1998) “A Tutorial on 
Support Vector Regression”, NeuroCOLT2 
Technical Report Series NC2–TR–1998–030, 
Oct., 1998. 

Suykens, J.A.K., Lukas, L. and Vandewalle J. (2000) 
“Sparse approximation using least squares 
support vector machines” Proc. of the IEEE 
International Symposium on Circuits and 
Systems ISCAS' 2000. Vol. II, pp. 757-760.   

Suykens, J.A.K. (2001) “Nonlinear Modeling and 
Support Vector Machines”, IEEE Instrumenta-
tion and Measurement Technology Conference, 
Budapest, Vol. I, pp. 287-294.  
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