
Ant Colony Optimization for the

Ship Berthing Problem

Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

School of Computing
National University of Singapore

Lower Kent Ridge Road
Singapore 119260

chia@acm.org, lauhc@comp.nus.edu.sg, alim@comp.nus.edu.sg

Abstract. Ant Colony Optimization (ACO) is a paradigm that em-
ploys a set of cooperating agents to solve functions or obtain good so-
lutions for combinatorial optimization problems. It has previously been
applied to the TSP and QAP with encouraging results that demonstrate
its potential. In this paper, we present FF-AS-SBP, an algorithm that
applies ACO to the ship berthing problem (SBP), a generalization of
the dynamic storage allocation problem (DSA), which is NP-complete.
FF-AS-SBP is compared against a randomized first-fit algorithm. Ex-
perimental results suggest that ACO can be applied effectively to find
good solutions for SBPs, with mean costs of solutions obtained in the
experiment on difficult (compact) cases ranging from 0% to 17% of opti-
mum. By distributing the agents over multiple processors, applying local
search methods, optimizing numerical parameters and varying the basic
algorithm, performance could be further improved.

1 Ant Colony Optimization

The Ant Colony Optimization (ACO) paradigm was introduced in [1], [2] and
[3] by Dorigo, Maniezzo and Colorni. ACO has been applied effectively to the
traveling salesman problem (TSP) [4] and the quadratic assignment problem
(QAP) [5], among several other problems. The basic idea of ACO is inspired by
the way ants explore their environment in search of a food source, wherein the
basic action of each ant is: to deposit a trail of pheromone (a kind of chemical)
on the ground as it moves, and to probabilistically prefer moving in directions
with high concentrations of pheromone deposit.

As an ant moves, the pheromone it leaves on the ground marks the path that
it takes. Another ant that passes by later can detect the pheromone and decide
to follow the trail with high probability. If it does follow the trail, it leaves its
own pheromone on it, thus reinforcing the existing pheromone deposit. By this
mechanism, the movement of ants along a path between the nest and the food
reinforces the pheromone deposit on it, and this in turn encourages further traffic
along the path. This behavior characterized by positive feedback is described as
autocatalytic.

P.S. Thiagarajan, R. Yap (Eds.): ASIAN’99, LNCS 1742, pp. 359–370, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

360 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

On the other hand, ants may take a direction other than the one with the
highest pheromone concentration. In this way, an ant does not always have to
travel on the path most traveled. If an ant takes a path less traveled that deviates
slightly from a popular path, and also happens to be better (shorter) than other
popular paths, the pheromone it deposits encourages other ants to also take this
new path. Since this path is shorter, the rate of pheromone deposit per ant that
travels on it is higher, as an ant traverses a shorter distance in one trip. In this
way, positive feedback can occur on this path and it can start to attract ants
from other paths.

By the interplay of these two mechanisms, better and better paths emerge as
the exploration proceeds. For the purpose of designing an algorithm based on
this idea drawn from nature, an analogy can be made of: 1) real ants vs. artificial
agents, 2) ants’ spatial environment vs. space of feasible solutions, 3) goodness of
a given path vs. objective function of a given solution, 4) desirability of taking a
particular direction vs. desirability of making a certain decision in constructing
the solution, 5) real pheromone at different parts of the environment vs. artificial
pheromone for different solution choices. One of the main ideas behind ACO
algorithms is how relatively simple agents can, without explicit communication,
cooperate to solve a problem by indirect communication through distributed
memory implemented as pheromone.

In this paper, we study how ACO can be applied effectively to the ship
berthing problem (SBP), through the FF-AS-SBP algorithm, an application of
ACO to the SBP. The focus of this study is not on the SBP itself or on fine-
tuning our algorithm for maximum performance. Rather, it is on demonstrating
that ACO can be applied effectively to the SBP. In Section 2, we formally de-
scribe the SBP. In Section 3, we describe a candidate solution representation,
from which we adapt an indirect, first-fit (FF), solution approach in Section 4
so that it becomes more suitable for the complex nature of the SBP. In this sec-
tion, we also describe a randomized FF algorithm and the basis of FF-AS-SBP.
FF-AS-SBP is described in Section 5. By naming the algorithm FF-AS-SBP,
we acknowledge that there could be many other ACO algorithms for the SBP.
In Section 6, we describe the experiment and report and interpret the results,
comparing FF-AS-SBP against the randomized FF algorithm. In this section, we
also discuss how results could be further improved, how the algorithm lends itself
to parallelization, and possible future work. Finally, Section 7 is the conclusion.

2 The Ship Berthing Problem

This problem, which has been studied in [6] and [7], can be defined as follows:
ships (S = {Si: i = 1, 2, . . . , n}) are specified to have lengths li, arrive at a port
at specified times ti and stay at the port for specified durations di. Each ship
that arrives is to be berthed along a wharf line of length L, i. e., it is placed
at the interval (bi, bi + li) along the wharf line. Once berthed, its location is
fixed for the entire duration of its stay. Also, each ship has a minimum inter-

Ant Colony Optimization for the Ship Berthing Problem 361

ship clearance distance cs
i and a minimum end-berth clearance distance cb

i . Four
types of constraints apply:

– Ships can only be berthed within the extend of the wharf line. No part of
any ship can extend beyond the beginning or the end of the wharf line. More
strongly, the distance from either end of a ship to either end of the wharf
line cannot be less than the minimum end-berth clearance distance.

∀i ∈ {1, 2, . . . , n} cb
i ≤ bi ≤ L− li − cb

i

– No two ships can share the same space along the wharf line if the time
intervals in which they are berthed intersect. More strongly, the end-to-end
distance between them cannot be less than the minimum inter-ship clearance
of either one of them.

∀i, j ∈ {1, 2, . . . , n}
(ti, ti + di) ∩ (tj , tj + dj) 6= ∅

→ (
bi −max

{
cs
i , c

s
j

}
, bi + li + max

{
cs
i , c

s
j

}) ∩ (bj , bj + lj) = ∅
– A ship may be given a fixed berthing location (bi is fixed for some values of

i).
– A ship may be prohibited from berthing in certain intervals of the wharf

line. More precisely, the interval bounded by the location of the two ends of
a ship after it has been berthed cannot intersect with any of the prohibited
interval.

(bi, bi + li) ∩ (p, q) = ∅ if constraint applies to Si, where
(p, q) is some forbidden interval

The minimization version of the problem is to determine Lo the minimum
length of the wharf line needed to berth all the ships subject to the given con-
straints.

The decision version of the problem is to determine whether berthing is pos-
sible, given a fixed value of L.

The density D is defined as the maximum total length of berthed ships at any
one time 1:

D = max
t∈(−∞,+∞)

 ∑

i∈{i:ti≤t<ti+di}
li

It is easy to see that D is a tight lower bound on L.
In this paper, we also define a measure F , which we call the fragmentation,

defined as:

F = 1−
∑

dili
(max(ti + di)−min(ti))D

The berthing scenario can be visualized as a 2-D plane where the x-axis rep-
resents time, the y-axis represents space (along the wharf line), and each ship
1 For convienience, this definition ignores minimum end-berth and inter-ship clearance

362 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

S1

S2

6

-

?

6
6?

� -

� -

� -

6

?

d1

d2

l1

l2

b1

b2

t1 t2

effective duration

time

space

≥ max {cs
1, c

s
2}

Fig. 1. A Sample Berthing Scenario

corresponds to a rectangular block whose x-extent is the time extent and the
y-extent is the space extent of the ship. Figure 1 provides an example of this
setup. Given an optimum solution of cost D, F is the percentage total area of
regions not covered by a block, within the effective duration of the problem.

By having cs
i and cb

i set to zero and removing the last two constraints, the SBP
becomes the dynamic storage allocation problem (DSA), which is known to be
NP-complete and for which there is an 5-approximation algorithm (with a cost
upper-bound of five times optimum)[8]. Since SBP is a generalization of DSA,
it is also NP-complete. [7] provides a reduction of the NP-complete partition
problem to the SBP, which is another way to show that SBP is NP-complete.

While simple to understand, a direct, geometric, representation for the SBP
does not lend itself to an effective solution strategy. For this reason, a graph
representation for the SBP was proposed in [7], together with an algorithm that
uses this representation for finding good solutions.

In the new representation, each vertex vi corresponds to the ship Si and has
weight li. Two distinct vertices vi and vj are connected by an (undirected) edge of
weight max

{
cs
i , c

s
j

}
iff (ti, ti + di) and (tj , tj + dj) intersect. There are also zero-

weight vertices vl and vr, and arcs 〈vl, vi〉 and 〈vi, vr〉 of weights cb
i for each vertex

vi that corresponds to a ship Si. The constraints related to prohibited and fixed
berthing positions can be represented using a combination of auxilliary vertices

Ant Colony Optimization for the Ship Berthing Problem 363

{vn+1, vn+2, . . .} acting as imaginary ships, auxilliary edges and auxilliary arcs.
Details of this representation can be found in the original paper [7].

A feasible solution is any DAG, G, resulting from setting the direction of all
edges, i. e., converting each edge to an arc of either direction. The cost of the
solution, cost(G), is equal to both the length of the longest path in it and the
value of L corresponding to that solution. The objective, therefore, is to find a
DAG with as short a longest path as possible.

3 Solution as a Vertex Permutation

Not all edge direction assignments lead to a feasible solution as some lead to
circuits, which do not exist in a DAG. Rather than searching all 2|E| possible
digraphs, many of which may not be DAGs, we can map each possible DAG to a
vertex permutation and perform the search over the space of possible permuta-
tions. Each permutation π=

(
1

π1

2
π2
· · · n

πn

)
=(π1π2 . . . πn) maps each vertex i to

an integer label πi∈{1, 2, ..., n}, where n=|V |. An edge 〈u, v〉 is set to arc 〈u, v〉 iff
πu<πv and 〈v, u〉 iff πv<πu. In this way, the digraph induced by a permutation
is always a DAG, and each DAG has at least one corresponding permutation. A
given permutation can always be normalized w. r. t. a given graph by first com-
puting the DAG it induces and then performing a deterministic DAG labeling
to obtain the normalized permutation.

In this paper, we use the terms ‘labeling’ and ‘position’ both to mean ‘permu-
tation’. ‘Position’ carries the meaning that vertices can be ordered in a sequence
s. t. the first vertex in the sequence has label 1, the second vertex in the sequence
has label 2 and so on, and the position of a vertex, which is equivalent to its
labeling, is its position in that sequence.

The permutation representation or solutions seems to lend itself to a direct
solution strategy similar to that used in [5], where the solution is also represented
as a permutation. However, there is one important difference that makes the
permutation representation problematic for the SBP. In the QAP, individual
labels contribute piecewise additively to the final objective function. In the SBP,
individual labels alone do not determine the cost of the longest path. This value
is a function of the collective interaction between the vertex positions within the
graph and there is no known straightforward relationship between the cost and
the labeling over a subset of the vertices— over all possible DAGs, the cost of
the longest path is not predicted or determined by individual vertex labels, or
even arc directions, as the following two examples illustrate: The mere flip of a
single arc can drastically change the cost; the reverse of a DAG G (all arcs are
flipped; πi is swapped with πn−i+1) has the same cost as G.

Therefore, both the graph representation and the permutation representation
seem unlikely to support ACO algorithms. For this reason, we adapted from the
permutation representation a more indirect solution approach, which is explained
in the next section.

364 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

4 First-Fit Approaches

In the standard first-fit algorithm (FF), ships are berthed (packed) one at a time
in some predetermined order. When a ship Si is to be packed, it is position as
near to the front as possible without overlap with other ships Sj which have been
berthed and whose time intervals (tj , tj + dj) intersect with the time interval of
Si, (ti, ti + di). Of course, the packing of each ship is also done so that none of
the other problem constraints are violated.

This can visualized on the geometric representation as positioning each block
(ship), one at a time, with the x-coordinate fixed, minimizing the y-coordinate
while not letting the current block overlap (or come too close) with over blocks
which have been packed, or any other constraint to be violated.

When all the ships have been packed, the cost of the solution can be easily
determined from the y-coordinate, length and minimum end-berth clearance of
each ship.

The input the the FF algorithm, therefore, are the SBP problem itself and the
order in which to pack the ships, represented as a permutation π, where ship i is
the ith ship to be packed. It should be clear that for a given SBP problem, some
permutations yield better solutions than others. In fact, it can be shown that
there always exists a permutation that yields an optimum solution. However, for
a given problem, it is difficult to perform a quick analysis to obtain an optimum,
or even a good permutation. A straightforward approach, therefore, is to actually
try different permutations.

4.1 Randomized First-Fit Algorithm

This algorithm simply generates a random permutation and calls FF with it. This
is repeated for as many times as required to obtain better and better solutions.
Improvements become increasing rare as the cost the the best discovered solution
approaches the optimum.

4.2 ACO-First-Fit Algorithm

Using an ACO approach, we would like to obtain good permutations for doing
FF.

Each permutation can be assigned a cost, which is the cost of the solution
obtained by calling FF with it.

Unlike in DAG labeling, permutations could be related to cost in a straight-
forward way. In other words, for a given problem, there could be some easily
represented, hidden, rules by which FF packing could be ordered so as to obtain
a reasonable solution. For example, the complex nature of SBP seems not as
strong in this representation, as can be seen in that in general, a permutation
does not have the same cost as its reverse, and that displacing one ship in the
packing sequence does not drastically change the cost, as are the case in DAG
labeling.

Ant Colony Optimization for the Ship Berthing Problem 365

Intuitively, it is the relative order in which packing is done that affects the
cost, rather than the absolute position of each ship in the packing sequence—we
are concerned with whether “Si is packed before Sj” rather than whether “Si

is the jth ship to be packed”. To support this mode of representation, given a
permutation π of length n, we define a n × n boolean, lower-triangular matrix
(only entries strictly below the diagonal are defined):

R =
(

rij =
{

true if πi < πj

false if πi > πj

)

It can be easily seen that there is a one-to-one function that maps π to R, and
that the reverse is not true, i. e., some values of R are invalid. A permutation π
can be constructed from constraints encoded in (a valid) R as follows:

1. Set π1 = 1
2. Determine (from the 2nd row of R) whether π2 < π1 (then π2 = 1 and π1

should be shifted right, i. e., set to 2) or π2 > π1 (then π2 = 2).
3. Determine (from the 3rd row of R) whether π3 = 1, 2 or 3 and set it to that

value. ∀i 6= 3 s. t. πi ≥ π3, increment πi by 1.
4. In the same fashion determine and update πi for i ∈ {4, . . . , n}.

This above definition provides the basis for the pheromone design of FF-AS-SBP.

5 Ant Colony Optimization for the SBP

A vital factor in the effectiveness of any ACO algorithm is the design of the
pheromone trail data structure—the information contained therein and how it
is used. The FF-AS-SBP algorithm presented below uses the design we have
experimentally found to give the best performance.

The algorithms in this section are not presented in a computationally opti-
mized form, or the form in which we implemented them, but only to describe
their computational effects.

The FF-AS-SBP algorithm takes as input the problem in the graph represen-
tation and the density D of the problem, which is used as a lower bound. It
stores solutions as FF permutations and returns the cost of the best permuta-
tion found. The cost, Lπ of a permutation π is defined as the cost of the packing
obtained from performing FF with π. The parameters to the algorithm are α,
N , Kand γ. α and γ are real numbers in the interval [0, 1). N and K are positive
integers.

The non-scalar variables used are B and T. B is a set of permutations —
the set of the best K solutions discovered. T = (τij) is a n × n matrix of real
values each representing the intensity of a pheromone trail. τij represents the
desirability of setting πi < πj , in the spirit of matrix R of Section 4.2 (unlike in
R, the matrix is not lower-triangular but diagonal elements are irrelevant).

366 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

FF-AS-SBP Algorithm

1. Let τ0 = (nD)−1. Let Lmin denote minπ∈B Lπ.
2. B ← ∅; T← τ0

3. Populate B with a random permutation for 2K times
4. Delete from B all but the best K permutations
5. T← (1− α)T
6. For each π ∈ B, update the pheromone matrix T according to the Global

Update Algorithm using a reinforcement value of L−1
π

7. For each ant a = 1, 2, . . . , N , build a solution permutation according to
the Ant Solution Algorithm and add the solution to B while keeping
|B| ≤ K by deleting worst permutations as necessary

8. If Lmin > D and neither the iteration limit nor time limit has been exceeded
then goto 5

9. Return Lmin

Steps 1–4 perform initialization. Steps 5–6 perform global pheromone update
using the K best solutions. Step 7 performs ant exploration and local pheromone
update.

We now explain the role of each input parameter. α represents the rate of
pheromone evaporation and determines conversely, the persistence of memory
from earlier iterations. N is the number of ants used in step 7 for constructing
ant solutions. K is the number of globally best solutions to remember for the
purpose of the global update in step 6. γ represents the preference for exploita-
tion over exploration when ants construct their solutions in the Ant Solution
Algorithm.

We now describe the sub-algorithms in detail.
Global Update Algorithm

This simple algorithm reinforces pheromone trails associated with a given
solution π by a given reinforcement value ∆.

For each u ∈ {1, 2, . . . , n− 1}
For each v ∈ {u + 1, . . . , n}

If πu < πv

τuv ← τuv + ∆
else

τvu ← τvu + ∆

Ant Solution Algorithm
This is the algorithm that each ant performs in building a solution π. The solu-
tion (permutation) is incrementally constructed by setting πi in order, starting
on π1 and ending on πn, similar to the method described in Section 4.2. The
difference is that at each step, instead of being determined by a boolean matrix
of constraints, each πi is set to a value probabilistically chosen from all possible
values based on their desirability.

At each step, the desirability measure of each candidate value, a function
of different pheromone strengths, is evaluated and either exploitation or explo-
ration is chosen probabilistically. Exploitation is chosen with probability γ. In

Ant Colony Optimization for the Ship Berthing Problem 367

exploitation, the candidate value with the highest desirability is chosen. In ex-
ploration, these values are probabilistically chosen based on their desirability.
We now define the desirability measure dp of a given value p when choosing a
value for πc.

dp is defined as ∏
v∈{1,2,...,c}

{
τvc if πv < p
τcv otherwise

With d computed, exploitation chooses the value with highest d, while explo-
ration chooses each candidate value p with probability proportionate to dp. After
a value p has been chosen and π has been updated accordingly, all pheromone
trails τij associated with the p, i. e., that appear as terms in the product in the
above equation, are diminished:

τij ← (1− α)τij + ατ0

The above is known as the local (pheromone) update.

6 Experiment

In this section we discuss the design, execution and results of our experiment to
study the performance of the FF-AS-SBP algorithm, as well as our interpretation
of the results and possible future work.

For simplicity in the design of the experiments, we considered only problem
instances with zero edge weights. Also, the constraints related to clearance dis-
tances and fixed and forbidden positions are absent from the test cases. In other
words, only problems that are also DSA problems are used. Nevertheless, the
results should extend to the general case.

While we have not mapped out the characteristics of the parameter space as it
is too vast, we have empirically found that setting α = 0.1, N = n, K = d0.1me
(m = |E|) and γ = 0.9 seems to yield reasonably good solutions. This is the
parameter setting adopted in all the test runs recorded in this section.

Each of the 6 test cases consist of one connected component–i. e., there is no
way to cut the geometric representation into two parts with a vertical line with-
out also cutting a block. This is because a problem of more than one component
can be divided into these components to be solved individually.

The test cases were generated by a block cutting algorithm that generates
blocks of varying height and width from an initial rectangular block, which is
recursively divided into smaller and smaller blocks (some intermediate blocks
are L-shaped blocks). Hence, all the problems generated are compact, i. e., have
zero fragmentation, a property that is expected to make them difficult to solve
optimally.

The randomized FF algorithm and FF-AS-SBP are run 10 times on each case,
and each run is given 3|V | seconds to live. For each algorithm applied to each
of the 6 test cases, the costs from each of the 10 runs are reported in ascending

368 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

Table 1. Randomized First-Fit Algorithm Results

Case D |V | |E| Runs

1 80 20 119 80 80 80 80 80 80 80 80 80 80
2 120 30 338 120 120 120 121 121 121 125 125 126 126
3 160 40 457 175 186 187 187 188 189 190 190 190 193
4 200 50 633 245 246 247 248 249 251 251 252 254 254
5 240 60 783 298 300 300 301 301 305 306 307 308 312
6 320 80 1641 416 417 417 419 420 422 424 425 425 427

Table 2. FF-AS-SBP Results

Case D |V | |E| Runs

1 80 20 119 80 80 80 80 80 80 80 80 80 80
2 120 30 338 120 120 120 120 120 120 120 120 121 121
3 160 40 457 173 173 175 176 176 177 177 182 182 184
4 200 50 633 205 225 231 232 233 235 238 239 244 247
5 240 60 783 254 254 255 258 258 258 258 258 258 258
6 320 80 1641 368 369 369 369 370 375 376 379 384 387

order. These results are shown in Table 1 and Table 2 and summarized in Table
3.

The randomized FF algorithm acts as a control for checking whether phero-
mone information does make a real difference in the quality of obtained solutions.
For this reason, time-to-live of the runs is expressed in terms of actual time taken
rather than number of iterations.

FF-AS-SBP performed consistently and significantly better than randomized
FF, especially for larger cases, except in case 1, where both algorithms always
returned an optimum solution.

Our interpretation of the experiment results is that pheromone information
did help to improve the quality of the solution when applied to an FF-based
approach to the SBP. We also note that it was necessary for us to adopt this
indirect approach to avoid building an algorithm that would futilely explore the
rough terrain of the more direct approach based on DAG labeling.

Table 3. Experiment Summary

Randomized FF FF-AS-SBP
Case D |V | |E| Min Mean Max Min Mean Max

1 80 20 119 80 80 80 80 80 80
2 120 30 338 120 122.5 126 120 120.2 121
3 160 40 457 175 187.5 193 173 177.5 184
4 200 50 633 245 249.7 254 205 232.9 247
5 240 60 783 298 303.8 312 254 256.9 258
6 320 80 1641 416 421.2 427 368 374.6 387

Ant Colony Optimization for the Ship Berthing Problem 369

In view of the current results, the following areas merit further investigation:

– Heuristic measure for (partial) FF permutations while they are being con-
structed. An obvious choice is the cost of the partial solution.

– Alternative pheromone matrix design.
– The full characteristics of the parameter space in affecting the dynamics of

the ant exploration and pheromone matrix. This could provide insight on
how to optimize convergence and quality of solution, by setting parameters
appropriately, or even dynamically varying them during the search through
the use of appropriately designed meta-heuristics.

– Employing heterogeneous ants in the search. Ants could differ by quanti-
tative parameters or qualitatively by the search strategy they use. The di-
versity introduced by having heterogeneous ants could contribute to overall
algorithm performance. If investigation demonstrates that employing het-
erogeneous ants is indeed a profitable approach, the result could extend to
other fields of distributed computing and lead to interesting investigation on
the use of heterogeneous agents in those fields as well.

– How performance can be improved by increasing the number of ants. If in-
creasing the number of ants can significantly improve performance, then
there exists the possibility of distributing the work of many ants to multi-
ple processors to achieve significant speedup, since individual ants operate
independently of one another.

– How local search techniques can be combined with the basic ACO technique
to improve performance. An example of such a technique is the famous tabu
search method[9].

7 Conclusions

In this paper, we have formulated a pheromone information design and coupled
it with the FF algorithm to produce an ACO algorithm that obtains reasonably
good solutions for the SBP, thus demonstrating that the ACO paradigm can be
applied effectively to the SBP. Morever, we have demonstrated that pheromone
structure does not need to be directly related to the physical structure with
which a target problem naturally is expressed.

The major ingredients of our algorithm, FF-AS-SBP, are the FF algorithm,
permutation construction and the pheromone information that supports this
construction. FF-AS-SBP compares favorably against the randomized FF algo-
rithm.

We have also proposed a few key areas for further investigation to obtain
even better performance and deeper insight. Of special interest is the possibility
of using heterogeneous agents in FF-AS-SBP and in distributed computing in
general.

8 Acknowledgement

This research was supported in part by the NUS Research Grant
RP3972679.

370 Chia Jim Tong, Hoong Chuin Lau, and Andrew Lim

References

[1] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: An autocatalytic op-
timizing process. Technical Report 91-016 Revised, Dipartimento Elettronica e
Informazione, Politecnico di Milano, Italy, 1991.

[2] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
B(26):29–41, 1996.

[3] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano, Italy, 1992. In Italian.

[4] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learing
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

[5] L. M. Gambardella, È. D. Taillard, and M. Dorigo. Ant colony for the QAP.
Technical Report IDSIA 97-4, IDSIA, Lugano, Switzerland, 1997.

[6] K. Heng, C. Khoong, and A. Lim. A forward algorithm strategy for large scale
resource allocation. In First Asia-Pacific DSI Conference, pages 109–117, 1996.

[7] Andrew Lim. An effective ship berthing algorithm. In IJCAI ’99, volume 1, pages
594–605, 1999.

[8] Jordan Gergov. Approximation algorithms for dynamic storage allocation. In ESA
’96: Fourth Annual European Symposium, pages 52–61, 1996.

[9] F. Glover. Tabu search - part I. ORSA Journal on Computing, 1(3):190–206, 1989.

	Ant Colony Optimization
	The Ship Berthing Problem
	Solution as a Vertex Permutation
	First-Fit Approaches
	Randomized First-Fit Algorithm
	ACO-First-Fit Algorithm

	Ant Colony Optimization for the SBP
	Experiment
	Conclusions
	Acknowledgement

