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1 Introduction

This document analyses some general features of rockets and their consequences
for space travel. Two kind of rockets are considered: with direct propulsion
(fuel and propulsion substance are the same) and indirect propulsion (fuel and
propulsion substance are two different substances). Furthermore both types of
rockets are ideal. That is, each has the folowing perfect features:

• it has only one stage, ie. it doesn’t eject anything else but exhaust gases;

• its engine is 100% efficient, ie. all the potential energy contained in its
fuel is converted fully to kinetic enery of the rocket and exhaust gases;

• the exhaust gasses (= ejected propulsion sunstance) are expelled purely
backwards, ie. the velocity of all particals in the exhaust flame is pure
longitudinal, there is no transversal component.

A illustration of a direct propulsion rocket is given in figure (1).

Figure 1: Direct propulsion rocket

The analisys leads to the conclusion that interstellar space travel is practically
impossible. Even with rockets powered by nuclear fusion. We will never be able
to reach the stars . . .
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2 Direct Propulsion Dynamics

The intial mass of the propulsion substance of the rocket is named mp, the
mass of the empty (ie. empty of propulsion substance) rocket is me. The engine
burns for a period T at constant power P , producing a constant mass flow Φ
with exhaust speed V (ie. the velocity at which the exhaust gases are expelled
from the engine outlet). The total mass m of the rocket at time t then is then

m =
{
me +mp − Φt 0 ≤ t ≤ T
me T < t

(1)

We will now use the law of conservation of momentum to deduce the motion
and force equations for our rocket. At time t the momentum of our rocket is

p = mv (2)

At time t + dt an amount dm of gas has been expelled backwards. But the
momentum is conserved, thus

p = (m− dm)(v + dv) + dm(v − V ) (3)

Combining equations (2) and (3) and ignoring second order infinitesimals leads
to

mdv − dmV = 0 (4)

Deviding by dt and realising that Φ = dm/dt and a = dv/dt leads to

ma− ΦV = 0 (5)
⇔ ma = ΦV (6)
⇔ F = ΦV (7)

Where F is the force acting on the rocket at time t. As expected F is a constant.

Next we will calculate the velocity of the rocket. Using equations (6) and (1)
we get

v =
∫ t

0

dt
ΦV
m

(8)

=
∫ t

0

dt
ΦV

me +mp − Φt
(9)

= −V ln(me +mp − Φt)
∣∣∣t
0

(10)

= V ln
(

me +mp

me +mp − Φt

)
(11)

The final, or end, velocity vend of the rocket thus is (using mp = ΦT from (1))

vend = v(T ) (12)

= V ln
(

1 +
mp

me

)
(13)
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3 Energy Considerations

The rocket’s engine produces an amount of energy dE which is fully converted
into kinetic energy of the rocket and exhaust gases. At time t + dt the kinetic
energy E of the rocket and the during period dt expelled gases is (again ignoring
second order infinitesimals)

E(t+ dt) =
1
2

(m− dm)(v + dv)2 + dm(v − V )2 (14)

=
1
2
mv2 +mvdv − dmvV +

1
2

dmV 2 (15)

The energy of the same components involved at time t was

E(t) =
1
2
mv2 (16)

Thus

dE = mvdv − dmvV +
1
2

dmV 2 (17)

Dividing this by dt and then substituting (6) leads to

P =
dE
dt

(18)

= mva− ΦvV +
1
2

ΦV 2 (19)

=
1
2

ΦV 2 (20)

As expected, P is a constant!

The total amount of energy produced by the engine is of course

∆E =
∫ T

0

dt P (21)

=
1
2

ΦV 2T (22)

=
1
2
mpV

2 (23)

A rocket converts the potential energy stored in its fuel into kinetic energy. The
amount of energy produced is given by Einsteins famous mass-energy relation
E = mc2. This relation leads to the idea to consider the enigine as a mass
burner. It converts mass into energy according to Einsteins mass-energy re-
lation. Let ∆mp be the amount of fuel mass mp converted into energy. The
following amount of energy is produced

Eproduced = ∆mpc
2 (24)

For our ideal rocket this is all converted into kinetic energy, thus (using (23))

Eproduced = ∆E (25)

⇒ ∆mpc
2 =

1
2
mpV

2 (26)

⇒ V =

√
2∆mp

mp
c (27)
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Combining this with (13) gives

vend =

√
2∆mp

mp
ln
(

1 +
mp

me

)
c (28)

Thus for a direct propulsion rocket the exhaust and end velocity are given by
(27) and (28). Remember this is true for an ideal rocket. Real life rockets will
be less efficient. For real life rockets these equations impose the upper limits for
those velocities.

The rocket we considered so far is an ideal one. But even for an ideal rocket not
all potential energy contained in its fuel is converted in usefull kinetic energy. A
lot of energy is lost in kinetic energy of the exhaust gases. The usefull effiency
η is given by

η =
Eusefull

Eproduced
(29)

=
1
2mev

2
end

1
2mpV 2

(30)

=
me ln2

(
1 + mp

me

)
mp

→ 0 for
mp

me
→∞ (31)

So even for an ideal rocket the usefull efficiency approaches zero when it takes
along a lot of propellant.

4 Indirect versus Direct Propulsion Rockets

So far we have only considered direct propelled rockets, ie. fuel and propulsion
substance are the same. Now we would like consider indirectly propelled rockets.
ie. fuel and propulsion substance are two different substances. An illustration
of such a rocket is given in figure (2).

Figure 2: Indirect propulsion rocket

The equations describing this type of rocket are similar, except for one. Replace
in all formulae me with mei, which is the mass of an empty (of propellant)
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indirectly propelled rocket. The only equation which differs significantly is (24),
which now of course becomes (with mf = fuel mass)

Eproduced = ∆mfc
2 (32)

Combining this with (23) leads to (with Vi = exhaust velocity of indirectly
propelled rocket)

1
2
mpV

2
i = ∆mfc

2 (33)

⇒ V 2
i =

2∆mf

mp
c2 (34)

=
2∆mf

mf

mf

mp
c2 (35)

Combining this with (27) gives (with Vd = exhaust velocity of directly propelled
rocket)

Vi =
√
mf

mp
Vd (36)

We will now compare a directly and an indirectly propelled rocket. For compar-
ison purposes both rockets have the same usefull carge (payload) and the same
amount of propellant mass. The following relations are valid for both rockets

med = mpayload +mbody,d (37)
mei = mpayload +mbody,i +mf (38)

With med and mei being respectively the mass of the empty of propellant direct
and indirect rocket. And mbody,d and mbody,i their respective body masses. The
body mass of a rocket is its mass when it has no payload, no propellant and no
fuel on board. It is safe to asume that an indirect rocket will be heavyer than
a direct one, which leads to

mbody,i > mbody,d (39)
(37) and (38) and (39)⇒ mei > med (40)

Combining this with (13) and using (36), (40), αd = mp/med and αi = mp/mei

gives

vend,i

vend,d
=

Vi

Vd

ln(1 + αi)
ln(1 + αd)

(41)

=
√
mf

mp

ln(1 + αi)
ln(1 + αe)

(42)

Now realising that

(40)⇒ αi < αd (43)
⇒ ln(1 + αi)/ ln(1 + αd) < 1 (44)
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This means that the only way for (42) to be greater than 1 is when mf > mp.
Continuing with all this we find

(42)⇒ vend,i

vend,d
<

√
mf

mp

αi

ln(1 + αd)
(45)

<

√
mf

mp

mp/mf

ln(1 + αd)
(because αi < mp/mf ) (46)

=
√
mp

mf

1
ln(1 + αd)

(47)

<
1

ln(1 + αd)
(because we took mf > mp) (48)

< 1 for αd > e− 1 ≈ 1.7 (49)

Concluding, for high values of αd, an indirect rocket is always slower than a
direct rocket!

5 Nuclear fusion rockets

Probably the most powerfull rocket we could ever hope to build is a nuclear
fusion powered rocket. Assuming all velocities concerned are less than or ap-
proximately equal to 0.3c (with c = speed of light), relativistic effects can be
ignored and the above deduced formulae are valid. Specifically, this means that
the following ineqaulities should be true

V < 0.3c or V ≈ 0.3c (50)
vend < 0.3c or vend ≈ 0.3c (51)

The speed of 0.3c is chosen because relativistic deviations at velocity v are
generally proportional to γ =

√
1− v2/c2. For v = 0.3c we get γ = 0.954,

meaning the deviations are less than 5%. Accurately enough for this analysis.
Consider the following fusion reaction of two deuterion nuclei

2
1H + 2

1H → 4
2He (52)

The mass conversion ratio, or mass defect, for this reaction is: 0.0064 gram of
energy is produced per gram of reactant. Or in other words

∆mf/mf = 0.0064 (53)

For direct propulsion rockets this leads to (and remember indirect propulsion
rockets are slower)

Vd = 0.113c (54)

Thus (50) has been satisfied. Now substituting this into (13) we find

vend = 0.113c ln(1 + αd) (55)
< 0.3c for αd < 13.2 (56)

So equation (51) is satisfied for not too large values of αd as well.
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Nuclear fusion rockets will almost certainly be indirect propulsion rockets. The
rocket will carry a nuclear fusion reactor which powers the rocket engine. An
Optimistic estimate for the mass ratios for the rockets considered is

mpayload : mbody,d : mbody,i = 1 : 2 : 4 (57)
and med : mf : mp = 1 : 1 : 10 (58)

This results in a end velocity vend,i for an indirect rocket of

vend,i = Vi ln(1 + αi) (59)

=
√
mf

mp

√
2∆mf

mf
ln(1 + αi) c (60)

=

√
1
10

√
2 · 0.0064 ln(1 + 10/(1 + 4 + 1)) c (61)

= 0.035c (62)

6 Conclusion

The closed star to Earth, Proxima Centauri, is 4.2 lightyears away. A one way
voyage to it at a speed of 0.035c (taken from (62)) would take 120 years. There
are 40 stars within 16 lightyears of the Earth. But reaching any of those would
take even longer. From this one can conclude we will never reach the stars using
an indirect fusion powered rocket, because even a one way voyage would take to
long. At best we could hope to build an unmanned space probe which reaches
one of these nearby stars within a few hundred years.

An indirect rocket powered by nuclear fusion is most likely the fastest space
vessel we will ever be able to build. Alternative approaches for space travel,
such as anti-mater engines or reactors, worm holes and solar wind sailing, are
much less feasable. In fact, most likely they are not feasable at all.

This leads to the conclusion that reaching the stars will never be possible for
humans at all. At most they can be reached by unmanned probes. There is one
positive side to this however. Aliens will have the same problems in reaching us.
Unless the restrictions of: one way journeys only, and travel times of hundreds
of years, are of no problem to them, they will never visit us. Nor have ever
visited us. So rest asured, ‘the Grey’ will not pay you a visit tonight . . .
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