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Abstract

This paper is motivated by the problem of finding the largest single-deletion-correcting code for binary
strings. The Varshamov-Tenengolts construction classifies binary strings into non-overlapping sets, the largest
set of these is asymptotically the largest single-deletion-correcting code. However despite the asymptotic
optimality little is known about the quality of the construction as a function of the string length. We show
that these sets are also responsible for the (near) solution of several combinatorial problems on a certain
hypergraph. Furthermore our results are valid for any string length. We show that the sets collectively solve
strong vertex coloring and edge coloring on the hypergraph exactly. For any string length n we show that
the largest of these sets is within n+1

n−1
of optimal matching on the hypergraph, which also corresponds to

the largest single-deletion-correcting code. Moreover, we show for any n the smallest of these sets is within
n2−n

n2−3n+4− 4
2n

of the smallest cover of this hypergraph and that each of these sets is a perfect matching. We

then obtain similar results on the dual of this hypergraph.

1 Introduction and background

The standard model for a communication system comprises of a string of symbols that is sent over an imperfect
medium, called a channel, which reproduces the input symbols with errors. This note is about a particular kind
of error, called the deletion error. In a deletion error, the output of the channel comprises of a substring of the
input, where some of the input symbols are deleted and the undeleted symbols are aligned while maintaining their
original order (the position of the missing symbols is not known at the output). Several problems pertaining to
this channel remain unsolved. One such problem is ascertaining the size of, and providing a construction for, the
largest code, i.e. the largest set of input strings so that no two of them have a common substring.

Although this problem on the deletion channel is hard in general, the case of this channel where only binary
symbols are sent and only a single symbol is deleted appears to hold promise for a complete solution. A code
construction devised by Varshamov and Tenengolts is known to be asymptotically the largest [10]. Moreover, it
has been conjectured to be the largest for any input length, and verified to be largest for input lengths up to
10 [18].

In this note we are motivated by the observation that the problem of the largest code is not the only problem
this construction appears to be solving. We show that the same construction is responsible for the solution for
several other combinatorial problems on binary strings. In a sense, this paper may be thought of as an attempt
to characterize the inverse optimality – finding problems for which a candidate solution is optimal – of the
Varshamov-Tenengolts construction.

Let Fn2 denote the set of all binary sequences or strings of length n ∈ N, i.e.,

Fn2 = {x|x = x1x2 . . . xn, such that xi ∈ {0, 1}, i = 1, . . . , n} .

Each xi is called a bit. Let v : Fn2 → {0, 1, . . . , n} be the function

v(x) =

n∑
i=1

ixi mod n+ 1, ∀x ∈ Fn2 , (1)
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where the sum is interpreted as a decimal sum. This function was introduced by Varshamov and Tenengolts [21].
It classifies binary strings in Fn2 into n+ 1 non-overlapping sets, denoted VTa(n) for a = 0, . . . , n, where VTa(n)
comprises of strings x for which the “VT weight” v(x) = a:

VTa(n) = {x ∈ Fn2 | v(x) = a}.

We refer to these sets collectively as the Varshamov-Tenengolts construction.
If x = x1x2 . . . xn is a string in Fn2 , a string y = xi1xi2 . . . xin−1

∈ Fn−12 is called a subsequence of x if the
indices satisfy 1 ≤ i1 < . . . < in−1 ≤ n. Thus y is obtained from x by the deletion of a single bit. We call x a
supersequence of y, and x is obtained from y by the insertion of a single bit. Let D(x) ⊆ Fn−12 be the set of all
subsequences of x (called the deletion set of x) and let I(x) ⊆ Fn+1

2 denote the set of supersequences of x (called
the insertion set of x), obtained from x by a single deletion and insertion, respectively. The following concepts
are central to this paper.

Definition 1.1 A single-deletion (respectively, -insertion) correcting code for string length n is a set C ⊆ Fn2
such that D(x)∩D(y) = ∅ (respectively, I(x)∩I(y) = ∅) for all x, y ∈ C. An optimal single-deletion (respectively,
-insertion) correcting code is a single-deletion correcting code of largest cardinality.

Definition 1.2 A deletion (respectively, insertion) cover for string length n is a set of strings C ⊆ Fn2 of such that
their deletion (respectively, insertion) sets cover Fn−12 (respectively, Fn+1

2 ), i.e., if ∪x∈CD(x) = Fn−12 (respectively,
∪x∈CI(x) = Fn+1

2 ). An optimal deletion (respectively, insertion) cover is a deletion (respectively, insertion) cover
of smallest cardinality. A perfect deletion (respectively, insertion) matching is a set of binary strings such that
their deletion (respectively, insertion) sets cover Fn−12 (respectively, Fn+1

2 ) and are pairwise disjoint.

We consider the hypergraphs

HD
n = (Fn−12 , {D(x)|x ∈ Fn2}) and HI

n = (Fn+1
2 , {I(x)|x ∈ Fn2}). (2)

We call HD
n the deletion hypergraph and HI

n the insertion hypergraph. And we consider the relation of the
Varshamov-Tenengolts construction to the following problems on HD

n .

D1. Matching: Maximum number of strings in Fn2 with disjoint deletion sets.

D2. Covering: Minimum number of strings in Fn2 such that their deletion sets cover Fn−12 .

D3. Perfect Matching: Does there exist a perfect deletion matching?

D4. Strong Vertex Coloring: Minimum number of colors required to color strings in Fn−12 such that no
deletion set of a string in Fn2 contains strings of the same color.

D5. Edge Coloring: Minimum number of colors required to color strings in Fn2 such that no two strings with
intersecting deletion sets have the same color.

The aim of this note is to show that the Varshamov-Tenengolts (VT) construction solves all of these problems,
at least to a good approximation.

It was first noticed by Levenshtein [10] that for any a, the set VTa(n) forms a single-deletion correcting
code. Furthermore, more recently Levenshtein [11] showed that for every a, the set VTa(n) is a cover of Fn−12 ,
making VTa(n) a perfect deletion matching for any a. Thus this construction solves D3. We show that the
sets VT0(n), . . . ,VTn(n) collectively are an optimal edge coloring of HD

n (problem D5) and the sets VT0(n −
1), . . . ,VTn−1(n−1) collectively are an optimal strong vertex coloring of HD

n (problem D4). Although it is known
that the set VTa(n) is a deletion cover for any a, the role of the Varshamov-Tenengolts construction in relation to
the minimum covering, i.e., problem D2 is unknown. We show that VT1(n) (the smallest of these sets) is within

a factor of
(

n2−n
n2−3n+4− 4

2n

)
of the solution of D2. Our numerical results confirm that it is indeed the smallest

deletion cover for n ≤ 8. Finally, we show VT0(n) (the largest of these sets) is within a factor of
(

(n+1)(1− 2
2n )

n−1

)
of the largest single-deletion correcting code (problem D1).
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In summary, these results show that the Varshamov-Tenengolts (VT) construction is an edge coloring of HD
n

with the remarkable property that each of the color classes is a perfect matching, the largest color class is (nearly)
the largest matching, the smallest color class is (nearly) the smallest cover and collectively, the color classes are
an optimal coloring. Indeed, when n + 1 is a power of 2, |VT1(n)| = |VT0(n)|, so in this case there are n + 1
sets of hyperedges each of which appears to be both the largest matching and the smallest cover of HD

n . Our
numerical results confirm this for n = 1, 3, 7.

Some results of this flavor, where VT construction is related to other problems, have been obtained by
Sloane [17]. Sloane shows that the size of VT0(n) is the same as the number of certain shift register sequences
and the size of VT1(n) is the same as the number of certain necklaces, but in both cases, no bijections are known.
The relation of the VT construction to the problems we study above adds to the list of combinatorial properties
that these codes have. These facts put together point to the existence of a deeper property that this construction
enjoys which may not be obvious if these problems are seen in isolation. Identifying this property remains open.

Let I1, . . . , I5 be analogous problems where insertion sets are considered instead of deletion sets. For example,

I1. Maximum number of strings in Fn2 with disjoint insertion sets.

It was shown in [10] a set of strings is a single-deletion correcting code if and only if it is a single-insertion
correcting code. Consequently, problems D1 and I1 are equivalent and our bound for D1 applies to I1 too.
Furthermore, we show that the hypergraphs HD

n and HI
n−1 are duals of each other. This implies that solutions

of problems I4 and I5 (strong vertex coloring and edge coloring of HI
n) are also provided by the Varshamov-

Tenengolts construction. Although the structure of an insertion cover is not known, we show that the size of the
smallest such set is at most (1 + log(n + 1)) 2n−2

n−1 . This provides a bound on I2. It turns out that HI
n−1 is a

(n + 1)-uniform hypergraph. From this it is easy to show that there do not, in general, exist perfect insertion
covers (i.e. a set of strings in Fn2 with disjoint insertion sets that cover Fn+1

2 ), which answers I3 in the negative.
For a long time no non-asymptotic bounds or approximation factors for these problems were known. Levens-

thein’s original paper [10] showed that VT0(n) is asymptotically optimal, i.e., if C∗n is the largest code, Levensthein

showed that |VT0(n)|
|C∗n|

→ 1 as n → ∞. But since |C∗n| is exponential in n, this result says little about the quality

of VT0(n) for any particular n. Levenshtein later found the following non-asymptotic bound [13] by the same
argument from [10], but replacing certain asymptotic formulae with exact bounds.

|C∗n| ≤
2n−1

r + 1
+ 2

r−1∑
i=0

(
n− 1

i

)
, (3)

where r is any integer satisfying 1 ≤ r+1 ≤ n. This bound weaker than our bound besides being more complicated.
Finding upper bounds for deletion-correcting codes is notoriously hard, as emphasized by Sloane [17]: “It is more
difficult to obtain upper bounds for deletion-correcting codes than for conventional error-correcting codes, since the
disjoint balls De(u) (deletion sets) associated with the codewords ... do not all have the same size. Furthermore ...
there is no obvious linear programming bound.” One would presume that the same difficulty also makes finding
lower bounds on the minimum covering hard.

Our approximation factors are obtained by exploiting the linear programming relaxations of these problems.
Since deletion correction and insertion correction are equivalent, both insertion and deletion hypergraphs, are
relevant to this problem. On each of hypergraphs, the solution of the matching problem provides a single-deletion
correcting code. The fractional matching on the insertion hypergraph provides a weak bound for the matching
problem. But thanks to the duality between the insertion and deletion hypergraphs, this provides a good lower
bound for the size of the smallest cover. This leads to the approximation factor for VT1(n) for problem D2.
The fractional matching on the deletion hypergraph provides the approximation factor for VT0(n) to solve the
matching problem D1. Classical asymptotic results of Levenshtein [10, 11] on the largest code and smallest
deletion cover follow as corollaries of these results.

The more conventional approach [17, 4] to these problems appears to be through the use of the graph Ln,
and as such the hypergraph approach seems new. We devote a portion of this paper to prove supplementary
properties of the hypergraphs involved. In Section 2 we introduce some hypergraph concepts and the hypergraph
formulation of the problem. Our bounds and approximation factors are derived in Section 3. We conclude in
Section 4.
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2 Preliminaries and background

We begin with a brief survey of the literature of the field.

2.1 A brief survey

The VT construction was originally proposed for correcting asymmetric errors [21]. The earliest work on the
binary single-deletion channel appears to be that of Levenshtein [10], who observed that each set in the VT
construction serves as a code for correcting a single deletion and established its asymptotic optimality of the
largest set in this construction. Indeed, Levenshtein also considered a more general version of this construction to
address substitution errors together with deletion and insertion. This construction was conceptually generalized
for larger number of asymmetric errors later by Varshamov [20], and a variant of it for correcting a single deletion
for arbitrary alphabet size was proposed by Tenengolts [19]. The perfectness property of the VT construction
was noticed and studied by Levenshtein [11]. Ginsburg [7] obtained a closed form expression for the sizes of the
sets VTa(n) and showed that for any n, the set of smallest size was VT1(n) and the one of the largest size was
VT0(n) (see also the survey by Sloane [17]). The binary single-deletion channel has many profound combinatorial
questions associated with it, most of which remain unanswered. The survey by Sloane [17] discusses these problems
in depth and draws connections of the VT construction with other combinatorial problems. Sloane also maintains
a website [18] for archiving results and numerical computations pertaining to this problem.

For a complete survey of multiple deletion problems, we refer the reader to Mercier et al. [14]. We note
that for multiple deletions a generalization of the VT construction was made by Helberg and Ferreira [8, 2] but
the resulting code has smaller size than the known lower bound. An asymptotically optimal code construction
that also corrects transpositions and where the number of errors grows linearly with the length of the string was
presented by Schulman and Zuckerman [16].

2.2 Hypergraphs

Below, we briefly recall some hypergraph concepts, sourced mainly from Berge [3].

Definition 2.1 A hypergraph H is a tuple (X, E), where X is a finite set and E is a collection of subsets of X.
X is called the vertex set, its elements are called vertices and the elements of E are called hyperedges. When a
vertex belongs to a hyperedge, we say it is covered by the hyperedge.

We consider the following extremal concepts on hypergraph H = (X, E). A covering is a collection of hyperedges
that cover the vertex set. The covering number κ(H) is the smallest size of a covering of H. A packing is a
collection of vertices such that no two vertices are covered by the same hyperedge. The size of the largest packing
is the packing number p(H). A matching is a collection of hyperedges no two of which intersect. The matching
number ν(H) is the largest size of a matching of H. A matching is said to be perfect if the edges in the matching
cover the vertex set. A transversal is a set of vertices that intersects every hyperedge. The transversal number
τ(H) is the smallest size of a transversal. A strong vertex coloring of H is a partition of its vertex set into k
classes X1, X2, . . . , Xk such that no color appears twice in the same hyperedge. i.e., |E ∩Xi| ≤ 1 for i = 1, . . . , k
for any hyperedge E ∈ E . The strong chromatic number γ(H) is the smallest integer k for which a strong coloring
exists. An edge coloring of H is a coloring of the hyperedges of H such that any two intersecting hyperedges are
colored differently. The chromatic index q(H) is the least number of colors required for an edge coloring.

We now define hypergraph duality to relate these concepts.

Definition 2.2 Let H = (X, E) be a hypergraph where X = {x1, . . . , x|X|} and E = {E1, . . . , E|E|}. The dual of
H, denoted H∗, is a hypergraph whose vertices e1, . . . , e|E|, ei = Ei, are the hyperedges of H and whose hyperedges
are the sets Yi = {ej |xi ∈ Ej in H}, i = 1, . . . , |X|.

Between hypergraph H and its dual H∗, the following relationships hold:

ν(H∗) = p(H), τ(H∗) = κ(H), and q(H∗) = γ(H). (4)
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Suppose X = {x1, . . . , x|X|} and E = {E1, . . . , E|E|}. Let the incidence matrix of H be a matrix A ∈ {0, 1}|X|×|E|,
where the element in the kth row and `th column, A[k, `], is defined as

A[k, `] =

{
1 if xk ∈ E`,
0 otherwise.

The numbers κ(H), p(H), ν(H) and τ(H) are solutions of integer linear programs. By mathematical programming
duality, we have p(H) ≤ κ(H) and ν(H) ≤ τ(H). These inequalities are, in general, not tight and sandwiched
between them are the linear programming relaxations of the problem. By κ∗(H), p∗(H), ν∗(H), τ∗(H) denote the
values of the these relaxations. We thus have the following proposition.

Proposition 2.1 For any hypergraph H, we have

p(H) ≤ p∗(H) = κ∗(H) ≤ κ(H), (5)

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H). (6)

The equalities in (5), (6) are due to strong duality in linear programming.
Following are two concepts of derived graphs from the hypergraph H that we will employ. The line graph of

H, L(H) is a graph whose vertices are the hyperedges of H. Two vertices in L(H) are adjacent if they intersect
as hyperedges in H. The generated graph of H, Γ(H) is a graph whose vertices are the vertices of H. Two vertices
in Γ(H) are adjacent if they are covered by a hyperedge in H. An edge coloring of H is equivalent to a vertex
coloring of L(H). A strong vertex coloring of H is equivalent to a vertex coloring of Γ(H).

2.3 Hypergraph formulations for codes, covers and colorings

Let F∗2 =
⋃∞
n=0 Fn2 be the set of all binary strings including the empty string. For any x, y ∈ F∗2 define d(x, y)

to be minimum number of insertions or deletions required to obtain x from y. d is known as the Levenshtein
distance or edit distance. For any x, y ∈ F∗2, let l(x), l(y) be the lengths of x and y, let l̄(x, y) be the minimum
length of a string z such that both x and y can be obtained from z by the deletion of bits, and let l(x, y) be the
maximum length of a string z such that z can be obtained from both x, y by the deletion of bits. For any two
strings x, y, the empty string can be obtained from both x, y by the deletion of bits, and from the concatenation
of x and y both x, y can be obtained by deletion of bits, whereby the functions l̄(·, ·) and l(·, ·) are well-defined
and finite on F∗2 × F∗2. The Levenshtein distance d between x and y has the following characterization [11]:

d(x, y) = l(x) + l(y)− 2l(x, y) = 2l̄(x, y)− l(x)− l(y) = l̄(x, y)− l(x, y). (7)

This leads us to a fundamental equivalence relationship between deletion-correction and insertion-correction.

Lemma 2.1 Let n ∈ N. For any x, y ∈ Fn2 , the following three statements are equivalent.

1. d(x, y) ≤ 2,

2. There exists z ∈ Fn−12 such that z ∈ D(x) ∩D(y),

3. There exists z ∈ Fn+1
2 such that z ∈ I(x) ∩ I(y).

Proof : By definition, l(x, y) ≥ n−1 if and only if there exists a string z of length n−1, such that z ∈ D(x)∩D(y).
Similarly, l̄(x, y) ≤ n+1 if and only if there exists a z ∈ Fn+1

2 such that z ∈ I(x)∩I(y). Now using l(x) = l(y) = n
in (7), the result follows.

Note that this equivalence is valid only if strings x, y have the same length. Based on the Levenshtein distance,
one can define the following graph. This graph is also employed in [5, 6].

Definition 2.3 Define the indistinguishability graph Ln as the graph with vertices Fn2 where two vertices x, y ∈ Fn2
are adjacent if and only if d(x, y) ≤ 2.
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Figure 1: The figure pictorially depicts the insertion hypergraph HI
n−1 and deletion hypergraph HD

n . Bold-faced

circles are strings – the top layer depicts Fn2 and the bottom layer depicts Fn−12 . A string x ∈ Fn2 is shown and
the cone drawn below it with dotted lines is its deletion set D(x) ⊆ Fn−12 . This set is a hyperedge in HD

n . Also
shown is a string y ∈ Fn−12 and the inverted cone drawn with dotted lines is its insertion set I(y) ⊆ Fn2 . This is a
hyperedge in HI

n−1. The derived graphs Ln and Ln−1 have their vertices as the sets Fn2 and Fn−12 , respectively.

Also shown are some edges in Ln and Ln−1, joining strings in Fn2 and Fn−12 , respectively.

Recall the hypergraphs HD
n ,HI

n defined in (2). Fig 1 pictorially depicts these hypergraphs. By using Lemma
2.1, and by the definitions of the line graph and the generated graph of a hypergraph, it follows that

Γ(HI
n−1) = L(HD

n) = L(HI
n) = Γ(HD

n+1) = Ln. (8)

The derived graphs of hypergraphs HD
n and HI

n−1 are depicted in Fig 1; notice there that Ln is both the line
graph of HD

n the generated graph of HI
n−1. For a clearer appreciation of (8), note that HD

n is the dual of HI
n−1;

we show this in the next section in Lemma 3.2. This explains the first and third equality, whereas the second and
fourth equality follows from Lemma 2.1.

It follows from definition that for string length n, a deletion (insertion) cover is equivalent to a covering of HD
n

(of HI
n) and a deletion- (insertion-) correcting code is equivalent to a matching of HD

n (of HI
n). However, thanks

to Lemma 2.1, we have a stronger statement, namely that these matchings are equivalent.

Lemma 2.2 Let n ∈ N and let C ⊆ Fn2 . Then C is a single-deletion correcting code if and only if it is a
single-insertion correcting code. Consequently,

ν(HD
n) = ν(HI

n) = α(Ln), (9)

where α(Ln) is the size of the maximum independent set in Ln.

Proof : By Definition 1.1 and Lemma 2.1, we get that a set C ⊆ Fn2 is a single-deletion correcting code if and
only if it is a single-insertion correcting code. Furthermore, since Ln is the line graph of HD

n , an independent set
of Ln is equivalent to a matching of HD

n . The equalities in (9) follow.

Likewise, by Lemma 2.1, we have that for any n, an edge coloring of HD
n is equivalent to an edge coloring of HI

n.
Furthermore, by (8), these are both equivalent to a strong vertex coloring of the hypergraphs HD

n+1, HI
n−1, and

a vertex coloring of the graph Ln. Consequently, we have the relations

γ(HD
n) = γ(HI

n) = q(HD
n+1) = q(HI

n−1) = χ(Ln). (10)

This relation can better appreciated by taking note of the duality HI
n−1 = (HD

n)∗ which we show later in Lemma
3.2. With this we conclude our preliminaries. In the following section we present our main results.

3 Main new results

3.1 Structure of insertion and deletion hypergraphs

We begin by making some observations about the structure of the insertion and deletion hypergraphs. We first
note the sizes of insertion and deletion sets. The size of I(x) is a constant independent of x, but is a function
only of the length of x [15]. Specifically,

|I(x)| = n+ 1 := In, ∀ x ∈ Fn−12 . (11)
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A run of a string is a maximal contiguous subsequence of identical symbols. For example, 1, 0, 1, 000, 1 are each
a run of the string 1010001. The size of the deletion set of x, D(x), is equal to the number of runs of x, denoted
by r(x) [11]:

|D(x)| = r(x), ∀ x ∈ F∗2. (12)

Next, we show that hypergraphs HD
n and HI

n−1 are duals of each other. To show this, we need the following
lemma.

Lemma 3.1 Distinct strings of length n ≥ 2 have distinct deletion sets and distinct insertion sets.

Proof : Let n ∈ N, n ≥ 2. Theorem 2 and Eq 38, and Theorem 3 and Eq 63 in [12] give bounds on the maximum
number of common subsequences and supersequences for any pair of strings as follows

max
x,y∈Fn

2 ,x 6=y
|D(x) ∩D(y)| = 2, max

x,y∈Fn
2 ,x 6=y

|I(x) ∩ I(y)| = 2. (13)

Since |I(x)| = n+2 ∀ x ∈ Fn2 , (cf. (11)) it follows that there cannot exist distinct x, y ∈ Fn2 , such that I(x) = I(y).
Suppose there exist distinct x, y ∈ Fn2 such that D(x) = D(y). Then it follows from (13) that |D(x)| =

|D(y)| ≤ 2. From (12), it follows that x and y must have the same number of runs and at most 2 runs each. This
means there are two possibilities: a) x, y belong to the set {10 . . . 0, 0 . . . 01, 1 . . . 10, 01 . . . 1} (of strings with two
runs) or b) x, y belong to the set {0 . . . 0, 1 . . . 1} (of strings with one run). It can be easily checked that no two
strings in either set have identical deletion sets.

The (set-valued) maps D(·) and I(·) are inverses of each other, i.e., x ∈ D(y) ⇐⇒ y ∈ I(x) for all x, y ∈ F∗2.
This observation and Lemma 3.1 allows for a bijection between strings and their deletion sets and strings and their
insertion sets (cf. Fig 1). Consequently, without loss of generality, we identify hyperedges in HD

n (respectively,
HI
n) with the strings in Fn2 of which they are the deletion (respectively, insertion) sets. In the rest of the paper

the equality between strings and their deletion (or insertion) sets will be understood as equality upon appropriate
application of this bijection.

Lemma 3.2 Let n ∈ N, n ≥ 2 and consider the hypergraphs HD
n and HI

n defined in (2). We have HI
n−1 = (HD

n)∗,
i.e., the hypergraph HI

n−1 is isomorphic to the dual of HD
n .

Proof : The vertices of (HD
n)∗ are the sets D(y), y ∈ Fn2 . By Lemma 3.1, there is a bijection φ between the

vertices of (HD
n)∗ and Fn2 , the vertices of HI

n−1. The hyperedges of (HD
n)∗ are the sets {D(y)|x ∈ D(y)}, x ∈ Fn−12 .

Since D(·) is the inverse of I(·) we get that for any x ∈ Fn−12 , the image under φ of a hyperedge of (HD
n)∗ is

{φ(D(y))|x ∈ D(y)} = {φ(D(y))|y ∈ I(x)} = {y|y ∈ I(x)} = I(x), a hyperedge of HI
n−1. Conversely, for any

x ∈ Fn−12 the image under φ−1 of a hyperedge of HI
n−1 is {φ−1(y)|y ∈ I(x)} = {D(y)|x ∈ D(y)}, which is a

hyperedge of (HD
n)∗.

The insertion and deletion hypergraphs we have defined fall into two well-known, but broad categories of
hypergraphs.

Definition 3.1 A hypergraph H = (X, E) is said to be k-uniform if each of its hyperedges Ei ∈ E is of size k. H
is said to be k-partite if its vertex set X is the disjoint union of k sets X1, . . . , Xk and its hyperedges E satisfy
|E ∩Xi| = 1 for i = 1, . . . , k. A hypergraph H is said to be k-regular if its dual H∗ is k-uniform.

Since the size of the insertion set (cf. (11)) is the same for all strings of the same length, the hypergraph HI
n−1 is

(n+1)-uniform and its dual HD
n is (n+1)-regular. Later in section 3.2.3, we show that HI

n−1 is also (n+1)-partite.
One of the key challenges encountered in dealing with the deletion channel and its related problems on strings

is the structure of these hypergraphs. Apart from the statement that HD
n and HI

n−1 are respectively, uniform
and regular, very little can be discerned about their structure. In the remainder of this section we elaborate on
the structure of these hypergraphs. Fortunately, due to the natural recursive nature of deletion and insertion,
these hypergraphs admit some recursive structure. However this also means these hypergraphs are, in general,
not balanced (recall from Berge [3] that a hypergraph is said to be balanced if its incidence matrix is balanced).
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Let An denote the incidence matrix of HI
n−1. As a consequence of Lemma 3.2, the incidence matrix of HD

n is
A>n . For example, for n = 4, arranging the vertices F4

2 and hyperedges F3
2 in lexicographic order, we get

A4 =

000 001 010 011 100 101 110 111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



.
(14)

Notice that the upper half of A4 is lower triangular and the lower half is upper triangular. Also, the top left and
bottom right submatrices are identical. The following lemma shows that this structure holds for arbitrary n, and
it is recursive.

Lemma 3.3 Let n ∈ N. Let the columns and the rows of An be arranged in lexicographic order (increasing
decimal value) (i.e., the first row is 0 . . . 0 ∈ Fn2 , last row is 1 . . . 1 ∈ Fn2 and the first column is 0 . . . 0 ∈ Fn−12 , last
column is 1 . . . 1 ∈ Fn−12 ). Then we have the following recursion:

An =

 An−1
0
I

I
An−10

 , (15)

where 0 is a matrix of all zeros of appropriate size, I is the identity matrix of appropriate size. Furthermore,

An =

[
Aun
A`n

]
,

where Aun, A
`
n ∈ {0, 1}2

n−1×2n−1

, and Aun is lower triangular with each diagonal entry 1 and A`n is upper triangular
with each diagonal entry 1.

Proof : Let y ∈ Fn−12 , x ∈ Fn−22 . Consider the following cases:

1. 0y ∈ I(0x): This holds if and only if at least one of the following is true: a) y = 0x or b) y ∈ I(x). Indeed,
the latter case subsumes the former, whereby 0y ∈ I(0x) ⇐⇒ y ∈ I(x). This shows that the upper left
submatrix of An is An−1.

2. 0y ∈ I(1x): This holds if and only if y = 1x. It follows that the upper right submatrix is

(
0
I

)
.

Cases of 1y ∈ I(0x) and 1y ∈ I(1x) follow similarly.
We argue the second claim by induction. Clearly, the claim is true for n = 1. Assume it holds for n − 1.

Suppose An−1 =

[
Aun−1
A`n−1

]
where Aun−1 is lower triangular and A`n−1 is upper triangular with diagonal entries

1. Now by the recursion showed above, Aun =

[
Aun−1 0
A`n−1 I

]
and A`n =

[
I Aun−1
0 A`n−1

]
. It follows that Aun and A`n

must be upper and lower triangular respectively and have diagonal entries 1.

8



As a consequence of this recursion, certain properties of A3 are inherited by An for all n ≥ 3. As a specific
consequence, this shows that An is not a balanced matrix.

Proposition 3.1 For any n ≥ 3, the matrix An is not balanced and thereby the hypergraphs HD
n and HI

n are not
balanced.

Proof : By (15), it suffices to show that A3 has a submatrix corresponding to an odd cycle [3]. A3 is the
submatrix of A4 in the top left half. Consider the submatrix generated by columns (in A4) corresponding to
001, 010 and 011, and rows (in A4) corresponding to 0011, 0010 and 0110. This submatrix is a submatrix of A3

and is an odd cycle of size 3, whereby A3 is not balanced.

3.2 Hypergraph problems

We now return to problems D1,...,D5 stated in the introduction. Recall that our aim is to establish that in each
of these problems, some aspect of the Varshamov-Tenengolts construction serves to solve it at least to a good
approximation. We then address problems I1,..., I5.

Levenshtein [11] showed that the VT codes are ‘perfect from below’. This means that, for any a = 0, . . . , n the
union

⋃
x∈VTa(n)

D(x) = Fn−12 , in addition to the fact that the set VTa(n) is a deletion-correcting code for each

a. As a consequence, each of these sets is a perfect matching for the hypergraph HD
n . Notice that this answers

D3 in the affirmative. Furthermore, we have the following proposition.

Proposition 3.2 For any n ≥ 2, each set VTa(n), a = 0, . . . , n is a transversal of HI
n−1 and a matching of HD

n .
Furthermore,

κ(HD
n) = τ(HI

n−1) ≤ |VT1(n)| = min
a=0,...,n

|VTa(n)| ≤ 2n

n+ 1
,

ν(HD
n) = p(HI

n−1) ≥ |VT0(n)| = max
a=0,...,n

|VTa(n)| ≥ 2n

n+ 1
.

Proof : In both relations, the leftmost equality follows from the duality between HD
n and HI

n−1 proved in Lemma
3.2. As recalled above, we have from [11] that each set VTa(n), a = 0, . . . , n is ‘perfect from below’. Consequently,
each set VTa(n), a = 0, . . . , n is a transversal of HI

n−1 and a matching of HD
n . This proves the first inequalities in

the above relations. The rightmost equality follows from Ginsburg [7], where it is shown that VT1(n) and VT0(n)
are respectively the smallest and the largest of the sets VTa(n), a = 0, . . . , n. And the next inequalities follow
from the fact that the smallest (largest) of these sets is at most (at least) the size of the average size of these sets.

Due to Lemma 3.2 and Proposition 3.2 there is no loss of generality in considering only the matching and
transversal problems (and ignoring the covering and packing problems) on hypergraphs HD

n and HI
n. In the rest

of this paper we will adopt this convention.
We first derive approximation factors for VT0(n) to solve D1 and for VT1(n) to solve D2. Our bounds are

obtained from the following linear programming relaxations pertaining to problems D1 and D2:

ν∗(HI
n−1) = max{1>z|Anz ≤ 1, z ≥ 0}, ν∗(HD

n) = max{1>z|A>n z ≤ 1, z ≥ 0},
τ∗(HI

n−1) = min{1>w|A>nw ≥ 1, w ≥ 0}, τ∗(HD
n) = min{1>w|Anw ≥ 1, w ≥ 0}. (16)

Balanced hypergraphs are one of the most general classes for which fractional problems have been studied [3].
Since our hypergraphs are not balanced, there are very few standard results that can be leveraged to obtain
bounds. In particular, a direct argument using Proposition 3.2 that exploits the fact that VT1(n) is a transversal
of HI

n−1, leads to

2n−1

n
≤ |VT0(n− 1)| ≤ ν(HI

n−1) ≤ ν∗(HI
n−1) = τ∗(HI

n−1) ≤ τ(HI
n−1) ≤ |VT1(n)| ≤ 2n

n+ 1
. (17)
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The leftmost and rightmost bounds are clearly not tight. A similar situation results for HD
n ; indeed for ν∗(HD

n)
there is no simple upper bound.

In order to derive our bounds we need a simple observation about the number of runs of a string.

Lemma 3.4 For any x ∈ F∗2 and any y ∈ I(x), r(x) ≤ r(y) ≤ r(x) + 2.

Proof : Let r(x) = r and write x as a concatenation of its runs, x = X1X2 . . . Xr, where each Xi denotes a run
of x. Let x̄ be the inserted bit, let y = x1 . . . xix̄xi+1 . . . xn the obtained supersequence and consider the following
cases.

1. x̄ is inserted at the end of x (i.e., i = n or i = 0). Therefore y = x̄x1 . . . xn or y = x1 . . . xnx̄. In the former
case, it is easy to see that

r(y) =

{
r(x) if x̄ = x1,

r(x) + 1 otherwise.

The latter case follows similarly.

2. x̄ is inserted between two runs, whereby y = X1 . . . Xkx̄Xk+1 . . . Xr, where 1 < k < r, and xi is the last bit
of run Xk. Notice that x̄ is either equal to xi or it is equal to xi+1 (the first bit of run Xk+1). Consequently,
this insertion leads only to an elongation of one of the runs of x and no change in the number of runs. Thus
r(y) = r(x).

3. x̄ is inserted inside a run, say run Xk = xj . . . x`. In this case y = x1 . . . xix̄xi+1 . . . xn and the adjacent bits
xi and xi+1 are equal. Thus y can be written as y = X1 . . . Xk−1xj . . . xix̄xi+1 . . . x`Xk+1 . . . Xr, where bits
xj = xj+1 . . . = xi = xi+1 . . . = x`, since they are from the run Xk of x. It is easy to see that in this case,

r(y) =

{
r(x) if x̄ = xi,

r(x) + 2 if otherwise.

Summarizing the above cases, we see that r(y) is no less than r(x) and no greater than r(x) + 2.

The left inequality in this lemma (r(x) ≤ r(y)) is also noted in [9].

3.2.1 The covering problem

We are now ready to prove the first of our main results.

Lemma 3.5 For n ∈ N, n ≥ 2, the transversal number of HI
n−1 admits the following bound:

τ(HI
n−1) ≥ τ∗(HI

n−1) ≥ 2n

n+ 1
− 2n(2n− 4) + 4

n3 − n
. (18)

Proof : By Proposition 2.1, τ(HI
n−1) ≥ τ∗(HI

n−1) = ν∗(HI
n−1) ≥ 1>z for any z such that z ≥ 0 and Anz ≤ 1.

To prove the bound, we construct a suitable fractional matching. For any x ∈ Fn−12 , let z(x) = 1
r(x)+2 . It follows

that for any y ∈ Fn2 , ∑
x∈D(y)

z(x) =
∑

x∈D(y)

1

r(x) + 2
≤

∑
x∈D(y)

1

r(y)
= 1,

where the inequality follows from Lemma 3.4 and the equality is due to (12). Consequently, z is a fractional
matching of HI

n−1. The number of strings in Fn−12 with r runs is 2×
(
n−2
r−1
)
, whereby the weight of the fractional
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matching z is 2
∑n−1
r=1

(
n−2
r−1
)

1
r+2 . To obtain the above expression, simplify as follows

2

n−1∑
r=1

(
n− 2

r − 1

)
1

r + 2
= 2

n−1∑
r=1

(n− 2)!

(n− r − 1)!(r − 1)!

[
1

r
+

1

r + 2
− 1

r

]

= 2

n−1∑
r=1

(n− 2)!

(n− r − 1)!r!
− 4

n−1∑
r=1

(n− 2)!

(n− r − 1)!r!

[
1

r + 1
+

1

r + 2
− 1

r + 1

]

= 2

n−1∑
r=1

(n− 2)!

(n− r − 1)!r!
− 4

n−1∑
r=1

(n− 2)!

(n− r − 1)!(r + 1)!
+ 4

n−1∑
r=1

(n− 2)!

(n− r − 1)!(r + 2)!
.

We now obtain these sums in closed form, by writing the ratios of factorials in terms of binomial coefficients.
Specifically, we get that the weight of the fractional matching is

=
2

n− 1

n−1∑
r=1

(
n− 1

r

)
− 4

n(n− 1)

n−1∑
r=1

(
n

r + 1

)
+

4

(n+ 1)(n)(n− 1)

n−1∑
r=1

(
n+ 1

r + 2

)
=

2n − 2

n− 1
− 4

2n − 1− n
n(n− 1)

+ 4
2n+1 − 1− (n+ 1)− n(n+ 1)/2

(n+ 1)(n)(n− 1)

Adding and subtracting 2n

n+1 and simplifying the above expression we get

∑
x∈Fn−1

2

z(x) =
2n

n+ 1
− 2n(2n− 4) + 4

n3 − n
.

The result follows.

As a consequence, we have the following approximation factor for VT1(n) to be a transversal of HI
n−1.

Theorem 3.3 Let n ∈ N, n ≥ 2. The set VT1(n) is nearly an optimal transversal for HI
n−1. Specifically,

1 ≤ |VT1(n)|
τ(HI

n−1)
≤ n2 − n
n2 − 3n+ 4− 4

2n

.

In particular, |VT1(n)|
τ(HI

n−1)

n→ 1.

Proof : By Proposition 3.2, VT1(n) is a transversal of HI
n−1. To show the right inequality, notice that the set

VT1(n) being the smallest amongst the sets VT0(n), . . . ,VTn(n) has size at most 2n

n+1 , their average. Indeed this
size is achieved for that n for which n + 1 is a power of 2 (see Equations 7,8 in Sloane’s [17]). Now using (18),
|VT1(n)|
τ(HI

n−1)
is upper bounded by

2n

n+1

2n

n+1−
2n(2n−4)+4

n3−n

. Dividing by 2n

n+1 and simplifying gives the result.

3.2.2 The matching problem

Our next bound is on the matching problem on HD
n . Note that this bound follows as a special case of our results

in [9] where upper bounds are obtained for arbitrary number of deletions and arbitrary alphabet.

Lemma 3.6 For n ≥ 2, the matching number of HD
n admits the following upper bound,

ν(HD
n) ≤ 2n − 2

n− 1
. (19)
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Proof : By Proposition 2.1, it suffices to show that there exists a fractional transversal of HD
n with this value.

Consider the function w, where for any x ∈ Fn−12 , w(x) = 1
r(x) . By Lemma 3.4, for any y ∈ Fn2 ,

∑
x∈D(y)

w(x) =
∑

x∈D(y)

1

r(x)
≥

∑
x∈D(y)

1

r(y)
= 1,

where the equality is by (12). Consequently, w is a transversal of HD
n . Now, as in Theorem 3.5, we calculate the

value of this transversal as

2

n−1∑
r=1

(
n− 2

r − 1

)
1

r
=

2

n− 1

n−1∑
r=1

(n− 1)!

(n− r − 1)!r!
=

2n − 2

n− 1
,

as required.

The resulting approximation factor is as follows.

Theorem 3.4 For n ∈ N, n ≥ 2, the set VT0(n) is nearly an optimal matching for HD
n . Specifically,

1 ≤ ν(HD
n)

|VT0(n)|
≤

(n+ 1)(1− 2
2n )

n− 1
.

In particular
ν(HD

n)
|VT0(n)|

n→ 1.

Proof : By Proposition 3.2, VT0(n) is a matching of HD
n , which gives the left inequality. By Proposition 2.1, the

upper bound on ν∗(HD
n) is an upper bound on ν(HD

n). Furthermore, the size of VT0(n) is at least 2n

n+1 (Equation
8, Sloane [17]). Now using (19) and simplifying, we get the desired result.

3.2.3 Edge and vertex coloring

We now consider edge coloring and strong vertex coloring of HD
n . For this, we recall a result of Cullina et al. from

[5].

Lemma 3.7 (Section II.D [5]) For any n ∈ N, the sets VT0(n), . . . ,VTn(n) are an optimal coloring of Ln.
Consequently, χ(Ln) = n+ 1.

As consequence, we have that the Varshamov-Tenengolts construction solves the edge coloring and strong vertex
coloring on HD

n .

Theorem 3.5 For any n ∈ N, n ≥ 2 the sets VT0(n), . . . ,VTn(n) are an optimal edge coloring of HD
n and the

sets VT0(n − 1), . . . ,VTn−1(n − 1) are an optimal strong vertex coloring of HD
n . Consequently, q(HD

n) = n + 1
and γ(HD

n) = n.

Proof : An edge coloring ofHD
n is equivalent to a vertex coloring of its line graph L(HD

n), which by (8) is Ln. Thus,
from Lemma 3.7, VT0(n), . . . ,VTn(n) is an optimal edge coloring of HD

n . It follows that q(HD
n) = χ(Ln) = n+ 1.

Since by (8), Ln−1 is the line graph of HI
n−1, VT0(n− 1), . . . ,VTn−1(n− 1) is an optimal edge coloring of HI

n−1.
But HI

n−1 = (HD
n)∗, whereby the edge coloring VT0(n − 1), . . . ,VTn−1(n − 1) of HI

n−1 is also a strong vertex
coloring of HD

n . Therefore, γ(HD
n) = q(HI

n−1) = χ(Ln−1) = n.

As a corollary, we get the following result about HI
n−1.

Corollary 3.6 For n ∈ N, n ≥ 2, the hypergraph HI
n−1 is (n+ 1)-partite.

Proof : The vertex set of HI
n−1 is Fn2 . Partition the vertex set into the n+ 1 sets VT0(n), . . . ,VTn(n). We need

to show that each hyperedge of HI
n−1 contains exactly one string from each of these sets. Suppose this is not true,

i.e., suppose there a hyperedge of HI
n−1 corresponding to a string x ∈ Fn−12 such that (i) either there exists an

a such that I(x) contains no string from VTa(n) or (ii) there exists an a such that I(x) contains more than one
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string from VTa(n). Out of these cases, (i) means that the string x is not covered by the deletion set of any string
in VTa(n). This is not possible since each set VTk(n), k = 0, . . . , n is a deletion cover of HD

n . (ii) means that x
is covered by the deletion set of two strings in VTa(n). This violates the fact that each set VTk(n), k = 0, . . . , n
is an edge color-class of HD

n . Consequently, HI
n−1 is (n+ 1)-partite.

3.2.4 Problems on the insertion hypergraph

We now consider the problems I1, . . . I5. Let us first consider problem I3: does there exist a perfect insertion
matching? It is quite easy to argue that, in general, the answer is no. The size of insertion sets is the same for
all string of the same length (cf. (11)). If there were a perfect insertion matching of HI

n−1, then its size would be
2n

n+1 . Clearly, this is not possible if n+ 1 is not a power of 2. However the absence of a perfect insertion matching
is true for any n large enough; see, e.g., Levenshtein [11]. Thus, the answer to I3 is negative.

Since by (9), ν(HD
n) = ν(HI

n), Theorem 3.6 provides an approximation factor for VT0(n) to solve I1 (the
matching problem on HI

n) as well. Now consider problems I4, I5 on the edge and strong vertex coloring of
HI
n. By Theorem 3.5 and (10), the set VT0(n), . . . ,VTn(n) is an optimal edge coloring of HI

n and VT0(n +
1), . . . ,VTn+1(n+ 1) is an optimal strong vertex coloring of HI

n. Specifically, q(HI
n) = n+ 1 and γ(HI

n) = n+ 2.
There remains the problem I2, namely the covering problem of HI

n−1. The object of interest here is the

covering number of HI
n−1, i.e., the smallest set of strings in Fn−12 such that their insertion sets cover Fn2 , and

denoted κ(HI
n−1). This is the same as the smallest set of strings in Fn−12 that meet every deletion set from strings

in Fn2 , and is hence the transversal number of HD
n , τ(HD

n). In addition to the size, the structure of the optimal
cover is also of interest. Unfortunately, there is little we can say about the structure. Since each of the sets
VTa(n− 1), for a = 0, . . . , n− 1 is a matching of HI

n−1, and no perfect matching exists, it follows that these sets
are not insertion covers.

We derive an upper bound on τ(HD
n) by invoking the following result from Berge [3, Theorem 12, p. 100].

Lemma 3.8 For a hypergraph H with maximum degree ∆,

τ(H) ≤ (1 + log ∆)τ∗(H).

Using the upper bound on τ∗(HD
n) we have previously derived, we get the following result.

Theorem 3.7 Let n ∈ N, n ≥ 2. The transversal number of HD
n satisfies

2n

n+ 1
≤ τ(HD

n) ≤ (1 + log(n+ 1))
2n − 2

n− 1
.

Proof : The leftmost inequality is follows from observing that τ(HD
n) ≥ ν(HD

n) ≥ |VT0(n)| ≥ 2n

n+1 . Recall that

HD
n is a regular hypergraph with degree n+ 1, therefore its maximum degree ∆(HD

n) = n+ 1. Now using Lemma
3.8 and Theorem 3.6, the result follows.

To the best of our knowledge this is a new bound. Clearly, the upper and lower bounds are not asymptotically
equal and there is scope for obtaining tighter bounds.

3.3 Comparison with numerical results

Table 1 shows the values obtained when the linear programs corresponding to the optimal fractional matching and
transversal of HD

n and HI
n−1 were solved numerically. Also indicated are values of the analytical lower bound on

τ(HI
n−1) (denoted lb) from (18) and the analytical upper bound on ν(HD

n) (denoted ub) from (19), and the sizes
of sets VT1(n) and VT0(n). The results in the right half of the table have also been reported in [9]. The exact
values of τ∗(HI

n−1) and ν∗(HD
n) indicate that VT1(n) and VT0(n) are very close to being optimal for transversal

problem on HI
n−1 and the matching problem on HD

n respectively, at least for n ≤ 14. This suggests that quite
likely, VT1(n) is the smallest deletion cover (D2) and VT0(n) is the largest deletion matching (D1). Indeed since
for n ≤ 8, |VT1(n)| = τ∗(HD

n), VT1(n) does solve D2 for n ≤ 8. VT0(n) has been confirmed to solve D1 for
n ≤ 10 [18].
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n lb dτ∗(HI
n−1)e |VT1(n)| ub bν∗(HD

n)c |VT0(n)|
1 – 1 1 – 1 1
2 1 1 1 2 2 2
3 2 2 2 3 2 2
4 3 3 3 4 4 4
5 4 5 5 7 6 6
6 7 9 9 12 10 10
7 13 16 16 21 17 16
8 23 28 28 36 30 30
9 42 50 51 63 53 52
10 77 92 93 113 96 94
11 143 169 170 204 175 172
12 268 312 315 372 321 316
13 503 580 585 682 593 586
14 949 1085 1091 1260 1104 1096

Table 1: Sizes of VT1(n),VT0(n) and rounded values of linear programs obtained from exact the solution on
Matlab. Also indicated are the lower bound from (18) in “lb” and the upper bound from (19) in “ub”.

Our results augment the results reported for “challenge problems” on Sloane’s website [18]. Intriguingly,
however, neither the sequences obtained from our bounds nor the sequences obtained from the numerical solution
of the linear programs show a match with the Online Encyclopedia of Integer Sequences [1].

4 Conclusions

This paper has modeled the problem of single-deletion/insertion correction of binary strings on hypergraphs. It
was observed that the Varshamov-Tenengolts construction is an optimal edge-coloring where each color-class is a
perfect matching of the deletion hypergraph, the largest color class is the maximum matching and the smallest
color class is the minimum covering, to a good approximation. In addition, thanks to the duality between
insertion and deletion hypergraphs, the VT construction also provided an optimal strong vertex coloring for
these hypergraphs. These results indicate that perhaps there is a meta-problem, as yet undiscovered, that the
VT construction solves, from which the solution of all of these hypergraph problems would follow. The deletion
and insertion hypergraphs do not fall in any known category, other than the fact that they are regular and
uniform, respectively. Yet they seem have the interesting property that certain edge-color classes of the deletion
hypergraph also solve the matching and covering problem. This suggests the existence of a fascinating new class
of hypergraphs with this property.
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