

CMAC: RECONSIDERING AN OLD NEURAL NETWORK

Gábor Horváth

Budapest University of Technology and Economics,
Department of Measurement and Information Systems
Magyar tudósok krt. 2. Budapest, Hungary H-1117.

Abstract: Cerebellar Model Articulation Controller (CMAC) has some attractive features:
fast learning capability and the possibility of efficient digital hardware implementation.
Although CMAC was proposed many years ago, several open questions have been left
even for today. Among them the most important ones are about its modelling and gene-
ralization capabilities. The limits of its modelling capability were addressed in the lite-
rature and recently a detailed analysis of its generalization property was given. The results
show that there are differences between the one-dimensional and the multidimensional
versions of CMAC. The modelling capability of a multidimensional network is inferior to
that of the one-dimensional one. This paper discusses the reasons of this difference and
suggests a new kernel-based interpretation of CMAC. It shows that a one-dimensional
binary CMAC can be considered as an SVM with second order B-spline kernel function.
Applying this approach the paper shows that one-dimensional and multidimensional
CMACs can be constructed with similar modelling capability. Copyright © 2003 IFAC

Keywords: Neural Network, Support Vector Machines, CMAC, Ridge regression

1. INTRODUCTION

The paper deals with CMAC, a special neural ar-
chitecture (Albus, 1975). CMAC has some attractive
features. The most important ones are its extremely
fast learning capability (Thompson and Kwon, 1995)
and the special architecture that lets effective digital
hardware implementation possible (Miller et al.,
1991; Horváth and Deák, 1993; Ker, et al., 1995).
CMAC architecture was proposed in the middle of
the seventies and it has been mentioned as a real
alternative of MLP (Miller et al., 1990). The price of
the advantageous properties is that its modelling
capability is inferior to that of an MLP (Commuri et
al., 1995). This especially true for multidimensional
case, as a multidimensional CMAC can approximate
well only a function belonging to the additive
function set (Brown, et al., 1993). A further
deficiency of CMAC is that its generalization
capability is also inferior to that of an MLP even for
one-dimensional cases. This drawback was discussed
in (Szabó and Horváth, 2002), where the real reason
of this property was discovered and a modified

training algorithm was proposed for improving the
generalization capability.

However, the other disadvantage, the limited model-
ling capability in multidimensional cases cannot be
improved using the proposed modification. This pa-
per will deal with this question. It will show that the
limited modelling capability comes from the archi-
tecture of the multidimensional CMAC. The archi-
tecture can be modified in such a way that the modi-
fied version will have improved modelling capability
(Lane at al., 1992). However, this modification
would increase the network complexity. This in-
creased complexity is unacceptable from the
viewpoint of realization if the input dimension is
(much) larger than two.

CMAC can be interpreted as a network where the
output is formed as a sum of weighted basis func-
tions. The original, binary CMAC applies rectangular
(first-order B-spline) basis functions of fixed
positions.

This paper shows that an alternative interpretation
can also be given, when the network is considered as
an SVM (support vector machine) with second-order
B-spline kernel functions, where the positions of the
kernel functions depend on the training data. This
interpretation can be applied for higher-order
CMACs (Chiang Ching-Tsan and Lin Chun-Sin,
1996), (Ker et al., 1995) with higher order basis
functions (kth order B-splines). In these cases
CMACs correspond to SVMs with properly chosen
higher–order ((2k-1)th order) B-spline kernels.

2. A SHORT OVERVIEW OF THE CMAC

CMAC is an associative memory type neural
network, which performs two subsequent mappings.
The first one - which is a non-linear mapping -
projects an input space point u into an association
vector a. The second mapping calculates the output
of the network as a scalar product of the association
vector a and the weight vector w:

 y(u)=a(u) Tw (1)

Fig. 1. The mappings of a CMAC

The association vectors are sparse binary vectors,
which have only C active elements, C bits of an
association vector are ones and the others are zeros.
In this case scalar products can be implemented
without multiplication; the scalar product is nothing
more than the sum of the weights selected by the
active bits of the association vector.
 (2) ∑

=
=

1)(:
)(

u
u

iai
iwy

CMAC uses quantized inputs, so the number of the
possible different input data is finite. There is a one-
to-one mapping between the discrete input data and
the association vectors, i.e. each possible input point
has a unique association vector representation.

Another interpretation can also be given to the
CMAC. In this interpretation every bit in the
association vector corresponds to a binary basis
function with a finite support of C quantization
intervals. This means that a bit will be active if the
input value is within the support of the corresponding
basis function. This support is often called as the

receptive field of the basis function. An element of
the association vector can be considered as the value
of a basis function for a given input, so the output of
the binary basis function is one if an input is in its
receptive field and zero elsewhere:

 (3)






=
 otherwise 0

function basisth theof
field receptice in the is if1

)(iai

u
u

The mapping from the input space into the associa-
tion vector should have the following characteristics:
(i) it should map two neighbouring input points into
such association vectors, where only a few elements -
i.e. few bits - are different.
(ii) as the distance between two input points grows,
the number of the common active bits in the corre-
sponding association vectors decreases. The input
points far enough from each other - further then the
neighbourhood determined by the parameter C -
should not have any common bits.

This mapping is responsible for the non-linear
property and the generalization of the whole system.
The two mappings are implemented in a two-layer
network architecture. The first mapping implements
a special encoding of the quantized input data, this
layer is fixed; the trainable elements, the weight
values which can be updated using the simple LMS
rule, are in the second layer. ai+3

ai+2

waassociation vector weight vector

Σ y

discrete input
space

u a a y

w i w
w
w
w i+

i+w

i+
i+
i+ 2

1
3

C=4

u
u 1 4 5

u 3

2

a j a

a

 j+ a j+

j+

1
2
3

jw
w
w j+
w j+

 j+

1
3 2

ai+4
ai+5

ai
ai+1

The way of encoding, the positions of the basis func-
tions in the first layer, determine the generalization
property of the network. In one-dimensional cases
every quantization interval will determine a basis
function, so the number of basis functions is approx-
imately equal to the number of possible discrete
inputs. However, if we follow this rule in higher
dimensional cases, the number of basis functions will
grow exponentially with the dimension, so the
network may become too complex. As every selected
basis function will be multiplied by a weight value, the
size of the weight memory is equal to the total number
of basis functions, to the length of the association
vector. In higher dimensional case the weight memory
can be so huge that it cannot be implemented. To
avoid this high complexity the number of basis
functions must be reduced. In a classical higher–
dimensional CMAC this reduction is achieved using
basis functions positioned only at the diagonals of
the quantized input space as it is shown in Figure 2.

The shaded regions in Figure 2 are the receptive
fields of different basis functions. As it is shown the
basis functions are grouped into overlays. One overlay
contains basis functions with non-overlapping
supports, but the union of the supports covers the
whole input space. The different overlays have the
same structure; they consist of similar basis functions
in shifted positions. Every input data will select C
basis functions, each of them on a different overlay, so
in an overlay one and only one basis function will be
active for every input point. The positions of the

overlays and the basis functions of one overlay can be
represented by definite points.

Fig. 2. The basis functions of a two-dimensional
 CMAC

In the original Albus scheme the overlay-representing
points are in the main diagonal of the input space,
while the basis function positions are represented by
the subdiagonal points as it is shown in Figure 2
(black dots). In the original Albus architecture the
number of overlays does not depend on the dimension
of the input vectors; it is always C. This means that in
higher dimensional cases the number of basis function
will not grow exponentially with the dimension. This
is an advantageous property from the point of view of
implementation, however this reduced number of
basis functions is the real reason of the inferior
modelling capability of the multidimensional CMAC,
as reducing the number of basis functions the number
of free parameters will also be reduced (Brown and
Harris, 1994). To avoid this unwanted effect we can
get help from the approach of support vector machines
(SVMs) (Vapnik, 1995).

It should be mentioned that in higher-dimensional
cases further complexity reduction is required. This
reduction is achieved by applying a compressing new
layer (Albus, 1975), which uses Hash coding.
However, the effect of hashing can be neglected,
when its features are selected properly (Ellison,
1991), so we will not deal with this effect.

3. A BRIEF SUMMARY OF SVMs AND LS-SVMs

Support Vector Machines (SVMs) were proposed
recently by Vapnik (1995) and are based on
Statistical Learning Theory (SLT) and Structural
Risk Minimization (SRM) principle. SVMs can be
constructed for linear or non-linear classification
tasks as well as for linear or non-linear regressions.
Here only the regression version will be summarized.
An SVM is constructed using training data

 similarly to the classical neural networks.
The goal of an SVM for regression is to approximate
a (non-linear) function (Smola et al., 1998), where

the quality of approximation is determined using a
loss or cost function. The loss function is
representing the cost of the deviation from the target
output d

{ }P
iii y 1, =x

i for each xi input. In most cases the ε–
insensitive loss function (Lε) is used, but one can use
other (e.g. non–linear) loss functions too. The ε–
insensitive loss function is:

quantization intervals

Points of
subdiagonal

Points of
 main diagonal

 Regions of
one overlay

overlapping regions

u2

u1

 () ()
()





−−
<−

=
otherwisedf

dffor
yL

ε
ε

ε x
x 0

 (4)

Using this loss function the approximation errors
smaller than ε are ignored, while the larger ones are
punished in a linear way.
Our goal is to give an function, which
represents the dependence of the output y on the
input x. In the SVM approach first the input vectors
are projected into a higher dimensional feature space,
using a set of non-linear functions

. The dimensionality (M

()xfy =

() MN ℜ→ℜ:xϕ) of the
new feature space is not defined, it follows from the
method (it can even be infinite). The function is
estimated by projecting the input data to the higher
dimensional feature space as follows:

 (5) () ()xwx ϕT
j

M

j
jwy == ∑

=
ϕ

0

where
[]TMwww ,...,, 10=w and () () ()[]TM xxx ϕϕϕ ,...,, 10=ϕ

It is assumed that ϕ0(x)≡1, therefore w0

)

 represents a
bias term b. The goal of approximation is to find the
parameter vector w in the representation of Eq. (5).
In this optimization problem we have constraints
given in Eq. (6) (it comes from the ε–insensitive loss
function and a further constraint of (),(ii yfL xε

0
2 c≤w to keep w as short as possible (c0 is a

constant). To deal with training points outside the ε
boundary, the and { } slack variables are
introduced:

{ } P
i 1iξ =

P
i 1iξ =′

 (6)

()
() ,...,P,i

ξ
ξ

ξεd
ξεd

i

i
T

i
T

i

21

,0
,0

,
,

i

ii

i

=

≥′
≥

′+≤−
+≤−

xw
xw

ϕ
ϕ

The slack variables are introduced to describe the
penalty for the training points lying outside the ε
boundary. The measure of this cost is determined by
the loss function. This is solved by minimizing the
following objective function:

 () (






 ′++=′ ∑
=

P

i

TF
1

ii ξξ
2
1ξξ,, ρwww) (7)

The first term stands for the minimization of w ,
while the ρ constant is the trade–off parameter
between this and the minimization of training data
errors. This constrained optimization can be defined
as a Lagrangian function. This is often called as the
primal problem:

() ()

[]
[] ()∑∑

∑

∑

==

=

=

′′+−′++−′−

−++−−

−+′+=′′′

P

i

P

i
ii

T
i

P

i
ii

T
i

T
P

i

d

d

J

1
iiii

1
i

1
i

1
ii

ξξ)(

)(

2
1ξξ,,,,ξξ,,

γγξεα

ξεα

ργγαα

xw

xw

www

ϕ

ϕ (8)

We have to minimize (8) according to w

)

and b and
maximize according to the Lagrange multipliers. The
primal problem deals with convex cost function and
linear constraints, therefore from this constrained op-
timization problem a dual problem can be construc-
ted, which can be solved more easily. The solution
can be obtained using quadratic programming (QP).
To do this the Karush–Kuhn–Tucker (KKT) condi-
tions are used (Vapnik, 1995). The dual problem is:

() () (

()() ()ji

P

i

P

j

P

i

P

i
i

K

dQ

xx ,
2
1

,

1 1
jjii

1
i

1
ii

∑∑

∑∑

= =

==

′−′−−

′+−′−=′

αααα

ααεαααα
 (9)

With constraints:

 0)(
1

=′−∑
=

P

i
ii αα Pii 1,..., ,,0 i =≤′≤ ραα (10)

From the dual problem it can be seen that the
solution does not depend directly on the ϕ non-
linear function set. Instead a kernel function is used
which is formed as: The
result of the dual problem is the sets of the Lagrange
multipliers

() ()i
T

jiK xxx ϕϕ=, (jx)

iα and iα ′ .
Finally the response of the SVM can be determined
as the weighted sum of the values of the kernel
function.

 (11) () (i

P

i
ii Ky xx,

1
∑
=

′−= αα)
)The nonzero multipliers ((ii αα ′− , i=1,…,P) mark

their corresponding input data points as support
vectors. It can be seen that the response depends only
on the support vectors and not on all training data.
This property is an interesting and important feature
of SVM solutions. It shows that the solution is
obtained as a sparse approximation.
For constructing an SVM instead of choosing the
non-linear functions, the kernel function should be
selected. To be a kernel a function must satisfy the
Mercer condition (Vapnik, 1995). The most popular
kernel functions are the Gaussian functions. In this
case the SVM corresponds to an RBF network where
the centre vectors of the Gaussian basis functions are
the support vectors. So the structure of a support
vector machine and an RBF may be similar although
their constructions are quite different.

The main drawback of SVM is its high
computational burden because of the required
quadratic programming. Recently a least square (LS)
version of SVM was proposed by Suykens (2001).
LS-SVM can also be applied for both classification
and regression. LS-SVM applies quadratic cost
function and equality constraints instead of the

inequality ones given in Eq. (6). The optimisation
problem of LS-SVM is formulated as follows:

 () 






+= ∑
=

P

i
i

T eγF
1

2

2
1

2
1e, www , (12)

where
 . (13) () ii

T
i ebd ++= xw ϕ

From these equations one can construct the
Lagrangian, which leads to the following overall
solution:

 







=





















+ − dαIΩ1
1 00

1

b
C

T
r

r

 (14)

Here , , []P
T ddd ,...,, 10=d

[]1,...,1

[]P
T ααα ,..,, 10=α

=T1
r

 and),(ji xx, ji K=Ω .

The response of the "network" can be obtained as

 (15) () bKf i

P

i
i +=∑

=
xxx ,)(

1
α

It can be seen that the response for a given input can
be obtained similarly to (11), however, here instead
of quadratic programming only a matrix inversion is
required to determine the Lagrange multipliers. It can
also be seen from (12) that the real problem is to find
such a weight vector that minimizes the cost
function. An important difference between Vapnik's
SVM and LS-SVM is that the latter solution is not
sparse; all training points are used for getting the
solution. To get sparse solution, however, many
different approaches were proposed for example
(Suykens et al., 2000), (Valyon and Horváth, 2002).

It can also be recognised that LS-SVM and the
method of ridge regression (Saunders et al., 1998)
are almost equivalent, as the function to be
minimized in ridge regression is:

 () 






+= ∑
=

P

i
i

T eγF
1

2

2
1

2
1e, www (16)

with the constraint of
 (17) () ii

T
i ed += xw ϕ

This means that the approximation error will be:
 (18) ()i

T
ii de xw ϕ−=

Again the Lagrangian can be constructed which leads
to the solution:

 dIΩ
1

1
−









+=

γ
α (19)

and

 (20) (i

P

i
iKαf xxx ,)(

1
∑
=

=)
The only difference between LS-SVM and ridge
regression is that in ridge regression bias is not used.
Further it can be shown easily that the solution of
ridge regression and a regularized LS solution are
equivalent. The classical LS solution can be obtained
if (18) is used in (16). In this case the optimal weight
vector is obtained from the minimization of the
regularized LS problem.

)(1
1

1

i

P

i
id

γ
xIΩw ϕ∑

=

−









+= (21)

where),(, jiji xxK=Ω as before.

The basic difference between the two approaches is
that in the LS solution the weight vector w, which is
used in the M-dimensional feature space, is obtained
directly. Using the Lagrange method the direct
results are the Lagrange multipliers. The weight
vector w can be obtained indirectly from α. An
important feature is that while the dimension of the
feature space may be arbitrarily large, even infinite,
the dimension of α is P, which is the number of the
training samples. A more important feature is that
using the Lagrange approach the solution (20) is
expressed as a linear combination of different
position kernel functions, where the centre parame-
ters of the kernel functions are determined by the
training points. Using the kernel representation to get
the response of the network we do not need to
determine the representation in the feature space. The
two solutions can be called primal and dual solut-
ions. Primal solution can be preferred when the
dimension of the feature space is not too high and
where there are no difficulties with the implementat-
ion of the non-linear
functions. On the other hand ridge regression or LS-
SVM approach should be preferred if the dimension
of the feature space is huge or if the sparse represen-
tation has special advantages.

() () ()[]TM xxx ϕϕϕ ,...,, 10=ϕ

4. CMAC AS A SUPPORT VECTOR MACHINE

The two different approaches discussed previously
can be applied in the case of the CMAC. The classi-
cal binary CMAC uses rectangular basis functions
(first-order B-splines) with fixed positions, which
map the input data into the feature space. The
association vector corresponds to the feature space
representation. In one-dimensional case the length of
the association vector is rather limited, so CMAC
can be implemented efficiently in the feature space.
A one-dimensional binary CMAC can also be
interpreted as an LS-SVM (or more exactly as a
ridge regression solution, because the classical
CMAC does not use bias term), where the kernel
function is obtained from the fixed-position first-
order B-splines: the kernel functions will be second-
order B-splines where the centre parameters are the
input data points. If the support of the rectangular
functions is C measured in quantums of the input
data, the support of a kernel function is 2C. In one-
dimensional case the kernel representation of the
CMAC has no special advantages. However, in a
multidimensional case using the primal representa-
tion we have to reduce the number of rectangular
basis functions, the dimension of the feature space.
Without this reduction the complexity of the multi-
dimensional CMAC would increase exponentially
with the input dimension. The reduction of the di-

mension of the feature space in a classical N-dimen-
sional CMAC is achieved by using only C overlays
of rectangular basis functions instead of CN ones (and
we apply Hash coding) as it was discussed in Section
2. But this reduction is the real reason of the limited
modelling capability of the multidimensional CMAC.
If we used CN overlays we would get a multidimen-
sional CMAC with the same modelling capability as
a one-dimensional network. In the primal space a
CMAC with CN overlays cannot be implemented
because of its high complexity. However, in the dual
space we use the kernel function, and the complexity
will not increase even if the feature (primal) space is
a very-large dimensional one.

The second-order B-spline kernel function in two-
dimensional case is shown in Figure 3a. This is the
discretized version of the continuous second-order B-
spline (Figure 3b.) according to the quantized input
space of the CMAC.

0
2

4
6

8

0

2

4

6

8
0

0.2

0.4

0.6

0.8

1

0
2

4
6

8

0
2

4
6

8
0

0.2

0.4

0.6

0.8

1

 a.) b.)
Fig. 3. Second-order B-spline kernel functions for

CMAC with C=4.

The new interpretations have some important
consequences. First of all there will be no significant
difference between the one-dimensional and the
multidimensional cases. The modelling capability of
the multidimensional version will be the same as that
of the one-dimensional CMAC without getting so
complex network architecture that cannot be imple-
mented. In multidimensional cases the SVM (ridge
regression) representation will not be equivalent to
the Albus CMAC, as it corresponds to a CMAC with
exponentially increasing number of overlays. Figure
4. shows this difference in a simple example. The
approximation error in the training points of the 2D
sinc function is shown for the Albus CMAC in
Figure 4a. and for the kernel-based version in Figure
4b. It can be seen that in the latter case all training
points can be represented exactly, while the original
version are not able to learn exactly all training data.

a.)

b.)

Fig. 4. The training error of the 2D CMAC a.) and
 the kernel network b.) for the 2D sinc function.

The kernel representation and the ridge regression
version can be constructed not only for binary
CMAC but for higher-order networks too. In higher-
order CMACs instead of the rectangular basis

 Conference on Signal Processing Application
and Technology, Santa Clara Vol. II, pp. 60-65.

functions higher-order B-splines are used. Using a
kth-order B-spline in the original CMAC (in the
primal space), the corresponding SVM versions will
use (2k+1)th order B-splines as SVM kernels.

Ker, J.S. - Kuo, Y.H. - Liu, B.D. (1995) "Hardware
Realization of Higher-order CMAC Model for
Color Calibration", Proceedings, of the IEEE
International Conference on Neural Networks,
Perth, Vol. 4, pp. 1656-1661.

The improved modelling capability has a price. The
kernel representation needs higher-order functions
even in the case that corresponds to the binary
CMAC. Therefore the network cannot be implemen-
ted without using multipliers. This drawback, how-
ever, at least partly can be compensated using some
effective multiplier architecture (see e.g. Szabó et al.,
2000) and an efficient construction where all advan-
tageous of this multiplier structure can be utilised.

Lane, S.H. - Handelman, D.A. and Gelfand, J.J
(1992) "Theory and Development of Higher-
Order CMAC Neural Networks", IEEE Control
Systems, Apr. 1992. pp. 23-30.

Miller, T.W. III. Glanz, F.H. and Kraft, L.G. (1990)
"CMAC: An Associative Neural Network
Alternative to Backpropagation" Proceedings of
the IEEE, Vol. 78, pp. 1561-1567.

Miller, W.T. - Box, B.A. and Whitney E.C. (1991)
"Design and Implementation of a High Speed
CMAC Neural Network Using Programmable
CMOS Logic Cell Arrays", ANIPS 3, pp. 1022-
1027.

5. CONCLUSION

In summary we can conclude that two interpretations
of the CMAC networks can be used. The first – the
original one – applies rectangular basis functions,
where the basis functions implement a mapping from
input space into a "feature" space, and the solution is
obtained as a linear mapping from this feature space
into the output. The SVM approach applies piece-
wise linear B-spline basis functions as kernel func-
tions and the solution is obtained as a mapping from
the kernel space into the output space. The first ver-
sion is better (the network is rather simple, its trai-
ning is fast, etc) in one-dimensional case, but the se-
cond one can be preferred in multidimensional cases
as - although it may need more complex training
algorithm - it has better modelling capability.

Saunders, C.- Gammerman, A. and Vovk, V. (1998),
Ridge Regression Learning Algorithm in Dual
Variables. Machine Learning, Proc of the Fif-
teenth International Conference on Machine
Learning, pp. 515-521.

Smola, A.J. and Schölkopf, B. (1998) “A Tutorial on
Support Vector Regression”, NeuroCOLT2
Technical Report Series NC2–TR–1998–030,
Oct., 1998.

Suykens, J.A.K., Lukas, L. and Vandewalle J. (2000)
“Sparse approximation using least squares
support vector machines” Proc. of the IEEE
International Symposium on Circuits and
Systems ISCAS' 2000. Vol. II, pp. 757-760.

Suykens, J.A.K. (2001) “Nonlinear Modeling and
Support Vector Machines”, IEEE Instrumenta-
tion and Measurement Technology Conference,
Budapest, Vol. I, pp. 287-294.

REFERENCES

Albus, J.S. (1975) "A New Approach to Manipulator

Control: The Cerebellar Model Articulation
Controller (CMAC)", Transaction of the ASME,
Sep. 1975. pp. 220-227.

Szabó, T. and Horváth, G. (1999) CMAC and its
Extensions for Efficient System Modelling" Int.
Journal of Applied Mathematics and Compu-
tations, Vol. 9, pp. 571-598. Brown, M. - Harris, C.J. - Parks, P (1993). "The

Interpolation Capability of the Binary CMAC",
Neural Networks, Vol. 6, pp. 429-440.

Szabó, T. and Horváth, G. (2002) "CMAC Neural
Network with Improved Generalization Capa-
bility for System Modelling" Proc. of the IEEE
Conference on Instrumentation and Measure-
ment, Anchorage, AK. Vol. II, pp. 1603-1608.

Brown, M. and Harris, C.J. (1994) "Neurofuzzy
Adaptive Modeling and Control" Prentice Hall,
New York, 1994.

Szabó, T., Antoni, L., Horváth, G. and Fehér, B.
(2000) “An efficient implementation for a
matrix-vector multiplier structure,” in Proc. of
IEEE International Joint Conference on Neural
Networks, IJCNN 2000, Vol. II, pp. 49–54.

Chiang Ching-Tsan and Lin Chun-Sin (1996):
CMAC with General Basis Functions. Neural
Networks, Vol. 9, pp. 1199-1211.

Commuri S., Lewis F.L. and Jagannathan S. (1995):
Discrete-time CMAC Neural Networks for
Control Applications. Proc. of the 34th Con-
ference on Decision & Control, New Orleans,
LA, Vol. 2. pp. 2420-2426.

Thompson D.E. and Kwon S. (1995): Neighbour-
hood Sequential and Random Training
Techniques for CMAC. IEEE Trans. on Neural
Networks, Vol. 6, pp. 196-202. Ellison, D. (1991) "On the Convergence of the

Multidimensional Albus Perceptron", The
International Journal of Robotics Research,
Vol. 10, pp. 338-357.

Valyon, J. and Horváth, G. (2002) "Reducing the
Complexity and Network Size of LS–SVM
Solutions" submitted to IEEE Trans. on Neural
Networks. Horváth, G. and Deák, F. (1993) "Hardware

Implementation of Neural Networks Using
FPGA Elements" Proc. of The International

Vapnik, V. (1995) "The Nature of Statistical Lear-
ning Theory", Springer, New–York.

