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A Levinson Algorithm Based on an Isometric
Transformation of Durbin’s

Miguel Arjona Ramı́rez, Senior Member, IEEE

Abstract—Starting from Durbin algorithm in polynomial space
with an inner product defined by the signal autocorrelation ma-
trix, an isometric transformation is defined that maps this vector
space into another one where Levinson algorithm is performed.
Alternatively, for iterative algorithms such as discrete all-pole
(DAP), an efficient implementation of a Gohberg-Semencul (GS)
relation is developed for the inversion of the autocorrelation
matrix which considers its centrosymmetry. In the solution of
the autocorrelation equations, Levinson algorithm is found to
be less complex operationally than the procedures based on GS
inversion for up to a minimum of five iterations at various linear
prediction (LP) orders.

Index Terms—Levinson algorithm, Durbin algorithm, linear
prediction, LP analysis, AR models, discrete all-pole (DAP)

I. INTRODUCTION

THE most widespread technique used in current speech
coding and analysis is linear prediction. It involves a set

of normal equations that can be efficiently solved by Durbin
algorithm [1] when the coefficient matrix is an autocorrelation
matrix. This algorithm may be set in polynomial space where
its solution becomes very appealing for its elegance and
simplicity [2].

Actually, the normal equations may be represented in
polynomial space even when the coefficient matrix is not
Toeplitz [2], in which case we have the covariance method
of LP. Also, for a symmetric Toeplitz matrix like the auto-
correlation matrix, other efficient algorithms may be used for
solving the normal equations such as the Schur or Le Roux-
Gueguen algorithm, already derived in polynomial space [3].

Normal equations arise when the speech spectrum is fit by a
continuous spectral model. However, a discrete spectrum is a
more exact model for voiced speech that is used in sinusoidal
speech coding [4]. In this situation, the equations for the model
coefficients are actually nonlinear. This difficulty is usually
circumvented by interpolating the discrete spectrum to obtain
a continuous one which is then fit by LP models [4].

Eventually, an iterative algorithm has been devised for
obtaining the model coefficients as the solution to a modified
set of linear equations with a different full right-hand side
vector in each iteration. This method is called discrete all-pole
(DAP) [5].

Unfortunately, the full set of equations for DAP modeling
cannot be solved by Durbin algorithm. However, Levinson
algorithm solves them since it was originally proposed for
Wiener filtering and prediction, where they also arise [6].
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This work casts Levinson algorithm in a polynomial space
which is the image of a linear transformation from the polyno-
mial space where Durbin algorithm takes place. Its simplicity
derives from the isometry of the transformation as explained in
Section III after reviewing Durbin algorithm and establishing
notation in Section II. Since the coefficient matrix in DAP
method is the same for all iterations, its inversion is explored in
Section IV by means of a Gohberg-Semencul (GS) relation [7],
for which a more efficient implementation is proposed based
on the centrosymmetry of the inverse matrix. The arithmetic
operation count for the algorithms is analyzed and compared in
Section V and, in conclusion, some remarks to the applicability
of the algorithms are drawn.

II. REVIEW OF DURBIN ALGORITHM AND NOTATION

The set of normal equations arising in autoregressive anal-
ysis may be cast in matrix form as

Ra = δ0, (1)

where R is the (p+1)× (p+1) autocorrelation matrix for LP
analysis of order p and δ0 =

[

1 0 0 . . . 0
]T is a (p+

1)×1 column vector. The augmented autocorrelation matrix R

induces an inner product over the vector space of polynomials
by means of the inner product of monomial polynomials [2]
defined by

〈z−i, z−j〉
∆
= rij . (2)

for i, j ∈ {0, 1, . . . , p}. Using polynomials, the last p normal
equations in Eq. (1) may be written as

〈C(z), z−j〉 = 0, j = 1, 2, . . . , p (3)

within a multiplying factor, where

C(z) = Cp(z) = 1 +

p
∑

i=1

cpiz
−i (4)

is the inverse LP filter that satisfies the normal equations (3).
The algorithm constructs an orthogonal vector basis to the
polynomial space in iterations of increasing degree where basis
polynomial

Bm(z) = z−(m+1) +

m
∑

i=1

bmiz
−i (5)

is the mth-order backward prediction inverse filter. Let the
square norms of Bm(z) be βm = 〈Bm(z), Bm(z)〉 for
m = 0, 1, . . . , p, respectively, according to the polynomial
inner product.
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The process starts trivially with the zeroth-order inverse
filters C0(z) = 1 and B0(z) = z−1. In solving for the
mth-order predictor, the value of parameter κm is chosen to
be

κm = −
〈Cm−1(z), z−m〉

βm−1
(6)

so that the mth normal equation holds for polynomial

Cm(z) = Cm−1(z) + κmBm−1(z) (7)

which, by construction, already satisfies the first m− 1 equa-
tions. Therefore, Cm(z) solves the mth-order set of normal
equations. Since R is a matrix with Toeplitz structure, it is
possible to determine the corresponding backward prediction
inverse filter by a simple reverse rearrangement of coefficients
as

Bm(z) = z−(m+1)Cm(1/z), (8)

which preserves the polynomial norm so that its square norm
may be recursively computed by

βm =
(

1 − κ2
m

)

βm−1 (9)

due to the mutual orthogonality within the set of polynomials
{Bl(z)}

m

l=0 .
Finally, the first equation in set (1), which has been left

out of consideration so far, must be solved. Let us say that
polynomial A(z) satisfies it, that is,

〈A(z), 1〉 = 1. (10)

We know at this juncture that 〈Cp(z), Cp(z)〉 = βp and, since
Cp(z) satisfies all equations in set (3), it results that

〈Cp(z), 1〉 = βp (11)

so that, by comparing Eq. (10) with Eq. (11), the complete
solution to Eq. (1) is found to be vector a such that

ai =
cpi

βp

(12)

for i = 0, 1, . . . , p, where cp0 = 1.

III. LEVINSON ALGORITHM AS AN EXTENSION TO
DURBIN’S

For most work on speech analysis and coding, LP analysis
involves the solution of a set of normal equations such as
those in Eq. (1) [1]. However, for other applications in speech
analysis such as discrete spectral modeling [5], [8] or in
Levinson’s original application to Wiener filtering [6], a full
right-hand side vector emerges, leading to the set of equations

Ra = h, (13)

where R is the (p + 1) × (p + 1) autocorrelation matrix and
h(i) 6= 0 in general for i = 0, 1, . . . , p. This set of equations
may be described by means of polynomial inner products as

〈A(z), z−j〉 = h(j), j = 0, 1, . . . , p, (14)

where

A(z) = Ap(z) = ap0 +

p
∑

i=1

apiz
−i (15)

is the inverse LP filter that satisfies the set of equations (14).
Note that now ap0 in Eq. (15) cannot be assumed to be unity
the way cp0 was in Eq. (4). Therefore, in general, solution
Ap(z) will not belong to the same space as Durbin solution
Cp(z).

Fortunately, by-products of Durbin algorithm may be used
as a shortcut to the solution. This can be readily understood
by considering transformation

V (z) = zP (z), (16)

which is isometric for any polynomial P (z) under the inner
product induced by R because

〈zP (z), zQ(z)〉 = 〈P (z), Q(z)〉 (17)

due to the Toeplitz nature of matrix R. In particular, Eq. (17)
holds in the following cases

〈zBm(z), zBl(z)〉 = 〈Bm(z), Bl(z)〉 (18)

for m, l ∈ {0, 1, . . . , p}, providing enough evidence to the fact
that {zBm(z)}p

m=0 is an orthogonal vector basis for the new
polynomial space.

From Eq. (5) the backward prediction error filters for the
second stage of Levinson algorithm are explicitly given by

zBm(z) = z−m +
m−1
∑

i=0

bm,i+1z
−i (19)

for m ∈ {0, 1, . . . , p}. Denote by bm(n) the mth-order
first-stage Durbin backward prediction error signal, denote
by rm(n) the mth-order second-stage Levinson backward
prediction error signal, and let s(n) stand for the original
signal. Exciting B(z) and zB(z) with s(n), according to
Eqs. (5) and (19), they output the error signals

bm(n) = s (n − m − 1) +

m
∑

i=1

bmis (n − i) (20)

rm(n) = s (n − m) +

m−1
∑

i=0

bm,i+1s (n − i) . (21)

The corresponding least square errors, by making l = m in
Eq. (18), are related by

βm =

∞
∑

n=0

b2
m(n) =

∞
∑

n=0

r2
m(n). (22)

With this support, the set of equations (14) may also be
solved recursively in iterations of increasing LP order, starting
by the first equation for the zeroth order as

〈A0(z), zB0(z)〉 = h(0). (23)

Since a zeroth degree polynomial is a constant, Eq. (23) may
be simplified to

A0(z)〈1, 1〉 = h(0) (24)

or
A0(z) =

h(0)

r00
. (25)

For higher prediction orders m = 1, 2, . . . , p, the lower order
inverse filter Am−1(z) and the next basis polynomial zBm(z)
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are linearly combined to construct the solution to the mth
equation as

Am(z) = Am−1(z) + kmzBm(z), (26)

where parameter km is assigned the value

km =
h(m) − 〈Am−1(z), z−m〉

βm

(27)

in just the right measure to make Am(z) the solution to the
set of first m + 1 equations in (14). When the order m = p is
reached, the solution a to Eq. (13) is found as

ai = api (28)

for i = 0, 1, . . . , p.
In conclusion, the principle of shifting the backward predic-

tion from the past (m+1)th to the past mth sample, warranted
by an extension of Durbin algorithm based on the Toeplitz
property of the autocorrelation function, provides the basis to
the derivation of the second stage of Levinson algorithm.

IV. AUTOCORRELATION MATRIX INVERSION

Some applications require the iterative solution of sets of
equations such as Eq. (13) with the same coefficient matrix
as pointed out in Section I. In this situation, it is reasonable
to consider inverting the coefficient matrix once and then use
R

−1 to reach the solution in each iteration ι by a matrix-vector
product like

a
(ι) = R

−1
h

(ι), (29)

where h
(ι) is the right-hand side vector for iteration ι.

Indeed, for symmetric Toeplitz matrices such as R, the
inverse matrix may be found in a simple way after having the
solution a to the set of normal equations (1) as specified in
Eq. (12). The inverse autocorrelation matrix may be obtained
by one of GS relations [7] as

R
−1 =

1

βp

(

L (βpa) L
T (βpa) − L(b)LT (b)

)

, (30)

where L(x) denotes the lower triangular Toeplitz matrix whose
first column is vetor x and the components of vector b

are defined by the coefficients of the pth-order backward
prediction inverse filter Bp(z) as

bi =

{

0, i = 0
bpi, 1 ≤ i ≤ p.

(31)

First, without ever evaluating R
−1, let us replace it in

Eq. (29) by the GS relation in Eq. (30) and split the com-
putation into the following steps

r
(ι) = L

T (b)h(ι) (32)
s
(ι) = L

T (βpa)h(ι) (33)

t
(ι) = L(b)r(ι) (34)

u
(ι) = L (βpa) s

(ι), (35)

where each matrix is triangular, resulting in the final calcula-
tion

a
(ι) =

1

βp

(

u
(ι) − t

(ι)
)

(36)

for the computation of product (29) by means of GS decom-
position (GSD).

In a different approach, the matrix factors may be operated
on first while taking into consideration that matrix R is sym-
metric and so is its inverse. This leads to the determination of
the elements in matrix R

−1 by the following set of expressions
[

R
−1

]

00
= a0

[

R
−1

]

0j
= βpaj , j = 1, 2, . . . , p

[

R
−1

]

i0
=

[

R
−1

]

0i
, i = 1, 2, . . . , p

[

R
−1

]

ij
= βp

i
∑

k=0

(ai−kaj−k − ap+1−i+kap+1−j+k) ,

i = 1, 2, . . . , p, j = i, i + 1, . . . , p
[

R
−1

]

ji
=

[

R
−1

]

ij
,

i = 1, 2, . . . , p − 1, j = i + 1, i + 2, . . . , p (37)

Moreover, since R is a symmetric Toeplitz matrix, it is
centrosymmetric, that is, the following relation holds

R = JRJ (38)

where J =
[

δp δp−1 . . . δ0

]

is the exchange ma-
trix represented by its columns, which are in reverse or-
der with respect to the corresponding identity matrix I =
[

δ0 δ1 . . . δp

]

. The inverse autocorrelation matrix also
inherits the centrosymmetric property as can be concluded
from Eq. (38) since the exchange matrix is its own inverse.
However, the Toeplitz property is lost by matrix inversion.

The centrosymmetric property allows the simplification of
symmetric GS inversion from Eq. (37) to

[

R
−1

]

00
= a0

[

R
−1

]

0j
= βpaj , j = 1, 2, . . . , p

[

R
−1

]

i0
=

[

R
−1

]

0i
, i = 1, 2, . . . , p

[

R
−1

]

ip
=

[

R
−1

]

0,p−i
, i = 1, 2, . . . , p

[

R
−1

]

pj
=

[

R
−1

]

jp
, j = 1, 2, . . . , p

for i = 1, 2, . . . , q,
[

R
−1

]

ij
=

[

R
−1

]

i−1,j−1
+ βp (aiaj − ap+1−iap+1−j) ,

j = i, i + 1, . . . , p − i
[

R
−1

]

ji
=

[

R
−1

]

ij
, j = i + 1, i + 2, . . . , p − i

[

R
−1

]

j,p−i
=

[

R
−1

]

i,p−j
, j = i + 1, i + 2, . . . , p − i

[

R
−1

]

p−i,j
=

[

R
−1

]

j,p−i
, j = i + 1, i + 2, . . . , p − i

if p is even,
[

R
−1

]

q+1,q+1
=

[

R
−1

]

qq

+ βp (aq+1aq+1 − ap−qap−q) , (39)

where q = p
2 − 1 when p is even and q = p−1

2 when p is odd.

V. OPERATIONAL COMPLEXITY

The task at hand is the solution of the full set of equa-
tions (13), which can be implemented as a single algorithm
such as the Levinson transformation solution (LTS) detailed in
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TABLE I
ARITHMETIC OPERATION COUNTS FOR LEVINSON TRANSFORMATION

SOLUTION (LTS), GS DECOMPOSITION (GSD), CENTROSYMMETRIC GS
(CSGS) MATRIX INVERSION AND MATRIX-VECTOR PRODUCT (MVP)

Algorithm Operation count Prediction order
LTS 2p2 + 3p p odd or even
GSD 4p2 + p + 1 p odd or even
CSGS 5

4
p2

− 5p p even
CSGS 5

4
p2

− 5p + 15

4
p odd

MVP 2p2 + 2p p odd or even

TABLE II
ARITHMETIC OPERATION COUNTS FOR LEVINSON TRANSFORMATION

SOLUTION (LTS), GS DECOMPOSITION (GSD) AND CENTROSYMMETRIC
GS (CSGS) SOLUTION TO A FULL SET OF EQUATIONS AS FUNCTIONS OF

PREDICTION ORDER AND NUMBER OF ITERATIONS (I)

Algorithm Operation count Prediction order
LTS (2p2 + 3p)I p odd or even
GSD (4p2 + p + 1)I p odd or even
CSGS 5

4
p2

− 5p + (2p2 + 2p)I p even
CSGS 5

4
p2

− 5p + 15

4
+ (2p2 + 2p)I p odd

Section III. In applications such as discrete spectral modeling,
this procedure has to be repeated for each iteration.

In a different arrangement, the autocorrelation matrix in
Eq. (13) may be inverted once and then the solution is
found by a matrix-vector product such as that in Eq. (29)
in each iteration. An efficient method called centrosymmetric
GS (CSGS) was presented in Section IV, where its operation
is described by expressions (39).

The operational complexity of each algorithm involved in
these approaches is presented in Table I as a function of the LP
order p for a full set of p + 1 equations. The whole operation
counts for the solution of the set of equations are shown in
Table II as functions of both the prediction order and the
number of iterations.

The operation counts in Table II are exemplified for some
particular cases of interest. A usual prediction order for
discrete spectral modeling is p = 14 [9]. In this case, LTS is
found to be better for up to 13 iterations. For higher prediction
order such as 20 and 30, LTS is less complex for up to 19 and
32 iterations, respectively.

Continuous spectral modeling is usually performed at order
p = 10 and occasionally also discrete spectral models of this
order are fit [8], [9]. At this order CSGS operation count only
becomes smaller after 7 iterations. Sometimes lower modeling
orders are considered for a discrete spectral modeling stage as
p = 8. In this case, LTS is less complex than CSGS up to the
4th iteration.

Since discrete spectral models usually converge in four
or five iterations [5], LTS is seen to be advantageous for a
wide range of prediction orders, possibly losing to CSGS at
prediction orders lower than ten.

VI. CONCLUSION

The set of normal equations arising in LP is usually solved
by Durbin algorithm, which is derived very elegantly in
polynomial space. It is shown that a linear transformation of
this polynomial space provides the setting for deriving the
more general Levinson solution to a full set of equations.
An efficient algorithm results because the transformation is
isometric and builds upon the results of Durbin algorithm. Full
sets of equations appear in discrete spectral modeling where
they have to be solved in iterations for the same coefficient
matrix. This makes it attractive to use an efficient Gohberg-
Semencul relation for the inversion of the symmetric Toeplitz
coefficient matrix. Further, an efficient implementation of
this matrix inversion is proposed that uses to advantage its
centrosymmetry. For a low number of iterations, arithmetic
operation counts are found to be lower using the Levinson
transformation algorithm, particularly for prediction orders
above ten.
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