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       INTRODUCTION 

    Chelicerate Phylogenetics 

 Chelicerata is a subphylum of arthropods that 
includes terrestrial as well as marine animals. 
Both the fossil record and molecular data place 
the origin of the chelicerates over 500 million 
years ago in the Cambrian (e.g., see Dunlop  2010 ; 
Rota-Stabelli et al.  2013 ). It has been shown that 
the chelicerates are a monophyletic group, and 
although they have previously been grouped 
together with the myriapods as Myriochelata, it 
is generally accepted that  chelicerates represent 
the sister group of Mandibulata (pancrustaceans 
and myriapods) (Friedrich and Tautz  1995 ; Cook 

et al.  2001 ; Giribet et al.  2001 ; Hwang et al.  2001 ; 
Pisani et al.  2004 ; Dunn et al.  2008 ; Meusemann 
et al.  2010 ; Regier et al.  2010 ;  Rota- Stabelli et al. 
 2011 ). 

 The chelicerates constitute two sister groups, 
the euchelicerates (Weygoldt and Paulus  1979 ) 
and the pycnogonids (sea spiders) (Fig.  5.1 ), which 
are united morphologically by the anterior- most 
pair of chelate appendages: the cheliceres of the 
former and the chelifores of the latter (reviewed 
by Dunlop and Arango  2005 ; Edgecombe  2010 ). 
This conclusion is supported by both neuroanat-
omy and Hox gene expression (Jager et al.  2006 ; 
Manuel et al.  2006 ; Brenneis et al.  2008 ).  

 There are more than 100,000 described spe-
cies of chelicerates (Dunlop  2010 ) that can be 
subdivided into 14 recognised orders (Fig.  5.1 ; 
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  Fig. 5.1    Chelicerate phylogenies. ( A ) Phylogeny based 
on analysis of morphological characters by Shultz ( 2007 ). 
Note that pycnogonids were not included in this study. ( B ) 
Phylogeny based on the phylogenomic approach of 
Sharma et al. ( 2014a ) using transcriptomic and genomic 
data.  Filled circles  indicate nodes that were supported 

only by subsets of the slowest-evolving loci used by 
Sharma et al. ( 2014a ). The  broken lines  indicate two alter-
native relationships of Pseudoscorpiones to Scorpiones 
suggested by Sharma et al. ( 2014a ) (© Prashant P. Sharma, 
2015. All Rights Reserved)       
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reviewed by Dunlop  2010 ). The monophyly of 
the euchelicerates is very well supported by both 
molecular and morphological data (Fig.  5.1 ; 
Weygoldt and Paulus  1979 ; Dunlop  2010 ). While 
the consensus is that Arachnida (all terrestrial 
chelicerates) is also monophyletic, mainly based 
on morphological data (Wheeler and Hayashi 
 1998 ; Shultz  2007 ; Dunlop  2010 ; but see Giribet 
et al.  2002 ), molecular sequence data infrequently 
recover the monophyly of arachnids (Regier et al. 
 2010 ; Börner et al.  2014 ; Sharma et al.  2014a ). A 
recent phylogenomic study by Sharma et al. 
( 2014a ), which used extensive molecular data, 
including transcriptomes and whole genomes, 
recovered a nested position of Xiphosura (horse-
shoe crabs) within arachnids, due to the place-
ment of Pseudoscorpiones, Parasitiformes, and 
Acariformes. Indeed, the position of the 
Xiphosura was also found to be inconsistent with 
the monophyly of the arachnids by Roeding et al. 
( 2009 ), Meusemann et al. ( 2010 ), and Börner 
et al. ( 2014 ). However, upon analysing only a 
subset of the most slowly evolving genes, Sharma 
et al. recovered maximal phylogenetic support 
for arachnid monophyly, suggesting that arachnid 
non-monophyly is attributable to systematic bias 
resulting from accelerated rates of evolution in 
certain “problematic” chelicerate orders (Fig.  5.1 ; 
Sharma et al.  2014a ). 

 Among arachnids, the clades Tetrapulmonata, 
Pedipalpi, and Uropygi are strongly and consis-
tently supported by both morphological and 
molecular data (Fig.  5.1 ; Wheeler and Hayashi 
 1998 ; Giribet et al.  2002 ; Shultz  2007 ; Dunlop 
 2010 ; Edgecombe  2010 ; Regier et al.  2010 ; 
Börner et al.  2014 ; Sharma et al.  2014a ). 
However, the precise phylogenetic relationships 
of other arachnid orders have been much debated 
(Dunlop  2010 ). For example, there are confl ict-
ing views on whether Acari (Acariformes [mites] 
+ Parasitiformes [ticks]) is monophyletic, 
although the most recent evidence supports the 
view that it is paraphyletic (Dunlop and Arango 
 2005 ; Pepato et al.  2010 ; Sharma et al.  2014a ). 
The position of Opiliones (harvestmen) in the 
chelicerate tree has also proven to be enigmatic, 
but recent molecular data suggest that harvest-
men form a group with Ricinulei (hooded tick 

spiders) and Solifugae (camel spiders) (Fig.  5.1B ; 
Sharma et al.  2014a ), although this relationship 
has not emerged from any previous studies 
(Fig.  5.1A ; Wheeler and Hayashi  1998 ; Giribet 
et al.  2002 ; Shultz  2007 ; Dunlop  2010 ; Regier 
et al.  2010 ). 

 Resolving chelicerate and arachnid relation-
ships is critical to our understanding of key evo-
lutionary transitions, including many important 
open questions in evolutionary developmental 
biology. In this respect the continual expansion 
of chelicerate genomic resources holds great 
promise for resolving outstanding issues in the 
phylogeny of these animals, a necessary 
 framework to explore their evolution and 
development.  

    Chelicerate Genome Biology 

 As with other organisms, the development of new 
sequencing technologies has allowed transcrip-
tome and whole-genome sequencing of chelicer-
ates that build on classical studies, mainly among 
spiders, of genome size and cytogenetics 
(Tsurusaki and Cokendolpher  1990 ; Chen  1999 ; 
Gregory and Shorthouse  2003 ). 

 The fi rst chelicerate genome to be published 
was that of the two-spotted spider mite, 
 Tetranychus urticae  (Grbic et al.  2011 ). This was 
soon followed by the scorpion,  Mesobuthus mar-
tensii  (Cao et al.  2013 ), and two spiders (the 
social velvet spider,  Stegodyphus mimosarum , 
and the Brazilian white-knee tarantula, 
 Acanthoscurria geniculata ) (Sanggaard et al. 
 2014 ) and the Atlantic horseshoe crab  Limulus 
polyphemus  (Nossa et al.  2014 ). In addition, the 
genome of the tick  Ixodes scapularis  has also 
been sequenced (  www.vectorbase.org    ). Together, 
these genome sequencing projects corroborate 
the great variation in genome size among chelic-
erates and show that there are large differences in 
the predicted numbers of genes among these ani-
mals (Table  5.1 ). These genomes are only the tip 
of the iceberg, with several other chelicerate 
genomes likely to be available soon through ini-
tiatives such as i5K (  http://www.arthropodge-
nomes.org/wiki/i5K    ).
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   As well as whole-genome sequencing, there is 
already a large and growing number of transcrip-
tome projects in various chelicerates to describe 
the general expression profi les of genes or to 
decipher tissue- or stage-specifi c expression 
(e.g., Croucher et al.  2013 ; Clarke et al.  2014 ; 
Posnien et al.  2014 ). Transcriptomics can tell us 
much about the gene content and expression 
 profi les of the genomes of chelicerates, even for 
species for which the whole genome has not yet 
been sequenced. 

 Genomic sequencing of chelicerates has 
already provided considerable insights into the 
evolution of many important genes and gene fam-
ilies, from developmental genes to silk and 
venom genes. Intriguingly, it appears that there 
have been at least one and perhaps two whole- 
genome duplications in a horseshoe crab (Nossa 
et al.  2014 ). Even excluding the horseshoe crab, 
chelicerate genomes exhibit marked variability in 
genome size and content, with miniaturised 
genomes associated with gene loss in mites 
( Tetranychus urticae ; Grbic et al.  2011 ) and 
genomes bearing among the largest known 
 numbers of genes in arthropods (Table  5.1 ). 
Pinpointing gene family expansion and/or whole-
genome duplication events has immediate down-
stream implications for understanding both the 
evolution of genomic architecture and gene regu-
latory  networks in these animals. 

 The rapidly emerging genomic resources for 
chelicerates therefore represent new and exciting 
opportunities for the analysis of genome biology, 
gene expression, gene function, and gene regula-

tory evolution in existing chelicerate models and 
have great potential to empower investigation of 
evolutionary developmental biology in more 
enigmatic, understudied chelicerate lineages with 
interesting embryological and morphological 
features.  

    The Chelicerate Orders 
and Evolutionary Developmental 
Biology 

 The embryology of chelicerates has been studied 
for over 150 years (see below). Although some 
chelicerate models have made an important con-
tribution to understanding animal evolution and 
development over the past 20 years, others remain 
very much understudied, as highlighted previ-
ously by Harvey ( 2002 ). Below, a short overview 
of the biology of each chelicerate order is given, 
together with a brief summary of their contribu-
tion and/or potential contribution to the fi eld of 
evolution and development. 

    Pycnogonida (Sea Spiders) 
 Sea spiders are marine chelicerates that can live 
deep in the ocean and feed on sponges, cnidar-
ians, and mollusks (Cobb  2010 ; Barreto and 
Avise  2011 ). These animals are characterised by 
their narrow cephalosoma, which carries the four 
sets of their appendages: the chelifores, palps, 
ovigers, and walking legs (typically four pairs; 
up to six pairs occur in a few lineages) (Figs.  5.1  
and  5.2 ; Cobb  2010 ). The ovigers of  pycnogonids 

        Table 5.1    Chelicerate genome sizes   

 Order  Species  Genome size (Mb)  Predicted gene number  Reference 

  Xiphosura    Limulus polyphemus   2,740  >34,000  Nossa et al. ( 2014 ) 
  Acariformes    Tetranychus urticae   90  18,414  Grbic et al. ( 2011 ) 
  Parasitiformes    Ixodes scapularis   2,100  24,925    www.vectorbase.org     
  Scorpiones    Mesobuthus martensii   1,323  32,016  Cao et al. ( 2013 ) 
  Araneae    Acanthoscurria geniculata   6,500  73,821 a   Sanggaard et al. ( 2014 ) 
  Araneae    Stegodyphus mimosarum   2,550  27,235  Sanggaard et al. ( 2014 ) 
  Araneae    Parasteatoda tepidariorum   1,200  up to 40,000  Posnien et al. ( 2014 ) 

   a For  Acanthoscurria geniculate  this is the predicted number of transcripts rather than genes  
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  Fig. 5.2    Body plans and known Hox gene 
expression in chelicerate orders. The number of 
prosomal segments is conserved in 
Euchelicerata; variation in segment number of 
Pycnogonida is not shown. The euchelicerate 
prosoma consists of six appendage-bearing 
segments: a pair of cheliceres, a pair of 
pedipalps, and four pairs of walking legs. There 
is considerable innovation in the function of 
these limbs, such as the long-range tactile fi rst 
legs of Amblypygi or the muscular pedipalps of 
Scorpiones. In contrast to the prosoma, 
opisthosomal segment number is variable both 
between and within orders. The respiratory 
organs that are found in chelicerates differ in 
morphology as well as number and position. 
For instance, Xiphosura has book gills rather 
than the book lungs that are found in many 
other chelicerates. A tracheal respiratory system 
occurs in several arachnid orders as well as in 
derived spiders. The position of these is variable 
and can occur within the prosoma and/or 
opisthosoma (simplifi ed to show typical 
positions of spiracles in Acariformes and 
Parasitiformes). Palpigrade opisthosomal “sacs” 
are of dubitable homology and are not shown 
here. Appendages shown that are specifi c to 
certain orders include pectines (scorpions), 
ovigers (pycnogonids), and chilaria (horseshoe 
crabs). In conjunction with morphological 
studies, expression of Hox genes in chelicerates 
has been characterised in Pycnogonida (Jager 
et al.  2006 ), Xiphosura (Popadic and Nagy 
 2001 ), Acariformes (Telford and Thomas 
 1998b ; Barnett and Thomas  2013a ), Opiliones 
(Sharma et al.  2012b ), Scorpiones (Sharma 
et al.  2014b ), and Araneae (Damen et al.  1998 ; 
Damen and Tautz  1999 ; Schwager et al.  2007 ). 
The variable anterior expression boundaries of 
posterior Hox genes are strongly consistent with 
involvement in patterning opisthosomal 
segment identity. Note that  abd-A  has been lost 
in mites. The conserved expression domains of 
 lab ,  pb , and  Dfd  in the prosoma of Pycnogonida 
has contributed signifi cantly to understanding 
segmental homology of arthropod head 
segments. In both Araneae and Scorpiones, Hox 
paralogs have been observed to have both 
spatial and temporal expression differences.  Oc  
ocular segment,  Ch  cheliceres,  Pp  pedipalps, 
 L1 – L4  walking legs,  O1 –O14 opisthosomal 
segments (© Alistar P. McGregor 2015. All 
Rights Reserved)       
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are unique to this group and in many species are 
typically used by males to carry masses of eggs 
deposited by females. Interestingly, given the 
narrow cephalosoma (anterior tagma) of sea spi-
ders and the loss of the opisthosoma (“abdomen” 
or posterior tagma), the gonads and other organs 
are found in their appendages (Cobb  2010 ). 
However, the fossil record of pycnogonids, which 
extends to the Cambrian (Waloszek and Dunlop 
 2002 ), includes an extinct lineage with a long, 
completely segmented, limbless posterior region, 
indicating that stem pycnogonids once bore an 
opisthosoma (Bergström et al.  1980 ).  

 Since sea spiders are widely regarded as the 
sister group to the euchelicerates (Fig.  5.1 ; see 
above), knowledge of their development has 
great potential to inform our understanding of 
chelicerate evolution and development more gen-
erally. To date, many studies of sea spiders have 
had a phylogenetic focus, informed by charac-
terisation of their neuroanatomy and Hox gene 
expression (see above; Arango  2002 ; Jager et al. 
 2006 ; Manuel et al.  2006 ; Arango and Wheeler 
 2007 ; Brenneis et al.  2008 ). Classical descrip-
tions of pycnogonid development are rare and 
incomplete (Brenneis et al.  2011a ,  b ). However, 
modern methodological approaches have recently 
been applied to describe the embryonic and post-
embryonic development of sea spiders and to 
generate staging systems for  Pseudopallene  sp. 
and  Pycnogonum litorale  (Vilpoux and Waloszek 
 2003 ; Ungerer and Scholtz  2009 ; Machner and 
Scholtz  2010 ; Brenneis et al.  2011a ,  b ). This 
work can serve as a platform for further studies of 
gene expression and possibly gene function in 
these animals and to help resolve questions 
regarding the evolution and development of 
chelicerates.  

    Xiphosura (Horseshoe Crabs) 
 Horseshoe crabs are the largest existing euchelic-
erates, although there are only four extant species 
(Obst et al.  2012 ). These chelicerates are marine 
and feed on other invertebrates and algae on the 
bed of shallow coastal waters (Ruppert et al. 
 2004 ). 

 Horseshoe crabs have a distinctive carapace 
that covers the dorsum of the cephalothorax and 

is joined by a hinge to the dorsal exoskeleton that 
covers the abdomen (Fig.  5.1 ). Posterior to the 
three-segmented cheliceres, horseshoe crabs 
have a sexually dimorphic pair of pedipalps and 
four pairs of walking legs (Fig.  5.2 ). Whereas in 
female horseshoe crabs the pedipalp is nearly 
identical to a walking leg, the pedipalps of mature 
males are modifi ed to form terminally swollen, 
non-chelate “claspers” used to grasp females dur-
ing mating. The last pair of walking legs, which 
is used for pushing on the substrate, is argued to 
be biramous because it exhibits a putative exopod 
called a fl abellum that is sensory (Fig.  5.2 ; 
Snodgrass  1938 ). This putative homology is sup-
ported by the discovery of fossil synziphosurines 
with  bona fi de  exopods on the pedipalps and all 
walking leg segments, suggesting that the fl abel-
lum is a vestige of the posterior-most exopod pair 
(Briggs et al.  2012 ). Other sensory organs include 
two ocelli on the carapace and two lateral com-
pound eyes. Horseshoe crabs respire through fi ve 
pairs of book gills located on abdominal seg-
ments three to seven (Fig.  5.2 ). 

 Female horseshoe crabs can lay thousands of 
eggs on beaches at high tide that are then fertilised 
by the males and covered in sand. Upon hatching 
the larvae then enter the sea. This has allowed 
researchers access to the embryos of these ani-
mals and their development has been described in 
some detail, as well as studied through embryonic 
manipulations (Kingsley  1892 ; Kishinouye  1893 ; 
Iwanoff  1933 ; Itow and Sekiguchi  1979 ,  1980 ; 
Sekiguchi et al.  1982 ; Itow  1990 ,  2005 ; Itow et al. 
 1991 ). Furthermore, there is a growing number of 
studies that have examined gene or protein expres-
sion during horseshoe crab embryogenesis and 
other aspects of development that have provided 
some valuable insights into evolutionary develop-
mental biology (Popadic and Nagy  2001 ; Damen 
et al.  2002 ; Mittmann  2002 ; Blackburn et al. 
 2008 ). In addition, the recent sequencing of the 
genome of  Limulus polyphemus  (Table  5.1 ; Nossa 
et al.  2014 ) is anticipated to fuel further studies of 
gene expression in this species.  

    Scorpiones (Scorpions) 
 Scorpions are found in a range of habitats, from 
deserts to tropical rainforests. There are nearly 
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2,000 described species of scorpions. These che-
licerates exhibit a familiar body plan that includes 
the characteristic pincers of the pedipalpal seg-
ment and the aculeus, or stinger, that harbours a 
barb coupled to a pair of venom-producing glands 
at the posterior end of the segmented metasoma 
(post-abdomen or tail) (Fig.  5.2 ; Beccaloni 
 2009 ). These structures are used in combination 
by these predators for defence and subduing 
their prey. 

 The cephalothorax of scorpions has a pair of 
median eyes and a variable number of lateral eyes 
(one to fi ve pairs; Gromov  1998 ; Yang et al. 
 2013 ). Scorpions respire through four pairs of 
book lungs found on abdominal segments three 
to six (Fig.  5.2 ; Hjelle  1990 ), which correspond 
to embryonic abdominal segments four to seven 
(the fi rst opisthosomal segment disappears dur-
ing development). The second abdominal seg-
ment (or third embryonic abdominal segment) 
bears a pair of sensory pectines that is involved in 
chemoreception and detecting the substrate 
(Fig.  5.2 ; Hjelle  1990 ). 

 Scorpions are viviparous with embryogenesis 
taking place inside the females, which subse-
quently give birth to juveniles. Two distinct 
modes of development occur in scorpions. 
Apoikogenic development is characterised by 
large yolky eggs, surrounded by extra-embryonic 
membranes, and development occurs in the ovi-
duct. In katoikogenic development, the eggs bear 
little or no yolk, and the embryos are nourished 
through connections of the ovariuterus that facili-
tate trophic exchange from the female’s hepato-
pancreas (Hjelle  1990 ; Lourenço  2000 ); 
development occurs in modifi ed, blind out-
growths of the ovariuterus. Development in either 
case can be prolonged, with a gestation period 
lasting 2–18 months in various species. 

 Despite the ensuing issue with access to 
embryos, protein and mRNA expressions have 
been studied during embryogenesis in species 
such as  Smeringurus mesaensis ,  Euscorpius 
fl avicaudis , and  Centruroides sculpturatus  
(Table  5.2 ; Popadic and Nagy  2001 ; Simonnet 
et al.  2004 ,  2006 ; Sharma et al.  2014b ,  c ). This 
means that it is possible to study the development 
of several aspects of scorpion morphology to pro-

vide new evolutionary insights due to the prob-
able phylogenetic placement of these chelicerates 
as sister group to Tetrapulmonata (Regier et al. 
 2010 ; Sharma et al.  2014a ). This includes the 
developmental patterning of the arachnid book 
lungs in spiders and scorpions, the serial homol-
ogy of opisthosomal appendage types, and the 
sub- or neofunctionalisation of paralogous genes 
in both spider and scorpion genomes (Schwager 
et al.  2007 ; Cao et al.  2013 ; Sharma et al.  2014b ).

       Opiliones (Harvestmen) 
 Harvestmen live in a wide variety of temperate 
and tropical habitats worldwide, and they can be 
predators, scavengers, or even herbivores. More 
than 6,500 species of harvestmen have already 
been described, and there are estimated to be 
10,000 extant species (Machado et al.  2007 ). 
These chelicerates are readily recognisable from 
the four pairs of elongated walking appendages 
of most species and are hence commonly known 
as “daddy longlegs” in some parts of the world. 
The long pedipalps of some harvestmen resemble 
legs, but in the suborder Laniatores, the pedipalps 
are raptorial and used to seize prey (Shultz and 
Pinto-da-Rocha  2007 ). The second pair of legs is 
usually longer than the other three pairs in pha-
langid (i.e., non-Cyphophthalmi) harvestmen, 
whereas the fi rst pair is generally the longest in 
the primitive suborder Cyphophthalmi; the 
 longest pair of legs is tactile and/or chemorecep-
tive throughout the order (Willemart et al.  2009 ). 

 Harvestmen respire through tracheal tubes 
with the spiracles (openings) located on the 
 second opisthosomal segment (Fig.  5.2 ). These 
chelicerates do not synthesise silk or venom, but 
have evolved repugnatorial glands, which secrete 
acrid compounds including phenols (Raspotnig 
et al.  2012 ). The cephalothorax of phalangid 
 harvestmen bears a pair of median eyes, but lacks 
lateral eyes. By contrast, cyphophthalmid 
 harvestmen bear a single pair of eyes on the sides 
of the cephalothorax that are believed to be 
homologous to lateral eyes (Garwood et al.  2014 ). 

 Like some mites, male and female Phalangida 
have a penis and ovipositor, respectively, on the 
ventral cephalothorax, and thus, fertilisation is 
internal in these chelicerates; the plesiomorphic 
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condition of fertilisation by spermatophores 
(indirect sperm transfer) occurs in Cyphophthalmi 
(Karaman  2005 ). Fertilised eggs are deposited 
singly or in batches that can number into the hun-
dreds (Juberthie  1964 ). This means that some 
species of harvestmen can readily provide large 
numbers of embryos that can be collected at dif-
ferent stages to study the embryogenesis of these 
animals (Moritz  1957 ; Juberthie  1964 ; Muñoz- 
Cuevas  1971 ; Gnaspini and Lerche  2010 ). 
Indeed, RNA in situ hybridisation to visualise 
gene expression patterns (e.g., see Table  5.2 ) and 
RNAi to characterise gene function have already 
been established in  Phalangium opilio . This has 
facilitated studying the regulation of develop-
ment in this species compared to other animals, 
including analysis of Hox and leg gap genes 
(Fig.  5.2 ; Sharma et al.  2012a ,  b ,  2013 ,  2014c ; 
Garwood et al.  2014 ).  

    Solifugae (Camel Spiders) 
 Solifuges or camel spiders predominantly inhabit 
arid environments where they mainly predate on 
other arthropods, taking advantage of their speed 
and large powerful cheliceres (Punzo  1998 ). 
Anatomically, these arachnids are distinguished 
from others by their malleoli (sometimes called 
racquet organs). These are fan-shaped chemore-
ceptory organs that detect changes in the sub-
strate, analogously to the pectines of scorpions 
(Brownell and Farley  1974 ). Being apulmonate 
arachnids, camel spiders lack book lungs, but 
have among the most densely branching tracheal 
system for respiration among arachnids (Fig.  5.2 ; 
Lighton and Fielden  1996 ). Although recent 
work has been carried out on the functional mor-
phology of these arachnids (van der Meijden 
et al.  2012 ), camel spiders represent a rather 
understudied order of chelicerates, and there is a 
dearth of EvoDevo studies on the group. Although 
solifuges are diffi cult to collect and produce only 
one brood per year, culturing camel spiders in the 
laboratory is possible, albeit challenging, and 
females can lay clutches of up to 200 embryos 
(Punzo  1998 ). Therefore, there is potential that 
gene expression and gene function could be stud-
ied in camel spiders. The development of the 
malleoli and the genetic basis for lateral eye loss 

in many species of solifuges are opportune tar-
gets for evolutionary developmental study, par-
ticularly with reference to phalangid harvestmen, 
which also lack lateral eyes (Garwood et al. 
 2014 ).  

    Pseudoscorpiones (False or Book 
Scorpions) 
 There are over 3,200 species of pseudoscorpions, 
which occupy a wide range of habitats world-
wide (Harvey  2011 ). These chelicerates prey on 
other invertebrates or are scavengers, and some 
have even adopted a commensal or phoretic 
(hitchhiking) strategy, living on and being dis-
persed by mammals, birds, and larger arthropods 
(Weygoldt  1970 ; Harvey  2002 ,  2011 ). 

 Pseudoscorpions have long modifi ed pedi-
palps that terminate with chelae like scorpions, 
but they are distinguished from the latter in lack-
ing the characteristic tail and stinger of scorpi-
ons, as well as median ocelli and pectines 
(Figs.  5.1  and  5.2 ). Like camel spiders and har-
vestmen, pseudoscorpions also lack book lungs 
and instead use spiracles and a tracheal system 
for respiration (Fig.  5.2 ; Weygoldt  1970 ; Lighton 
and Joos  2002 ; Harvey  2011 ). Like other chelic-
erates, most notably spiders, pseudoscorpions 
can also make silk, which is produced from pro-
somal glands and used for a variety of purposes, 
including sperm transfer and burrowing 
(Weygoldt  1970 ; Harvey  2011 ). Members of the 
suborder Iocheirata also synthesise venoms 
(Weygoldt  1970 ; Harvey  1992 ). 

 A multilocus phylogeny, which remains rare 
for several minor arachnid orders (Harvey  2002 ), 
has been proposed for pseudoscorpions and indi-
cates that it is likely that venom only evolved once 
within this group and independently of scorpion 
and spider venom (Murienne et al.  2008 ). Although 
the morphology of these animals has been charac-
terised in some detail for taxonomic purposes and 
aspects of their courtship behaviour described, 
these chelicerates have only recently been studied 
in the context of EvoDevo research (Jędrzejowska 
et al.  2013 ). Elucidating the genetic mechanism 
whereby chelate pedipalps are patterned in pseu-
doscorpions and scorpions may shed much needed 
light on how these groups are related (Fig.  5.1 ).  
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    Acariformes (Mites) 
 To date nearly 50,000 species of mites have been 
described, although it is thought that there could 
be over a million species, and they therefore rep-
resent the most diverse group of chelicerates. 
These miniaturised arachnids can be free-living 
or parasitic and live in a wide range of habitats 
including aquatic environments (Beccaloni  2009 ). 

 The cephalothorax and truncated abdomen of 
mites are fused, but the body is divided into two 
autapomorphic tagmata—the anterior gnatho-
soma and the posterior idiosoma (Fig.  5.2 )—
although these can be covered by a single 
carapace in some species. The cheliceres and 
pedipalps of mites can vary in morphology 
between species and they have four pairs of walk-
ing legs as adults (Fig.  5.2 ). Most mites respire 
using a tracheal system and have up to four pairs 
of anteriorly positioned spiracles (Fig.  5.2 ). 
Sperm transfer is indirect in most mites with the 
males producing a spermatophore manipulated 
with their appendages. Females usually lay their 
eggs in soil or humus from which the larvae hatch 
up to 6 weeks later (Ruppert et al.  2004 ). 

 Research on mites has provided several impor-
tant insights into evolutionary developmental 
biology (see below) through studying gene 
expression and gene function in species such as 
 Tetranychus urticae  and  Archegozetes longiseto-
sus  (Table  5.2 ; Telford and Thomas  1998a ,  b ; 
Dearden et al.  2000 ,  2002 ,  2003 ; Grbic et al. 
 2007 ; Khila and Grbic  2007 ; Barnett and Thomas 
 2012 ,  2013a ). Furthermore, the genome of  T. 
urticae  has also been sequenced (Table  5.1 ; Grbic 
et al.  2011 ), which greatly complements the other 
tools and resources available for this species.  

    Parasitiformes (Ticks) 
 Ticks are highly speciose parasitic chelicerates 
that live on a range of hosts, including humans 
and domestic animals (Beccaloni  2009 ). The 
body plan of ticks is similar to that of mites 
(Fig.  5.2 ), although these two chelicerate lin-
eages may not form a clade (the traditionally 
defi ned Acari; Fig.  5.1 ). The biology of ticks is 
highly relevant to health-related and agricultural 
interests, and the genome of  Ixodes scapularis  
has thus been sequenced (Table  5.1 ). This has 
allowed comparisons of the sequences of impor-

tant developmental genes to be made between 
this tick and other metazoans (e.g., Janssen et al. 
 2010 ). Furthermore, embryonic development has 
been described for  Rhipicephalus  ( Boophilus ) 
 microplus , which involved using antibody stain-
ings (Santos et al.  2013b ). However, gene expres-
sion and function during tick development has 
not been studied to the best of our knowledge, 
although reports of the successful application of 
parental RNAi (e.g., la Fuente et al.  2007 ) might 
change this in the future.  

    Ricinulei (Hooded Tick Spiders) 
 Ricinulei represent a small (3 genera and only 
about 60 recognised species) and understudied 
order of chelicerates (Fig.  5.1 ; Harvey  2002 ; 
Botero-Trujillo  2014 ). These animals are small 
arachnids that live in leaf litter and caves, and 
most species lack eyes, although some species 
have basic lateral eyes (Beccaloni  2009 ). 

 Ricinulei exhibit two tagmata and also respire 
via a tracheal system (Fig.  5.2 ). Ricinulei are dis-
tinguished by a cucullus or cuticular hood that can 
be used to cover the cheliceres and mouthparts 
(Beccaloni  2009 ). The second pair of walking legs 
is longer than the others and is also sensory 
(Beccaloni  2009 ). The third walking legs of male 
Ricinulei are used for sperm transfer and exhibit 
species-specifi c modifi cations like the pedipalps 
of spiders (Legg  1977 ; Harvey  2002 ). Although 
several aspects of the morphology of Ricinulei 
have recently been described in great detail 
(Talarico et al.  2006 ,  2008a ,  b ,  2011 ), there are no 
embryological or EvoDevo studies of these ani-
mals of which we are aware. Opportune targets 
for study of EvoDevo in this group include the dif-
ferentiation of the sexually dimorphic third leg 
pair in males. In addition, a potential shared 
mechanism for the inhibition of L4 limb bud 
growth in fi rst instars of Ricinulei, mites, and ticks 
may shed light on the phylogenetic affi nities of 
the “acaromorph orders” (Fig.  5.1 ; Shultz  2007 ).  

    Palpigradi (Microwhip Scorpions) 
 There are approximately 80 species of microwhip 
scorpions (Fig.  5.1 ; Harvey  2002 ). These arach-
nids are widespread in tropical and subtropical 
regions and live in caves and damp soils (e.g., 
Smrz et al.  2013  and references therein). 
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Microwhip scorpions are very small (at most 
3 mm in length), are eyeless, and exhibit a seg-
mented fl agellum at the end of their abdomen 
(Fig.  5.2 ; Beccaloni  2009 ). It was recently found 
that the species  Eukoenenia spelaea  feeds on 
cyanobacteria in caves, although very little else is 
known about the natural history of microwhip 
scorpions (Smrz et al.  2013 ). To the best of our 
knowledge, these rather enigmatic chelicerates 
have not been the subject of any embryological 
research. Microwhip scorpions only lay a few 
(one to three) embryos at a given time, and ovules 
of different developmental stages have been 
observed within the opisthosoma (Condé  1996 ).  

    Amblypygi (Whip Spiders) 
 Whip spiders are mostly found in tropical rain-
forests, and there are many cave-dwelling spe-
cies. Only about 150 species of whip spiders have 
been described (Harvey  2003 ), and what is 
known of their biology has been previously 
reviewed in detail by Weygoldt ( 2000 ). 

 Whip spiders are similar in appearance to spi-
ders, but are somewhat fl attened in comparison. 
Furthermore, the cheliceres of whip spiders do 
not produce venom and they use modifi ed pedi-
palps to capture prey (Fig.  5.2 ). These chelicer-
ates can also be distinguished by their fi rst pair of 
walking legs, which is elongated and tactile, and 
therefore considered to be antenniform (Weygoldt 
 2000 ). Whip spiders also have two sets of opist-
hosomal book lungs, but they do not have any 
other appendages on this tagma (Fig.  5.2 ) and 
they lack the ability to make silk. Like scorpions 
and thelyphonids (see below), parental care in 
this order consists of a female carrying hatch-
lings on her back until they reach a certain devel-
opmental stage and disperse. Unlike scorpions, 
only in amplypygids, thelyphonids, and pseudo-
scorpions do females carry eggs on the underside 
of the opisthosoma until hatching. 

 The embryology and morphology of whip spi-
ders has been described in detail, although very 
little contemporary EvoDevo research has been 
carried out on these animals (Weygoldt  2000 ). 
However, such research would offer an interest-
ing comparison to spiders due to the phylogenetic 
proximity of these two orders. The regulation of 
the development of the large, raptorial pedipalps 

and the elongate, antenniform fi rst walking 
legs—in contrast to their shorter counterparts in 
spiders—constitute promising areas of future 
study (Weygoldt  2000 ; Harvey  2002 ).  

    Thelyphonida (Whip Scorpions) 
 There are over 100 described species of whip 
scorpions (Harvey  2002 ). These predators live in 
tropical climates and employ their enlarged rapto-
rial pedipalps to grab prey (Fig.  5.2 ; Ruppert et al. 
 2004 ). To a lesser degree than in whip spiders, the 
fi rst pair of legs of whip scorpions is elongated 
and tactile (Fig.  5.2 ). Whip scorpions also have a 
segmented opisthosoma that ends in an annulated 
fl agellum, superfi cially resembling scorpions and 
conferring their common name (Ruppert et al. 
 2004 ). The abdomen of whip scorpions also car-
ries two pairs of book lungs (Fig.  5.2 ) and two 
anal glands that are used to repel predators by 
spraying them with a mixture of acetic acid, 
caprylic acid, and other substances (hence, these 
animals are sometimes referred to as vinegaroons) 
(Eisner et al.  1961 ; Haupt and Müller  2004 ). 

 To date, whip scorpions have not been the sub-
ject of EvoDevo research. Like in Amblypygi, 
the embryos are carried in an external sac by the 
females, meaning that embryos of different 
developmental stages can be collected for analy-
sis of gene expression and gene function (Ruppert 
et al.  2004 ). The miniaturisation of particular 
opisthosomal sternites in thelyphonids is of 
 particular interest from the perspective of seg-
mentation (Shultz  2007 ).  

    Schizomida (Short-Tailed Whip 
Scorpions, Microwhip Scorpions) 
 Short-tailed whip scorpions are close relatives of 
whip scorpions (Figs.  5.1  and  5.2 ) that live in trop-
ical leaf litter (Santos et al.  2013a ). Harvey ( 2002 ) 
estimated that there are over 500 extant species 
worldwide. Short-tailed whip scorpions resemble 
miniaturized whip scorpions. However, they are 
much smaller and have only one pair of book lungs 
(Fig.  5.2 ; Ruppert et al.  2004 ). The fl agellum of 
short-tailed whip scorpions is also shorter than that 
of whip scorpions and confers their common name 
(Fig.  5.2 ). Interestingly, the fl agellum is sexually 
dimorphic and is used during courtship, and it has 
been suggested that this structure may be involved 
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in species recognition (Harvey  2002 ). Like whip 
scorpions, the evolution and development of short-
tailed whip scorpions is understudied, but the par-
allel evolution of a single pair of book lungs in 
schizomids and derived spiders from the ancestral 
condition of two pairs in Tetrapulmonata would be 
very interesting to explore further.  

    Araneae (Spiders) 
 Spiders have been intensively studied and they are 
the best-understood chelicerates in terms of their 
general biology, physiology, behaviour, develop-
ment, and evolution (Fig.  5.1 ; Foelix  2010 ). 
Spiders are a speciose order of arachnids (over 
40,000 described species) that exhibit a wide 
range of physiological and morphological adapta-
tions, including silk and venom production, and 
morphological diversity of such appendages as 
the cheliceres and pedipalps (Foelix  2010 ). 

 Spiders have a prosoma and an opisthosoma 
with the former bearing the cheliceres, pedipalps, 
and four pairs of walking legs and the latter hous-
ing structures including the respiratory organs, 
genitalia, and spinnerets (Fig.  5.2 ). The group is 
distinguished from all other chelicerates in bear-
ing spinnerets, modifi ed appendages that consti-
tute the web-spinning apparatus of spiders. The 
spinnerets and the webs of spiders have been 
argued to constitute key innovations that enabled 
considerable diversifi cation in this group. 

 Spiders have also constituted the main model 
chelicerates used to address questions in evolu-
tionary developmental biology. In particular, two 
Entelegynae, the central American wandering 
spider  Cupiennius salei  and the common house 
spider  Parasteatoda tepidariorum  (formerly 
 Achaearanea tepidariorum ; Fig.  5.3  and see 
boxed text), have provided great insights into 
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  Fig. 5.3    The development and morphology of the spider 
 Parasteatoda tepidariorum. (  A ) Stages of embryonic and 
postembryonic development: stage 2, cellularisation is 
complete, blastoderm formation; stage 4, germ disc 
including the primary thickening ( pt ) in the centre; stage 
8, early germband with the segment addition zone ( SAZ ); 
stage 10, elongated germband with limbs; stage 13, end of 
inversion; stage 14, with distinct prosoma ( Pro ) and opis-

thosoma ( Op ) with constriction between them ( arrow-
head ); postembryo; 1st instar, which exits the cocoon; 3rd 
instar, a free-foraging instar stage; female adult. Staging 
after Mittmann and Wolff ( 2012 ). In all images anterior is 
to the left. Scale bar is given with respect to the stage 2–14 
embryos. ( B ) Adult female ( top ) and male ( bottom ). 
Anterior is to the top (Figure slightly modifi ed and repro-
duced with permission from Hilbrant et al. ( 2012 ))       

 

E.E. Schwager et al.



113

chelicerate, arthropod, and metazoan evolution 
and development (McGregor et al.  2008a ; 
Hilbrant et al.  2012 ). More recently, the 
Haplogynae  Pholcus phalangioides  has been 
employed as a satellite model to provide a com-
parative perspective in spider EvoDevo within 
Araneomorphae (Pechmann et al.  2011 ), and 
there has also been one comparative gene expres-
sion study in a mygalomorph (Pechmann and 
Prpic  2009 ). The contribution of studies of gene 
expression (e.g., see Table  5.2 ) and gene function 
in spiders to our understanding of evolution and 
development is discussed in detail below.  

  In the following, a summary of the classic 
 literature describing key aspects of the early 
and late development of the chelicerates is pro-
vided. Subsequently, studies that have focused 
on characterising gene expression and gene 
function in chelicerates are reviewed to high-
light important insights into the evolution and 
development of these animals, other arthropods, 
and other metazoans.    

 The Common House Spider  Parasteatoda 

tepidariorum  as a Model for Evolutionary 

Developmental Biology 

 The common house spider,  Parasteatoda 
tepidariorum  (Koch 1841), native to South 
America, is synanthropic and presently dis-
tributed worldwide.  P. tepidariorum  hides 
in cobwebs in secluded areas. Due to the 
phylogenetic signifi cance of chelicerates in 
arthropod phylogeny and the operational 
fl exibility of this species,  P. tepidariorum  
has become a powerful model organism in 
the fi eld of evolutionary developmental 
biology. Females lay up to 400 embryos in 
silken egg sacs (cocoons) about every 
5 days all year around under laboratory 
conditions. Due to the short fertilisation 
process, which takes about three minutes, 
embryos develop synchronously within one 
cocoon, which is particularly advantageous 
for developmental studies. 

 In embryos the fi rst nuclear divisions 
take place in the centre of the spherical egg 
and cellularise when the cells start to migrate 
towards the periphery after about fi ve divi-
sions. Later, cells divide and aggregate to 
deploy the  blastoderm at one hemisphere, 
where the blastopore forms in the centre 
upon gastrulation and invagination pro-
cesses occur. After blastopore closure, the 
cumulus, an aggregation of mesenchymal 
cells in the centre of the germ disc, migrates 

underneath the ectodermal cell layer towards 
the periphery. This process specifi es the DV 
axis and initiates the transformation from a 
germ disc to a germband (Fig.  5.3 ). The 
sequential addition of opisthosomal seg-
ments from the posterior segment addition 
zone follows, and the nervous system and 
appendages begin to form along the AP axis. 
At late stages of embryonic development, 
inversion processes occur where the embryo 
encloses the yolk and internal organs like 
the heart, digestive tract, and brain develop. 

 The whole developmental process until 
hatching lasts approximately 8 days and 
another 12 weeks for the spiderlings to 
develop to adulthood, including fi ve molts 
for males and up to seven molts for females 
at 25 °C (see Fig.  5.3 ). Embryos of all 
embryonic stages can be fi xed and used for 
in situ hybridisation and antibody staining 
to study mRNA and protein expression, 
respectively. Furthermore, gene function 
can be studied in  P. tepidariorum  with 
RNA interference: double-stranded RNA 
(dsRNA) injected into adult females results 
in several cocoons exhibiting a knockdown 
effect. Injecting a single cell of an embryo 
at the 16- or 32-cell stages with dsRNA 
generates clones of cells lacking gene func-
tion. The availability of transcriptomic 
sequences and, in the future, whole-genome 
sequence data will potentially allow 
genome- editing tools to be applied in  P. 
tepidariorum  to study the genetic regula-
tion of the development of this spider in 
even greater detail. 
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    EARLY DEVELOPMENT 

 The study of chelicerate embryos dates back to 
the very beginnings of invertebrate developmen-
tal biology. In 1824, Moritz Herold delivered 
what he claimed were the fi rst studies of inverte-
brate development (Herold  1824 )—and his fi rst 
study subject were embryos of the European gar-
den spider,  Araneus diadematus . Most classical 
literature from the mid-late nineteenth century 
onwards has been extensively reviewed by 
Anderson ( 1973 ) and Yoshikura ( 1975 ), and to 
avoid duplicating these efforts, the reader may 
refer to their exhaustive listing of chelicerate 
embryological studies prior to 1975. In the fol-
lowing section, the focus is on describing key 
steps of chelicerate development that have been 
the focus of modern evolutionary developmental 
biology. 

    Cleavage 

 Most chelicerate eggs (with the exception of 
mites, ticks, and viviparous scorpions as well as 
sea spiders) are round or ovoid in shape, fairly 
large (0.5–3.5 mm), and rich in yolk. These types 
of eggs predominantly show superfi cial early 
cleavages (i.e., without cytokinesis/formation of 
membranes between the cleavage energids) that 
occur in the centre of the egg within the yolk 
(intralecithal) (Schimkewitsch  1887 ,  1898 ,  1906 ; 
Kingsley  1892 ; Iwanoff  1933 ; Moritz  1957 ; 
Juberthie  1964 ; Kondo  1969 ; Yoshikura  1969 ; 
Anderson  1973 ; Weygoldt  1975 ; Suzuki and 
Kondo  1995 ,  1994 ; Kimble et al.  2002 ; Kanayama 
et al.  2010 ). 

 The best-described examples of this cleavage 
mode are found in spiders, owing to the applica-
tion of more sophisticated imaging techniques 
such as transmission electron microscopy (TEM) 
and, more recently, single-cell injection. In a 
close relative of  Parasteatoda tepidariorum , 
 P. japonica , the fi rst four cleavages are synchro-
nous and syncytial. The perinuclear cytoplasm is 
connected with the periplasm at the egg surface 
by thin strands that form along yolk columns, and 

the cell membrane invaginates from the surface, 
also along these yolk columns. At the 16-cell 
stage, cell membranes fuse and form the blasto-
meres, which then migrate to the embryo’s sur-
face (Suzuki and Kondo  1995 ,  1994 ). Kanayama 
et al. ( 2010 ) have confi rmed these fi ndings in 
 P. tepidariorum  by showing that fl uorescent dyes 
injected into the surface periplasm at the 16-cell 
stage do not diffuse into neighbouring areas and 
subsequently will only be found in daughter cells 
of the injected cell. It has been argued that this 
type of superfi cial cleavage might be the ances-
tral cleavage mode in Chelicerata and that the 
cases of total cleavage seen in some mites, some 
ticks, pseudoscorpions, and viviparous scorpions 
are possibly derived and linked to the production 
of smaller, less yolky eggs (Anderson  1973 ; 
Wolff and Scholtz  2013 ). 

 In the case of mites and ticks, Laumann et al. 
( 2010b ) have argued that classical studies of their 
embryos might have wrongly attested to these 
chelicerates possessing superfi cial cleavage due 
to the techniques used to examine the embryos. 
Laumann et al. ( 2010b ) base this judgment on the 
re-examination of the cleavage mode of 
 Archegozetes longisetosus  by traditional light 
microscopy techniques that failed to detect the 
total cleavage mode of this oribatid mite, which 
the authors previously had determined using 
TEM (Laumann et al.  2010a ,  b ). The authors then 
conclude that since no modern studies in either 
ticks (Fagotto et al.  1988 ) or mites (Dearden 
et al.  2002 ; Walzl et al.  2004 ; Laumann et al. 
 2010a ,  b ) have confi rmed superfi cial cleavage, 
the ancestral cleavage mode within ticks as well 
as mites must have been total (Laumann et al. 
 2010a ). 

 Most pycnogonids display total and equal 
cleavages that are irregular. This cleavage mode 
is therefore thought to be the ground pattern in 
pycnogonids (Ungerer and Scholtz  2009 ). 
However, there are certain groups of pycnogo-
nids with larger, more yolk-rich eggs that display 
unequal, yet still total cleavages (Ungerer and 
Scholtz  2009 ). In some of these pycnogonids 
( Callipallene  and  Propallene ) even the fi rst 
cleavage is unequal, which is suggestive of an 
early cell fate determination that would make 
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these embryos the only example of chelicerates 
showing determinate cleavage. Other  chelicerates 
are not thought to specify cell lines early in 
 development. However, cell lineage studies have 
so far only been attempted in spiders (Holm 
 1952 ; Kanayama et al.  2010 ) and a mite 
(Dearden et al.  2002 ).  

    Germ Rudiment Formation 
and Axis Formation 

    The Cumulus 
 The cumulus is a mesenchymal cell cluster that, 
in spiders, migrates from the centre of the germ 
disc to the rim of the germ disc and thereby 
breaks the radial symmetry of the embryo, estab-
lishing its dorsoventral (DV) axis (Fig.  5.4A ). 
The cumulus has recently been shown to express 
 decapentaplegic  ( dpp ), and it is thought that Dpp 
protein is then received by germ disc epithelial 

cells and thereby represses ventralising  short 
gastrulation  ( sog ) expression (see below; 
Akiyama-Oda and Oda  2003 ,  2006 ).  

 The nomenclature of the cumulus has been 
confusing in classical chelicerate literature, since 
both the blastopore and the distinct, migrating 
cell group that originates from the blastopore 
form white, slightly elevated “cumulus-like” 
structures (from Latin,  cumulus , meaning “heap” 
or “pile”). Therefore, classical literature has to be 
carefully judged for mislabeling the blastopore as 
a true cumulus. The cumulus’ function as an 
organiser was fi rst determined by Holm ( 1952 ) 
through cauterising and transplantation of cumu-
lus material in embryos of the spider  Agelena 
labyrinthica . Similar experiments as well as 
interspecifi c grafts have been performed on 
horseshoe crab embryos (Itow and Sekiguchi 
 1979 ; Itow  1990 ; Itow et al.  1991 ). Curiously, 
grafts of horseshoe crab “centre cells” from the 
blastopore region (but before actual cumulus 
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  Fig. 5.4    Axis specifi cation and formation of segments in 
spiders. ( A ) During early development blastomeres collect 
at one pole of the embryo to form a germ disc. At the cen-
tre of this is  decapentaplegic  ( dpp ) expression ( red ) from 
the mesenchymal cells of the cumulus. Surrounding the 
 dpp  expression is a circular domain of  Delta  ( Dl ) (hatched), 
then  short gastrulation  ( sog ) ( yellow ), with a co-expressed 
domain of  orthodenticle  ( otd ) ( light blue ), and a weak  Dl  
signal around the periphery of the germ disc. As the  dpp -
expressing cumulus migrates, the radial symmetry is bro-
ken. ( B )  dpp  expression then disappears when the dorsal 
fi eld ( D ) starts to form. This dorsal region extends around 
the periphery of the germ disc forming the extra-embry-
onic ( Ex ) and dorsal tissues with the  sog  domain forming 

the ventral tissue ( V ). ( C ) Expression of  otd  and  Dl  in the 
periphery of the germ disc is later localised to the anterior 
prosomal region of the germband, with the opened central 
ring of  Dl  ( hatched ) moving to the approximate area 
where the prosoma/opisthosoma boundary develops. As 
the dorsal fi eld opens up, the centre of the germ disc loses 
 Dl  expression and begins to express  caudal  ( cad ) in the 
forming caudal lobe ( B ). As the germband elongates, 
dynamic expression of  Dl  and  cad  in the segment addition 
zone ( SAZ ) buds off stripes associated with nascent opist-
hosomal segments ( C ). The exact spatial relationship of 
these genes’ expression and which segments they form are 
still unclear. In ( B ,  C ),  A  anterior and  P  posterior (© 
Alistar P. McGregor, 2015. All Rights Reserved)       
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 formation) are also capable of inducing a second 
embryonic axis in embryos of the frog  Xenopus 
laevis  (Itow  2005 ). However, Itow et al. claim 
that the posterior cumulus (i.e., the structure most 
likely homologous to the spider cumulus) has no 
effect on axis formation in the horseshoe crab 
(Itow  1990 ; Itow et al.  1991 ). 

 Migrating cumuli have also been noted in 
Amblypygi (Weygoldt  1975 ), Opiliones (Holm 
 1947 ; Juberthie  1964 ), possibly in a solifuge 
(Heymons  1904 ; Holm  1947 ) and most recently 
in a tick (Santos et al.  2013b ). The cumulus has 
therefore been suggested as belonging to the 
ground pattern in Chelicerata (Hilbrant et al. 
 2012 ). However, the tick cumulus seems not to 
express Dpp, but instead, it appears to receive 
Dpp (Santos et al.  2013a ,  b ). Accordingly, more 
evidence, especially molecular data, is required 
from chelicerate orders in which cumuli have not 

been described so far, to address the origin of the 
cumulus (with reference to the  dpp -expressing 
structure observed in spiders) and perhaps ulti-
mately to defi ne this structure with respect to 
form, migration, developmental function, and 
gene interactions.  

    Segmentation 
 Most chelicerate embryos are of the short germ 
type, where a number of anterior segments is pat-
terned by subdivision of the initial germ anlage 
and posterior segments are added sequentially 
from a posterior segment addition zone (SAZ). 
The initial germ anlage commonly forms all pro-
somal segments (pre-cheliceral lobe, cheliceral, 
pedipalpal, and the four walking leg segments—
Pl, Ch, Pp, L1–L4), and a differing number of 
opisthosomal segments are added sequentially 
(Figs.  5.2 ,  5.3 , and  5.5 ). This generalised form of 

A
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  Fig. 5.5    Segmentation in spiders. Stripe appearance of 
the segmentation marker gene  engrailed  ( en ) in the spider 
 Parasteatoda tepidariorum . The prosomal  en  stripes form 
nearly simultaneously, in a stereotyped order. ( A ) The fi rst 
 en  stripe forms in L1. ( B ) Soon thereafter, stripes appear 
in L4 and the pedipalpal segment. ( C ) Subsequently 
stripes develop in L2, L3, and the cheliceral segment. 

( D – F )  en  stripes in the opisthosoma appear in a strict ante-
rior to posterior order; only the fi rst 3 of eventually 12 
opisthosomal stripes are shown here.  Ch  cheliceral seg-
ment,  Pp  pedipalpal segment,  L  walking leg segments, 
1, 2 and 3 opisthosomal segments (Figure slightly modi-
fi ed and reprinted from  Current Biology , Schwager et al. 
( 2009 ), with permission from Elsevier)       
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segmentation is found in spiders, harvestmen 
(Juberthie  1964 ), whip scorpions (Anderson 
 1973 ), Amblypygi (Weygoldt  1975 ), ticks 
(Anderson  1973 ; Santos et al.  2013b ), and pseu-
doscorpions (Yoshikura  1975 ).  

 However, horseshoe crabs, scorpions and 
 pycnogonids form only pre-cheliceral lobes and 
cheliceral and pedipalpal segments as well as a 
SAZ from their embryonic primordium, while 
walking leg segments and opisthosomal seg-
ments are then sequentially added from the SAZ 
(Anderson  1973 ; Itow and Sekiguchi  1980 ; 
Farley  2001 ; Brenneis et al.  2011b ). 

 It is interesting to note that the anterior seg-
ments do not appear simultaneously, but instead 
are formed in a specifi c order that varies between 
groups. Where the timing of segment appearance 
has been observed (such as in spiders, Amblypygi 
and Xiphosura), the fi rst segment to appear and 
the fi rst segmental border to be established is 
usually the L1 segment or the Pp/L1 border 
(Anderson  1973 ; Weygoldt  1975 ; Itow and 
Sekiguchi  1980 ), and the last segment to be 
defi ned is most commonly the cheliceral seg-
ment. For example, in the spider  Parasteatoda 
tepidariorum ,  engrailed  ( en ) stripes appear fi rst 
in L1, then Pp and L4 stripes emerge, then L2 and 
L3, and lastly Ch (Fig.  5.5 ; Schwager et al.  2009 ). 

 In contrast to the other chelicerates, the L4 
segment of mites, ticks, and Ricinulei also derives 
from the SAZ. In case of the mite  Archegozetes 
longisetosus , the remaining segments do not 
appear in sequential order from the SAZ, but, as 
evidenced by appearance of  en  and  hedgehog  
( hh ) stripes, fi rst O1 is segmented, then L4, and 
fi nally O2 (Barnett and Thomas  2012 ). 

 As stated above, in almost all other chelicer-
ates, opisthosomal segments are added sequen-
tially from a SAZ. Despite the recent advances in 
our understanding of the genetic pathways 
involved in segmentation in spiders (McGregor 
et al.  2009 ; Hilbrant et al.  2012 ), we still lack 
insight into how exactly the SAZ of spiders and 
other chelicerates is organised, especially as cell 
division patterns have not been studied in detail, 
nor have cell movements been characterised. 
Generally, about 12 opisthosomal segments are 
formed from the SAZ. The fi rst of these is later 

reduced to form the pedicel, linking the prosoma 
and opisthosoma in spiders and their close 
 relatives. In other orders, O1 becomes greatly 
diminished (e.g., Opiliones) or almost completely 
removed (e.g., scorpions) in the course of embry-
onic development. In a few groups, such as opis-
thothele (non-mesothele) spiders, ticks, and 
mites, external opisthosomal segmentation is lost 
after embryogenesis (Anderson  1973 ; Yoshikura 
 1975 ). 

 Mites can also display a severe reduction in 
the number of opisthosomal segments: while 
most chelicerates develop around 12 embryonic 
opisthosomal segments (Fig.  5.2 ; Yoshikura 
 1975 ), in embryos of both  Tetranychus urticae  
and  Archegozetes longisetosus , only two  en  
stripes are formed in the opisthosomal region 
(Grbic et al.  2011 ; Barnett and Thomas  2012 ). 
Ticks can show reduced opisthosomal segment 
numbers, but segments are clearly visible in 
embryos (Anderson  1973 ; Santos et al.  2013a ,  b ). 
In addition, derived groups of mites (e.g., the gall 
mite family Eriophyidae) are even more segmen-
tally aberrant, bearing only two legs and a worm- 
like body as adults. 

 Two groups that diverge from the general che-
licerate segmentation pattern are (1) the katoiko-
genic scorpions, in which the mesosoma (the fi rst 
eight embryonic segments of the opisthosoma in 
scorpions) is precociously segmented, with each 
segment bearing a pair of dorsolateral protru-
sions that supplement exchange surfaces with the 
mother, whereas the prosoma is segmented much 
later, and (2) the pycnogonids, which form a free- 
swimming larva that usually only possesses the 
cheliforal and two larval appendages (Vilpoux 
and Waloszek  2003 ; Machner and Scholtz  2010 ; 
Brenneis et al.  2013 ).   

    Development of the Nervous System 

 While the development of the nervous system in 
most Chelicerata has been described in classical 
literature (Anderson  1973 ), recent advances in 
imaging techniques as well as the use of molecu-
lar markers have allowed a more detailed look at 
chelicerate neurogenesis. However, these detailed 
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studies of neurogenesis have only been per-
formed on spiders, a horseshoe crab, and some 
pycnogonids. 

 Neurogenesis in spiders and horseshoe crabs 
takes place in the central ventral ectoderm. In 
each hemisegment about 30 groups of bottle- 
shaped neuronal precursors are specifi ed and 
form cell internalisation sites (previously termed 
invagination sites). These sites are organised in a 
grid-like pattern and subsequently simultane-
ously delaminate from the neuroectoderm when 
early neurogenesis is complete (Fig.  5.6 ; 
Stollewerk et al.  2001 ; Mittmann  2002 ; 
Stollewerk and Chipman  2006 ; Doeffi nger et al. 

 2010 ). In contrast to insects (Vol. 5) and crusta-
ceans (Vol. 4), no neuroblasts (neural stem cells) 
are involved in neurogenesis in these chelicer-
ates. Due to these differences with respect to 
Tetraconata and marked similarities with 
Myriapoda, it has been suggested that this mode 
of neurogenesis might be ancestral within 
arthropods (reviewed by Stollewerk and 
Chipman  2006 ).  

 Conversely, it has recently been shown that 
neurogenesis in pycnogonids surprisingly does 
involve neural stem cells (Fig.  5.6 ; Brenneis 
et al.  2013 ). Like the euchelicerates, neurogen-
esis in pycnogonids is initiated by formation of 

A F G
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E

Euchelicerata Pycnogonida

  Fig. 5.6    Neurogenesis in euchelicerates and pycnogo-
nids. ( A ) Confocal images of germbands of spiders and 
pycnogonids stained for tubulin and counterstained with a 
nuclear dye to illustrate cell internalisation sites ( CIS ) that 
are organised in a grid-like pattern in each hemisegment. 
From left to right:  Cupiennius salei  (left half of prosoma 
only),  Parasteatoda tepidariorum ,  Callipallene  sp. ( top 
right ), and  Pseudopallene  sp. ( bottom right ). ( B – E ) 
Apical horizontal sections of the ventral neuroectoderm 
( VNE ) of a walking leg segment of ( B )  C. salei  and ( C )  P. 
tepidariorum . Mitotic cells (stained by Phosphorylated 
Histone 3 antibody) are not found near CIS but are scat-
tered throughout the hemi- neuromere. In the two pycno-
gonids ( D )  Callipallene  and ( E )  Pseudopallene , the 
hemi-neuromeres are much smaller than found in the spi-
ders. ( F ,  G ) Schematic sagittal sections through single 
hemi-neuromeres. Colours indicate different neuronal 
precursor ( NP ) cell types. In Euchelicerata ( G , based 
mainly on  C. salei ), CIS form sequentially in the VNE, 
which shows unordered, mostly tangential cell divisions. 

Immature ganglion cells ( GCs ) delaminate and start dif-
ferentiating basally to the CIS. CIS can also form cell-rich 
units, enclosed by glial-like sheath cells. Close to the 
forming neuropil, scattered symmetrically dividing inter-
mediate neural precursors ( INPs ) can be found. Apically, 
the epidermis overgrows the hemi-neuromeres. In 
Pycnogonida ( F , based mainly on  Pseudopallene  sp.), 
only few CIS and unordered, tangential cell divisions are 
found in the VNE. Basally, single GCs and INPs detach 
from the VNE and form a loose layer, in which neurons 
start differentiating. Apically, a central invagination forms 
and continues to deepen. Neural stem cells ( NSCs ), large, 
spindle-shaped cells, become discernible and start divid-
ing tangentially or slightly obliquely, forming smaller 
daughter cells that invaginate independently. INPs also 
divide sub-apically. Epidermis overgrows the invagination 
site.  ch  cheliceral/cheliforal segment,  EPC  epidermis cell, 
 pp  pedipalpal segment,  wl  walking leg segment (Figure 
slightly modifi ed and reproduced with permission from 
Brenneis et al. ( 2013 ))       
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post- mitotic neuronal precursor groups that 
form cell internalisation sites. In a second step, 
in pycnogonids, however, larger neural stem 
cells with high mitotic activity differentiate 
from the precursor groups and form ganglion 
cells by asymmetric cell divisions (Fig.  5.6 ; 
Brenneis et al.  2013 ). 

 Whether the pycnogonid neural stem cells 
have evolved convergently or, alternatively, che-
licerates and myriapods have lost this cell type 
will, according to Brenneis et al. ( 2013 ), require 
studies of the molecular mechanisms of neuro-
genesis in pycnogonids, as well as detailed rein-
vestigation of neurogenesis in other arthropod 
groups. It is interesting to note that some authors 
of classical literature have noted the existence of 
neural stem cells within a few chelicerates 
(Anderson  1973 ). Because the study of neuro-
genesis with modern techniques is limited to just 
two chelicerate orders, re-examination of neuro-
genetic processes with advanced techniques is 
imperative in non-spider arachnids.   

    LATE DEVELOPMENT 

    Inversion 

 In most chelicerates the germband forms on the 
surface of the round or ovoid yolky egg. Hence, 
at some point during the development of the che-
licerate embryo, the yolk has to be transferred 
into the embryo proper, specifi cally into the opis-
thosoma, where it will later be ingested by the 
hatchlings via the midgut. This problem is solved 
in two distinctive ways among the different che-
licerate orders. The embryo either simply grows 
around the yolk dorsally until dorsal closure 
commences, or it undergoes a process termed 
“inversion”. This process is most pronounced in 
entelegyne spiders, less so in more basally 
branching groups such as mygalomorph and hap-
logyne spiders, and is almost absent in mesothele 
spiders (Yoshikura  1975 ). 

 During inversion, the germband splits in half 
along the ventral midline and forms the ventral 
sulcus, which is only covered by a single layer of 
cells. The two halves, still connected at least at 

the anterior and posterior ends, move dorsally 
around the yolk, widening the ventral sulcus, until 
their dorsal sides converge at the dorsal midline. 
Only after dorsal closure do the two halves of the 
germband reconnect ventrally for ventral closure. 
During this process, most of the yolk is trans-
ferred into the opisthosoma (Anderson  1973 ). 

 The amount by which the ventral sulcus wid-
ens differs across spiders, and as mentioned 
before, is less pronounced in more basally branch-
ing groups. However, other chelicerates display 
inversion processes similar to spiders, most nota-
bly in Thelyphonida, Amblypygi (Weygoldt 
 1975 ), and possibly Solifugae, and others such as 
Opiliones and some mites show only a very slight 
widening of the ventral sulcus during the dorsal 
closure process (Anderson  1973 ). The process of 
inversion inherently has consequences for the 
behaviour of the midline and also for neurogene-
sis in spiders (Linne et al.  2012 ).  

    Development of Germ Cells 

 Characterisation of the developmental origin of 
germ cells of chelicerates is limited to classical, 
mainly histological, studies of only a few groups 
(spiders, scorpions, mites, ticks, harvestmen, and 
solifuges) (Anderson  1973 ). 

 In these studies, germ cells have mostly been 
reported to originate from the mesoderm later in 
embryogenesis, for example, at the posterior end 
of the germband in ticks (Aeschlimann  1958 ) or 
in spiders, where germ cells appear as segmental 
clusters close to the coelomic pouches in the 
opisthosoma (Kautzsch  1909 ; Strand  1906 ). In 
the early embryos of some spiders, harvestmen 
and solifuges primordial germ cells (PGCs) have 
also been described to originate in or near the 
blastopore (Faussek  1891 ; Brauer  1894 ; Heymons 
 1904 ; Montgomery  1909 ). Recently however, by 
assaying the mRNA and protein expression of 
two molecular germ cell markers,  piwi and vasa , 
Schwager et al. ( 2014 ) did not fi nd any evidence 
of germ cells near the blastopore in early spider 
embryos. Instead, in  Parasteatoda , PGCs arise as 
segmental clusters in opisthosomal segments 
O2–O6. 
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 Interestingly, none of the previous studies that 
found PGCs in or near the blastopore in harvest-
men, scorpions, and solifuges were able to trace 
these cells to the gonads at later stages (Faussek 
 1889 ,  1891 ; Brauer  1894 ). Therefore, to deter-
mine the germ cell origin in these three groups, it 
will be essential to re-examine their embryos 
using molecular tools where possible. 

 In the only other modern study of chelicerate 
germ cells, in the spider mite  Tetranychus urti-
cae , the germ cell marker gene  vasa  has been 
used to identify a group of dispersed cells deep in 
the yolk as PGCs that later are thought to migrate 
towards the posterior of the embryo to form a 
cluster of germ cells near the prosomal/opistho-
somal boundary (Dearden et al.  2003 ). This mode 
of germ cell specifi cation from non-blastodermal 
cells does not match any of the modes described 
for the other chelicerates. Indeed, since  vasa  has 
also been found to be expressed in numerous 
other tissues, including stem cell-like cells, the 
cells described in  T. urticae  might not actually be 
PGCs. Examining PGC specifi cation in the spi-
der mite using more germ cell markers might 
help to shed further light on this issue (Schwager 
et al.  2014 ).  

    Development of Respiratory Organs 

 Among chelicerates, three main types of respira-
tory organs can be found: book gills, book lungs, 
and tracheae (Fig.  5.2 ). Book lungs and tracheae 
appear alone or in combination across the chelic-
erate orders (Fig.  5.2 ). Some miniaturised species 
(e.g., microwhip scorpions and some mites) lack 
specialised respiratory organs entirely, with gas 
exchange occurring through the cuticle (Ax  2000 ; 
Zhang  2003 ; Foelix  2010 ). Similarly, respiration 
in pycnogonids occurs through direct diffusion. 

   Book Gills and Book Lungs 
 The book gills of Xiphosura are thought to repre-
sent the most ancestral respiratory organ among 
euchelicerates, but their relationship to scorpion 
and spider book lungs is not well understood. 
Recent phylogenomic efforts suggest a single ori-
gin of the arachnid book lung, consistent with the 

anatomy of these organs in spiders, amblypygids, 
uropygids, and scorpions (Scholtz and Kamenz 
 2006 ; Regier et al.  2010 ; Sharma et al.  2014b ). In 
 Limulus polyphemus , book gill development 
commences with the formation of bilateral ridges 
on the opisthosoma, the primordia of the genital 
operculum, and the branchial appendage, which 
will later become the gill-bearing segment 
(Yamasaki et al.  1988 ). The genital operculum 
and the fi rst branchial appendage further develop 
into a large lateral and a small medial lobe on the 
ventral side of the opisthosoma (Farley  2010 ). 
Trabeculae then become apparent on these opist-
hosomal segments, which will later function as 
space holders in the haemolymph channels of the 
book gills (Kingsley  1892 ). The surface of the 
operculum and the branchial appendage form 
small pores and invaginations, which may facili-
tate gas exchange. Cross sections of the opercu-
lum and branchial appendage have revealed that 
trabeculae bridge the lumen of these lobes and 
seem to be connected with the invaginations on 
the surface of these appendages (Farley  2010 ). At 
the stage of the swimming and burrowing fi rst 
instar, the fi rst branchial segment appears as a 
broad but thin appendage, which carries four gill 
lamellae. The book gills are therefore surface 
outgrowths of the fi rst branchial appendage. The 
lamellar structures of the book gills provide the 
surface for gas exchange between water and hae-
molymph in horseshoe crabs. The invaginations 
at the surface of the operculum and the branchial 
segment are connected to the gill lamellae 
through the trabeculae (Farley  2010 ). 

 Arachnopulmonata (scorpions + tetrapulmo-
nates) exhibit variable numbers of paired book 
lungs (Fig.  5.2 ). The “primitive” spiders (meso-
theles, mygalomorphs, and most paleocribel-
lates) exhibit two pairs of book lungs, but in 
labidognathous spiders (i.e., derived araneo-
morphs), the posterior pair has been modifi ed 
into tubular tracheae (Kästner  1929 ; Yoshikura 
 1975 ). Scorpions exhibit four pairs of book lungs, 
while whip scorpions and whip spiders have two 
pairs, and microwhip scorpions only have one 
pair (Fig.  5.2 ; Levi  1967 ). 

 The development of scorpion and spider book 
lungs is uniform and fi rst becomes apparent as an 
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ectodermal invagination at the posterior margin 
of an opisthosomal segment (Laurie  1890 ; Purcell 
 1909 ; Farley  2008 ). This invagination then 
increases in size, forming a pulmonary sac, while 
the limb bud itself ingresses into the ectoderm of 
the segment (Farley  2011 ). The anterior wall of 
the pulmonary sac develops projecting lamellae, 
which extend into the pulmonary sac (Anderson 
 1973 ; Farley  2010 ,  2011 ). 

 The fully developed book lungs in scorpions 
and spiders open as stigmata on the ventral side 
of the opisthosoma into the atrium, which 
enlarges into a cuticle-lined cavity (Kamenz 
et al.  2005 ). Cuticular invaginations fi lled with 
haemolymph, interspersed by air pockets, extend 
horizontally from the lung sinus opposite the 
atrium into the cavity. The name “book lungs” is 
derived from the stacked structure of the lamel-
lae, where the oxygenation of the haemolymph 
occurs (Reisinger et al.  1991 ; Kamenz et al. 
 2005 ; Foelix  2010 ).  

   Tracheae 
 A tracheal respiratory system is found in mites, 
ticks, pseudoscorpions, camel spiders, harvest-
men, hooded tick spiders, and, in conjunction 
with one pair of book lungs, most araneomorph 
spiders (Fig.  5.2 ). Tracheae can vary in structure 
and are either tubular (camel spiders, harvest-
men, and some spiders) or sieve tracheae (pseu-
doscorpions, hooded tick spiders, some spiders) 
(Kamenz et al.  2005 ; Foelix  2010 ). The latter are 
composed of a bundle of tubes, which look like a 
perforated membrane in cross section, hence the 
name. It has been proposed that the sieve tra-
cheae are derived from lung lamellae (Foelix 
 2010 ; Nentwig  2013 ). 

 In spiders the tubular tracheae are located on 
the third opisthosomal segment, behind the ante-
rior pair of book lungs, and are visible as stig-
mata (openings), in close vicinity to the spinnerets 
(Fig.  5.2 ). Generally, a stigma leads into an 
atrium whence two lateral and two median tubes 
arise. The lateral tubes are connected to the sec-
ond pair of book lungs and the median tubes 
originate from muscular insertions, which 
become hollow and function as breathing organs 
(Foelix  2010 ). Tracheae in spiders exhibit open 

ends, which are in direct contact with haemo-
lymph that transports the oxygen to the organs. 
The localisation and expansion of the tubular tra-
cheae, however, is not as uniform as for book 
lungs and can vary signifi cantly between species 
ranging from a restriction to the opisthosoma to 
extensive branching up to the prosoma (Foelix 
 2010 ). Within spiders, tubular tracheae are 
regarded as more derived than book lungs, as 
they are not found in basally branching spiders or 
non-spider tetrapulmonates, which employ only 
book lungs (Höfer et al.  2000 ; Foelix  2010 ). The 
simultaneous knockdown of multiple posterior 
Hox genes results in homeotic transformation of 
book lungs (and possibly the tubular tracheae as 
well) to leg- like outgrowths in the spider 
 Parasteatoda tepidariorum , corroborating the 
serial homology of paired respiratory organs and 
prosomal appendages in a tetrapulmonate arach-
nid (Khadjeh et al.  2012 ). The relationship 
between the tubular tracheae of spiders and those 
of apulmonate arachnids is not understood in the 
context of developmental genetics.    

    THE GENETIC REGULATION 
OF CHELICERATE DEVELOPMENT 

    Axis Formation 

 In chelicerates, the regulation of the formation of 
the anterior-posterior (AP) and dorsoventral 
(DV) axes are best understood in the spider 
 Parasteatoda tepidariorum . During the forma-
tion of the germ disc in this spider (Fig.  5.3 ; see 
boxed text), the cumulus develops as a cluster of 
mesenchymal cells under the main epithelial disc 
(Fig.  5.4A ). Gene expression and functional anal-
yses of orthologous genes that pattern the body 
axes of other arthropods have highlighted the 
importance of the cumulus as a key signalling 
centre for embryonic organisation in the spider 
(see above; Oda and Akiyama-Oda  2008 ). 

 During the initial formation of the germ disc, 
Hh signalling plays a crucial role in coordinating 
the cumulus and controlling its movement 
(Akiyama-Oda and Oda  2010 ). Hh ligands from 
around the rim of the germ disc are received by 
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 patched  ( ptc ) and  smoothened  ( smo ). It has been 
suggested that Hh forms a positional value gradi-
ent and thereby high levels promote the presump-
tive anterior, while low levels at the centre of the 
disc designate the posterior region where the 
cumulus forms (Fig.  5.4A ; Akiyama-Oda and 
Oda  2010 ). The movement of the cumulus to the 
periphery also relies on Hh signalling because 
parental RNAi against  ptc  and  smo  can perturb 
cumulus migration (Fig.  5.4A ; Akiyama-Oda and 
Oda  2010 ). 

 As mentioned above, the migration of the 
cumulus from the centre to the periphery of the 
germ disc breaks the radial symmetry and forms 
the DV axis (Fig.  5.4 ; Akiyama-Oda and Oda 
 2003 ). While the basal mesenchymal cells of the 
cumulus migrate under the germ disc, they 
express  dpp , which activates the phosphorylation 
of mothers against dpp (pMad) in the epithelium, 
possibly via cytonemes (Fig.  5.4A ; Akiyama- 
Oda and Oda  2003 ). When the  dpp  expression 
reaches the rim of the germ disc, it represses part 
of the circular expression domain of  sog  
(Fig.  5.4B ; Akiyama-Oda and Oda  2006 ). This 
event is concomitant with the opening of the dor-
sal fi eld and the loss of  dpp  expression as the 
cumulus disappears (Fig.  5.4B ). The expression 
of  sog  retracts ventrally between the anterior 
expression of  orthodenticle  ( otd ) and  caudal  
( cad ) expression in the caudal lobe (Fig.  5.4B, C ; 
Akiyama-Oda and Oda  2003 ; Pechmann et al. 
 2009 ).  sog  expression progressively narrows to 
the ectoderm of the ventral midline, surrounded 
by pMad in the dorsal region (Fig.  5.4C ; 
Akiyama-Oda and Oda  2006 ).  

    Segmentation 

   Formation of the Caudal Lobe 
and Posterior Segmentation 
 Studying the genetic regulation of segmentation 
in chelicerates, especially spiders, has provided 
key insights into the evolution of segment forma-
tion among arthropods and even other metazoans 
with segmented bodies (Damen  2007 ; McGregor 
et al.  2008a ,  2009 ; Oda and Akiyama-Oda  2008 ; 
Hilbrant et al.  2012 ). Before the appearance of 

segments, the DV and AP axes are defi ned, as 
well as the fi rst regulatory steps that specify the 
germ layers (see above). The genetic regulation of 
these processes, again, has been most fully char-
acterised in  Parasteatoda tepidariorum . During 
early embryogenesis in this spider, the Delta-
Notch pathway is involved in allocating cells to 
the ectoderm, mesoderm, and endoderm as well 
as specifying the caudal lobe that gives rise to the 
SAZ, from which subsequently the posterior seg-
ments are generated (Oda et al.  2007 ). 

 Concurrent with the formation of the cumulus, 
the centre of the germ disc begins to express 
 Delta  ( Dl ) (Fig.  5.4 ). Cells that express  forkhead  
and  twist  ( twi ) near these  Dl -expressing cells 
internalise beneath the epithelia and become 
endoderm and mesoderm cells, respectively (Oda 
et al.  2007 ). Subsequently, expression of  Dl  and 
 twi  clears from the centre of the germ disc and 
 cad  is expressed in the caudal lobe (Fig.  5.4B ; 
Oda et al.  2007 ). Furthermore, these dynamic 
changes in gene expression that specify the cau-
dal lobe and subsequently the SAZ all require 
 Wnt8  (McGregor et al.  2008b ). 

 During the formation of the germband from 
the germ disc (Figs.  5.3  and  5.4 ), the posterior 
domain of  Dl  expression forms a stripe. 
Expression of  Dl  then reappears in the SAZ and 
subsequently dynamic stripes of  Dl  expression 
in the SAZ are associated with the formation of 
nascent segments from this tissue. Previously, it 
was also shown that such stripes of  Dl  expres-
sion in the SAZ are required for segmentation 
in  Cupiennius salei , another spider (Stollewerk 
et al.  2003 ). Since  Dl  is also necessary for seg-
mentation in the cockroach  Periplaneta 
 americana  (Pueyo et al.  2008 ), this suggests 
that Delta-Notch, Wnt, and Cad organiser was 
used ancestrally for segmentation at least in 
arthropods and was subsequently lost in some 
lineages (McGregor et al.  2009 ; Wilson et al. 
 2010 ; Kainz et al.  2011 ; Chesebro et al.  2013 ). 
This work has also contributed to the debate 
about the evolution of segmentation in metazo-
ans more generally (Couso  2009 ; Chipman 
 2010 ). 

 After the initial cues from Delta-Notch 
and Wnt have activated segmentation from the 
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posterior SAZ, it has been shown in both 
 Cupiennius salei  and  Parasteatoda tepidariorum  
that the orthologs of the pair rule genes are then 
differentially activated across the AP axis. In  P. 
tepidariorum ,  Wnt8  may help to regulate the 
transcription of the primary pair rule gene  hairy  
in the SAZ (McGregor et al.  2008b ). In  C. salei , 
dynamic stripes of  even skipped  and  runt - 1  prog-
ress from the SAZ during the formation of 
nascent posterior segments (Damen et al.  2005 ). 
The secondary pair rule gene  pairberry - 3  also 
exhibits dynamic expression in the SAZ but 
forms stable stripes in nascent segments (Damen 
et al.  2005 ). However, the other secondary pair 
rule genes,  odd - skipped - related - 1 ,  odd - paired  
( opa ), and  sloppy paired , are not expressed in 
the SAZ but are observed in stripes anterior to 
this structure in the nascent segments (Damen 
et al.  2005 ). The primary pair rule genes there-
fore appear to initially defi ne segments from the 
SAZ and then the secondary pair rule gene 
orthologs maintain segment positioning. 
Subsequently, the parasegmental boundaries are 
defi ned by  Wnt  and  en  expression (Damen  2002 ), 
which is now known to be a conserved feature of 
arthropod segmentation (Vols. 4, 5; Damen 
 2007 ).  

   Prosomal Segmentation 
 It has been shown in spiders that the mechanism 
and underlying genetic regulation of prosomal 
segmentation differ from that described above for 
the opisthosomal segments. In the presumptive 
prosoma, segmentation is achieved by subdivid-
ing a pre-existing fi eld of cells into segments, and 
 engrailed  stripes do not appear sequentially in 
this region (see above and Fig.  5.5 ). This pro-
somal segmentation mechanism is similar to 
 Drosophila melanogaster  segmentation. Indeed, 
in  Parasteatoda tepidariorum  this process 
requires the ortholog of the  D. melanogaster  gap 
gene  hunchback , and knockdown of this gene in 
 P. tepidariorum  also produces a gap gene pheno-
type with multiple missing adjacent segments 
(Schwager et al.  2009 ). Interestingly, in both  P. 
tepidariorum  and the haplogyne spider  Pholcus 
phalangioides ,  Distal - less  ( Dll ), a gene normally 
known for its involvement in appendage pattern-

ing (see below), is expressed in the presumptive 
prosoma (Pechmann et al.  2011 ). Even more 
 surprisingly,  Dll  is required for formation of 
 prosomal segments because inhibition of  Dll  
expression in  P. tepidariorum  results in a gap-like 
phenotype (Pechmann et al.  2011 ). 

 In  Parasteatoda tepidariorum  embryos, the 
most anterior prosomal region, however, yet 
again uses a different segmentation mechanism 
that Kanayama et al. ( 2011 ) have termed “split- 
type segmentation”. Here, fi rst a wave of  otd  
expression, in conjunction with a travelling wave 
of  hh  expression, is thought to specify the head 
segments (Pechmann et al.  2009 ; Kanayama 
et al.  2011 ). Then, the  hh  stripe splits to generate 
the cheliceral and pedipalpal segments, which 
also involves convergent extension movements 
and depends on an autoregulatory signalling 
 network of  otd ,  hh ,  opa,  and  cubitus interruptus  
( ci ) (Kanayama et al.  2011 ).   

    Hox Genes and the Regulation 
of Segment Identity in Chelicerates 

 Hox genes are responsible for specifying seg-
mental identity along the AP axis in bilaterian 
animals (reviewed in Carroll et al.  2005 ). In che-
licerates, the evolution of particular Hox genes 
is correlated with differences among chelicerate 
body plans and compared to other arthropods. 
Generally, the spatial expression patterns of the 
prosomal Hox genes are well conserved, whereas 
those that are expressed in the opisthosoma are 
more divergent (Figs.  5.2  and  5.7 ; Abzhanov and 
Kaufman  1999 ; Schoppmeier and Damen  2001 ; 
Khila and Grbic  2007 ; Pechmann et al.  2011 ). 
This may correlate with the evolutionary conser-
vation of the prosoma compared to the more vari-
able opisthosoma.  

 In all chelicerate lineages studied to date 
(apart from mites), as well as mandibulate arthro-
pods (Chapter   6    ; Vols. 4, 5) and Onychophora 
(Chapter   4    ), at least ten Hox genes have been 
identifi ed (Fig.  5.2 ; Janssen and Damen  2006 ; 
Sharma et al.  2012a ,  2013 ,  2014b ; Barnett and 
Thomas  2013a ; Janssen et al.  2014 ), which sug-
gests that this was the ancestral number of Hox 
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genes in arthropods. However, in  Cupiennius 
salei ,  proboscipedia ,  Deformed ,  Sex combs 
reduced , and  Ultrabithorax  ( Ubx ) have all been 
found to be duplicated (Damen et al.  1998 ; 
Schwager et al.  2007 ). Furthermore, the paralogs 
have different spatiotemporal expression pat-
terns, which suggests that there could have been 
signifi cant duplication and divergence of Hox 
genes during the evolution of chelicerate body 
plans (Figs.  5.2 ; Schwager et al.  2007 ). Similarly, 
19 Hox genes have been reported in the scorpion 
 Centruroides sculpturatus , with two copies of 
each gene except for  Hox3  (Sharma et al.  2014b ). 
Furthermore, different spatiotemporal gene 

expression patterns were observed for all four 
paralogous pairs of the opisthosomal Hox genes 
( Antennapedia  ( Antp ),  Ubx ,  abdominal - A  ( abd - 
A    ), and  Abdominal - B  ( Abd - B )) (Figs.  5.2  and  5.7 ; 
Sharma et al.  2014b ). Intriguingly, shifts in ante-
rior boundaries of opisthosomal Hox group para-
logs are tightly correlated with shifts in segmental 
identity in the scorpion mesosoma and meta-
soma, consistent with the involvement of the 
paralogs in canonical Hox patterning (Sharma 
et al.  2014b ). 

 Evolutionary changes to the Hox cluster are 
also found in the mite  Tetranychus urticae  (Grbic 
et al.  2011 ). This species has lost  abd - A  from its 
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  Fig. 5.7    Expression of  Ubx  in chelicerate embryos. ( A ) 
In the horseshoe crab  Limulus polyphemus , Ubx/abd-A 
antibody staining is initially observed in O2 and all seg-
ments more posterior. In the later stage shown, it extends 
more anteriorly into the medial portion of O1 (the chilar-
ial segment) (Slightly modifi ed and reproduced from 
Popadic and Nagy ( 2001 ) with permission from John 
Wiley and Sons). ( B ) Expression of  Ubx - 1  in the spider 
 Parasteatoda tepidariorum  extends ventrally into the pos-
terior half of O1; otherwise,  Ubx - 1  is expressed in O2 and 
all more posterior segments. ( C )  Ubx  expression in the 
mite  Archegozetes longisetosus  ( top , brightfi eld image; 
 bottom , nuclear staining) is only found in O2 (Image 

slightly modifi ed reproduced with permission of the 
authors of Barnett and Thomas ( 2013a )). ( D )  Ubx - 2  
expression in the scorpion  Centruroides sculpturatus  is 
found in the ventral part of O2 and all segments more pos-
terior. ( E ) In the harvestman  Phalangium opilio ,  Ubx  is 
expressed in O2 ( arrowheads  indicate the genital pores on 
O2,  dotted line  demarcates the prosomal/opisthosomal 
boundary) and all segments posterior to it. All embryos 
are oriented with anterior to the left. Embryos in ( B ,  D ,  E ) 
have also been stained with a nuclear dye.  ch  chilaria,  Ch  
cheliceral segment,  Pp  pedipalpal segment,  L  walking leg 
segments,  O  opisthosomal segments       
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genome (Grbic et al.  2011 ), which appears to be 
correlated with drastic reduction of the opistho-
soma to only two segments (Fig.  5.2 ). This pos-
sible role of  abd - A  in defi ning opisthosomal 
segment number may also be consistent with the 
fi nding of a highly divergent  abd - A  in the sea spi-
der and the reduction in size of this tagma in 
these animals (Manuel et al.  2006 ). 

 The expression domains of  Ubx ,  abd - A , and 
 Abd - B  have also been found to be important in 
determining the identity of opisthosomal seg-
ments among chelicerates (Fig.  5.2 ; Damen and 
Tautz  1999 ; Popadic and Nagy  2001 ; Sharma 
et al.  2012b ,  2014c ; Barnett and Thomas  2013a ). 
The different anterior expression domains of 
these Hox genes in harvestmen, scorpions, and 
spiders are correlated with the position of differ-
ent segment types, such as book lungs, spinner-
ets, and the posterior-most undifferentiated 
segments (Fig.  5.2 ; Sharma et al.  2012a ,  2014b ). 
It therefore appears that the evolution of Hox 
gene expression is a likely mechanism for the 
diversifi cation of chelicerates via the modifi ca-
tion of posterior segment identity, a hypothesis 
that is beginning to be tested with functional 
tools in spiders (Khadjeh et al.  2012 ). 

 In addition, analysis of Hox gene expression 
has played a major role in solving the question of 
the evolution of arthropod head segments and 
their associated appendages (Telford and Thomas 
 1998a ; Budd  2002 ; Maxmen et al.  2005 ; Scholtz 
and Edgecombe  2006 ; Brenneis et al.  2008 ; 
Damen  2010 ). Cheliceres and pedipalps (Fig.  5.2 ) 
were thought to be analogous to the intercalary 
and mandible segments in insects, respectively, 
due to their supposed innervation from particular 
regions of the ganglia. It has been further postu-
lated that the segment in chelicerates that is anal-
ogous to the fi rst antennal segment in myriapods, 
crustaceans, and insects has been lost during the 
course of evolution (Weygoldt  1985 ; Bitsch and 
Bitsch  2007 ). However, studies of Hox gene 
expression suggest that the segments bearing the 
cheliceres (and chelifores of pycnogoids) and 
pedipalps are homologous to the fi rst antennal 
and intercalary (or second antennal) segments of 
mandibulates, respectively. Independent corrobo-
ration of this hypothesis is provided by the 

 segmental organisation of the tripartite arthropod 
brain; both the fi rst antennal segment and chelic-
eral (or cheliforal) segment are innervated by the 
deutocerebral ganglia (Telford and Thomas 
 1998a ; Jager et al.  2006 ; Brenneis et al.  2008 ).  

    Appendage Development 

 The prosoma of euchelicerates comprises an evo-
lutionarily conserved tagma, as inferred from 
segmental distribution of appendage types 
(Fig.  5.2 ). In other arthropod subphyla, genes 
including  Dll ,  homothorax  ( hth ),  extradenticle  
( exd ), and  dachshund  ( dac ) are required for 
appendage development, and it has been shown 
that these genes are also necessary for appendage 
development in chelicerates (Fig.  5.8 ; Prpic et al. 
 2001 ,  2003 ; Prpic and Damen  2004 ; Pechmann 
and Prpic  2009 ; Barnett and Thomas  2013b ; 
Sharma et al.  2013 ).  

 The development of all the appendages 
requires  Dll ; knockdown of the expression of this 
gene inhibits outgrowth from limb primordia in, 
for example, spiders, mites, and harvestmen 
(Schoppmeier and Damen  2001 ; Khila and Grbic 
 2007 ; Pechmann et al.  2011 ; Sharma et al.  2013 ). 

 During the evolution of cheliceres, it appears 
that there has been a shift from primitive three- 
segmented cheliceres in orders like harvestmen, 
horseshoe crabs, and pycnogonids to the more 
derived two-segmented cheliceres of lineages 
like spiders (Sharma et al.  2012a ,  2013 ; Barnett 
and Thomas  2013a ; Brenneis et al.  2013 ; 
Brenneis and Scholtz  2014 ). Interestingly, an 
expression domain of  dac  in the proximal region 
of the harvestman  Phalangium opilio  is not found 
in arachnids that have cheliceres composed of 
two segments (Fig.  5.8 ; Sharma et al.  2012a ), 
suggesting a role for this gene in the transition 
from three- to two-segmented cheliceres. 
Consistent with this hypothesis, knockdown of 
the expression of  dac  in  P. opilio  indicates that 
this gene is required for the development of the 
proximal cheliceral segment (Sharma et al. 
 2013 ). Further corroborating this mechanism, the 
proximal-most part of the cheliceres of the mite 
 Archegozetes longisetosus  transiently expresses 
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 dac  (Fig.  5.8 ; Barnett and Thomas  2013b ). 
Accordingly, adults of many Acariformes form a 
sclerite in this region whose segmental nature 
had been debated, and  dac  expression in mite 
embryos suggests that this sclerite is a vestige of 
the fully formed proximal segment of groups like 
Opiliones and Xiphosura (Sharma et al.  2012a , 
 2013 ; Barnett and Thomas  2013b ). 

 A separate aspect of the appendages that is 
evolutionarily labile and functionally signifi cant 
to feeding in chelicerates is the gnathobases 
(endites), a separate ramus of the chelicerate 
appendage (Boxshall  2004 ). A variable number 
of gnathobases occurs across Chelicerata, and 
these structures have played a key role in morpho-
logical phylogenetic hypotheses of the group 

(Shultz  2007 ). For example, outgrowths of a sin-
gle appendage pair, the pedipalpal gnathobases, 
form the “maxilla” of spiders (not homologous to 
the maxillae of mandibulates). Gnathobases of 
the same appendage pair form part of the subca-
pitulum of mites and ticks and putatively unite 
these as “Acari”. In groups like Opiliones and 
scorpions, additional gnathobases occur on the 
walking leg segments; these fuse to form the pre-
oral chamber, a structure that has putatively united 
harvestmen and scorpions in morphological phy-
logenies (Shultz  1990 ,  2007 ). In spiders (both 
araneomorphs and mygalomorphs), mites, and 
harvestmen, all outgrown gnathobases strongly 
express  Dll , and knockdown of  Dll  expression 
results in the loss of these structures, together 

  Fig. 5.8    Gene expression during appendage develop-
ment. Comparative expression patterns of leg gap genes in 
three chelicerates. From  left to right : Opiliones, 
Acariformes, and Araneae. Appendage types from  top  to 
 bottom  are chelicera, pedipalp, and walking leg.  Coloured 
bars  indicate expression domains of  homothorax  ( green ), 
 extradenticle  ( blue ),  dachshund  ( orange ), and  Distal - less  

( red ). Hashed bars in Acariformes indicate uncertainty of 
expression boundaries with respect to podomeres.  2nd  
secondary article,  bs  basis,  bt  basitarsus,  cx  coxa,  fe  femur, 
 fg  fang,  gn  genu,  ma  mobile article,  mt  metatarsus,  pa  
patella,  px  proximal segment,  ta  tarsus,  ti  tibia,  tr  trochan-
ter,  tt  telotarsus (© Prashant P. Sharma, 2015. All Rights 
Reserved)       
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with the distal telopod segments (Schoppmeier 
and Damen  2001 ; Khila and Grbic  2007 ; Sharma 
et al.  2013 ). These data suggest a common, but 
unknown, developmental patterning mechanism 
underlying morphogenesis of feeding structures 
derived from gnathobasis outgrowths.  

    Neurogenesis 

 Research on gene expression during neurogene-
sis in chelicerates has made an important contri-
bution to our understanding of the evolution and 
development of arthropods more generally 
(Stollewerk and Chipman  2006 ). In arthropods 
the  achaete - scute  complex is important in the 
early stages of neurogenesis. It has been shown 
that the spider homolog  ASH1  has a similar func-
tion during the formation of neural precursor 
cells to that of crustaceans and insects (Doeffi nger 
et al.  2010 ). High levels of  ASH1  expression 
induce the later invagination of regions to form 
the optic lobes, mushroom bodies, and arcuate 
body (Doeffi nger et al.  2010 ). 

 Furthermore, Delta-Notch signalling deter-
mines neuronal precursor number through lateral 
inhibition across arthropod lineages (Stollewerk 
 2002 ), and the genes that are responsible for pat-
terning neural fates are also somewhat conserved. 
For example,  en  (Doeffi nger et al.  2010 ) and 
 gooseberry  (Jarvis et al.  2012 ) are involved in 
organising the neuroectoderm in chelicerates and 
mandibulates. Interestingly, alterations in Hox 
expression in the developing nervous system are 
also correlated with changes in Hox expression 
across the AP axis. These changes in both neurol-
ogy and segment morphology due to Hox genes 
may help appendages to evolve sensory function-
ality (Jarvis et al.  2012 ). 

 Although some genes have conserved roles 
during neurogenesis, the function of others has 
diverged. For example, in the spiders  Cupiennius 
salei  and  Parasteatoda tepidariorum , Netrins 
have been shown to have elements of conserved 
function in commissural axon guidance in the 
ventral midline with respect to insects and crus-
taceans (Linne and Stollewerk  2011 ). However, 

in  C. salei , Netrins may also contribute to the 
correct differentiation of the axonal scaffold 
through maintaining short- range adhesive inter-
actions between sheath cells and neural precur-
sor cells (Linne and Stollewerk  2011 ). 

 Another gene that has diverged in function is 
 single - minded  ( sim ). In crustaceans and insects, 
 sim  functions as an important regulator of ventral 
midline development (Nambu et al.  1990 ,  1991 ; 
Vargas-Vila et al.  2010 ). This is in contrast to che-
licerates, where  sim  is expressed in the median 
region of the ventral neuroectoderm and is not 
required for ventral midline development (Linne 
et al.  2012 ). It has been hypothesised that the mid-
line precursors seen in crustaceans and insects 
evolved from an ancestral median area of ventral 
neuroectoderm. The modifi cation of  sim  expres-
sion from the median to the midline tissue could 
be responsible for this change (Linne et al.  2012 ). 

 Therefore, while considerable progress has 
been made on understanding the evolution and 
regulation of neurogenesis in chelicerates, it is 
clear that further insights into the evolution of 
neurogenesis will be gained through investiga-
tion of gene expression and function in non- 
arachnid chelicerates like pycnogonids and 
horseshoe crabs (Brenneis et al.  2013 ; Brenneis 
and Scholtz  2014 ).   

    FUTURE RESEARCH FOCI 
FOR CHELICERATE EVODEVO 

 Many important questions in evolutionary biol-
ogy can be uniquely addressed through evolu-
tionary developmental study of Chelicerata, both 
via comparisons within chelicerates and between 
Chelicerata and other metazoans. Key processes 
that can only be deciphered through studies of 
chelicerates include the genetic basis for the syn-
thesis of diverse and potent venoms (e.g., scor-
pion and spider venoms), the diversifi cation of 
silk genes, and the evolution of terrestrialisation. 

 Newly sequenced genomes of non- 
developmental models have provided much 
needed insights as to genomic architecture and 
gene family diversifi cation in notable chelicerate 

5 Chelicerata



128

groups (Table  5.1 ). Developmental studies using 
established chelicerate models, such as the spider 
 Parasteatoda tepidariorum , can be expanded by 
availability of genomic resources (Posnien et al. 
 2014 ). This is complemented by the rapid dis-
semination of developmental transcriptomes and 
modern developmental techniques for satellite 
models such as the harvestman  Phalangium 
opilio  (Sharma et al.  2012a ,  2013 ) and the scor-
pion  Centruroides sculpturatus  (Sharma et al. 
 2014b ,  c ), coupled with refi ned understanding of 
phylogenetic relationships (Regier et al.  2010 ; 
Sharma et al.  2014a ). 

 However, establishing laboratory cultures in 
concert with further development of gene 
expression and functional techniques in exem-
plars of other chelicerate orders would be 
insightful for a number of questions. For exam-
ple, understanding the evolution and develop-
ment of the specialised appendages (e.g., chelate 
pedipalps of pseudoscorpions and scorpions; 
antenniform legs of whip scorpions and whip 
spiders; sexually dimorphic appendages for 
sperm transfer in spiders and Ricinulei) could 
have a great impact on our understanding of ori-
gins of morphological novelties and diversity in 
arthropod appendages. 

 In the following, two examples of important 
evolutionary processes whose investigation 
requires the study of chelicerates are highlighted. 

    Terrestrialisation 

 Numerous selective pressures are proposed to 
have driven the ancestrally aquatic arthropods to 
adapt to terrestrial habitats (Little  2009 ). Modern 
phylogenomic assessments of arthropod relation-
ships indicate multiple terrestrialisation events in 
the arthropod tree of life, particularly in 
Mandibulata (e.g., Hexapoda, Myriapoda, some 
lineages of malacostracan crustaceans). In 
Chelicerata, the earliest records of marine lin-
eages are Cambrian fossil Pycnogonida, whereas 
horseshoe crabs and other extinct marine orders 
(Eurypterida and Chasmataspidida) were present 
by the Ordovician (Dunlop  2010 ). Nearly all 
arachnid orders are present in the fossil record by 

the Carboniferous (Petrunkevitch  1955 ; Selden 
et al.  1991 ; Dunlop  2010 ). 

 A scenario for chelicerate terrestrialisation is 
contentious. Some researchers have supported a 
single terrestrialisation event in the ancestor of a 
monophyletic Arachnida, based on morphology 
and/or the inferred improbability of terrestrialisa-
tion events (Scholtz and Kamenz  2006 ; Shultz 
 2007 ). Others have proposed an independent 
colonisation of land by scorpions, based on the 
interpretation of a marine (or at least aquatic) 
habitat of Palaeozoic scorpion fossils (Jeram 
 1997 ; Dunlop and Braddy  2001 ). At the core of 
the dispute is marked character confl ict within 
both morphological and molecular phylogenetic 
datasets and the ensuing elusiveness of a robust 
chelicerate tree of life (Shultz  2007 ; Regier et al. 
 2010 ). However, there is now strong support for a 
single origin of the arachnid book lung due to the 
phylogenetic placement of scorpions as sister 
group to tetrapulmonates (Sharma et al.  2014a ). 
Separately, the inference of multiple terrestriali-
sation events in mandibulate arthropods and con-
comitantly, of morphological convergence driven 
by terrestrial habitat (e.g., independent origins of 
tubular tracheae and Malpighian tubules in 
insects and myriapods), is now robustly sup-
ported by phylogenomic analyses. These discov-
eries discredit an argument for a single 
terrestrialisation event in the arachnid ancestor 
grounded on the assumption that terrestrialisation 
(and ensuing convergence in arthropods) is a his-
torically rare or improbable event (reviewed by 
Shultz  2007 ; Sharma et al.  2014a ). 

 Morphological and developmental compari-
son of book gills in Xiphosura and book lungs in 
Tetrapulmonata underlie the widespread view 
that book lungs developed from book gills via 
internalisation (Lankester  1881 ; Purcell  1909 ; 
Kamenz et al.  2005 ; Scholtz and Kamenz  2006 ; 
Farley  2010 ). The serial homology of the two 
appendage types is compelling (but see Dunlop 
 1997 ), but has yet not been demonstrated in the 
context of developmental genetics. Intriguingly, 
one previous study has suggested that book gills, 
both respiratory organ types of derived spiders 
(book lungs and tubular tracheae), as well as spi-
der spinnerets and insect wings were all serial 

E.E. Schwager et al.



129

homologs of crustacean gills, inasmuch as all of 
these originated from epipods (Damen et al. 
 2002 ). This argument, fi rst made in support of a 
serial homology of insect wings and crustacean 
gills, was based on the differential expression of 
 pdm / nubbin  and  apterous  ( ap ); a solid expression 
domain of both genes is observed in the epipods 
of a fruit fl y and a crustacean (wings and gills, 
respectively), whereas one or more rings of weak 
expression are observed in the distal endopods 
(legs) of the corresponding appendages (Averof 
and Cohen  1997 ). The similarity of expression 
patterns was the basis of the homology statement. 
Subsequently, Damen et al. ( 2002 ) showed that 
strong expression of  pdm / nub  and  ap  is observed 
in the book gills of  Limulus polyphemus , as well 
as in the respiratory organs and spinnerets of the 
spider  Cupiennius salei . 

 However, the inference that the respiratory 
organs of spiders originated as epipods is incon-
sistent with the recent functional work of 
Khadjeh et al. ( 2012 ), which demonstrated 
homeotic transformation of the book lungs to 
walking leg- like limb buds upon Hox gene 
knockdown, suggesting that book lungs (and 
possibly tubular tracheae) are derived from 
endopods. While no functional work has been 
conducted on spinneret development, the spin-
nerets of many basally branching spiders are 
also directly comparable to chelicerate endo-
pods (e.g., walking legs) in that they can be seg-
mented and leg-like in adults, and express all leg 
gap genes embryonically (Pechmann and Prpic 
 2009 ). One possible explanation is that  pdm / nub  
is not a reliable and/or conserved marker for dis-
tinguishing endopods and epipods in chelicer-
ates. Indeed, Damen et al. ( 2002 ) observed 
stronger expression of  pdm / nub  throughout the 
developing legs (endopods) of  Cupiennius salei  
than had been observed in insect or crustacean 
legs, which questions the utility of this marker 
for discerning appendage rami in arachnids 
based on strength of expression level alone. 
While expression of one of the two spider  ap  
paralogs seems to be consistent with the  position 
of vestigial epipods ( ap - 1  is expressed dorsally 
to the walking legs in later stages of  Cupiennius 
salei ), the fossil record of chelicerates reveals 

that biramous chelicerates bore exopods in this 
part of the body, not epipods (Boxshall  2004 ; 
Briggs et al.  2012 ). Together with documented 
homoplasy of certain genes’ expression patterns 
(Janssen et al.  2011 ; Sharma et al.  2014c ), these 
results indicate that the exact serial homology 
between the respiratory organs and prosomal 
appendages of chelicerates is not suffi ciently 
clear at present. 

 Beyond these studies, essentially nothing is 
known about the genetic patterning of the book 
gills and book lungs, the development of chelic-
erate tubular tracheae, or the relationship between 
the tracheae of apulmonate arachnids and derived 
spiders. Therefore, two key experiments must be 
conducted towards understanding the evolution 
of respiratory systems in Chelicerata with exist-
ing EvoDevo resources. First, a double knock-
down of the Hox genes  abd - A  and  abd - B  must be 
conducted in a spider and in an apulmonate 
arachnid (e.g.,  Phalangium opilio ) to test the 
serial homology of the respiratory organs and the 
prosomal endopods (i.e., legs) of these groups, 
with the prediction that both respiratory organ 
types of these arachnids should be homeotically 
transformed to legs if they are serially homolo-
gous to prosomal endopods and to each other. 
Second, the function of  pdm / nub  and  ap  must be 
characterised in the spider, to assess the alterna-
tive hypothesis of an epipodal origin of respira-
tory organs and spinnerets. If this hypothesised 
homology statement was true ( sensu  Damen et al. 
 2002 ), then knockdown of  pdm / nub  should 
severely affect the development of the book 
lungs, tubular tracheae, and spinnerets, but only 
the segmentation of the prosomal appendages. 
This result would support the proposed homol-
ogy to epipods, given that loss-of-function muta-
tions of  pdm / nub  in  Drosophila melanogaster  
result in loss of wing structures (Ng et al.  1995 ).  

    Evolution of the Spider Spinning 
Apparatus and Silk 

 Two minor orders of chelicerates produce silk, 
namely, some mites and pseudoscorpions, which 
utilise silks for tasks such as dispersal, protecting 
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eggs, and lining burrows (Beccaloni  2009 ). 
However, the most familiar silk-producing che-
licerates are of course the spiders. Spiders pro-
duce diverse types of silk, which has greatly 
contributed to their successful adaption to differ-
ent environments (Brunetta and Craig  2010 ). 
Spiders use silk to make cocoons to encase eggs 
and to build different types of webs (e.g., tube-, 
orb-, or wheel-shaped webs) as hiding places, to 
capture prey, and even as support for their respi-
ration under water, as in the case of air bells of 
aquatic spiders (Brunetta and Craig  2010 ; Foelix 
 2010 ). 

 In the course of adapting to different environ-
ments, spiders have evolved morphological dif-
ferences in their spinning apparatus and a great 
diversity in silk proteins within and between spe-
cies (Marples  1967 ; Gatesy et al.  2001 ; Challis 
et al.  2006 ). The silk-producing organ of all spi-
ders consists of the internal silk glands and the 
exterior spinnerets, but varies in number and 
composition between species. 

 Spider silk consists of fi brous proteins, which 
is stored in the silk glands in its liquid form and 
becomes solid through shearing upon excretion 
(Craig  1997 ). For various purposes, spiders can 
produce silks with distinct characteristics from 
different types of silk glands, which differ in 
morphology and function (Brunetta and Craig 
 2010 ). The simplest silk glands can be found in 
Orthognatha, whereas at least four different gland 
types occur in Ctenidae and up to eight distinc-
tive types are present in Orbiculariae (Peters 
 1955 ; Mullen  1969 ; Palmer et al.  1982 ). 

 In most spiders, the spinnerets are located at 
the posterior end of the ventral side of the opist-
hosoma and consist of a varying number of spin-
neret pairs with various spatial arrangements 
(Marples  1967 ; Shultz  1987 ). Mesothelae exhibit 
four pairs of spinnerets, which is considered the 
“primitive” state. The more derived Orthognatha 
bear two to three pairs and some labidognathous 
spiders have two pairs of spinnerets, but addition-
ally exhibit a specialised spinning structure, the 
cribellum (Shultz  1987 ). The spinnerets are cov-
ered with hairlike structures, the spigots, which 
are openings to the ducts that connect with the 
silk glands in the abdomen (Marples  1967 ). 

 Both the complexity of the spinning apparatus 
and the diverse composition of silks prompt 
questions regarding the evolutionary origins of 
the morphological and molecular apparatus 
underlying web spinning, with the corollary of 
the basis for spider web diversity. Different sce-
narios for the evolution of spigots and silk glands 
in spiders have been proposed. Some have argued 
that the silk glands evolved from a secretory 
organ, the coxal gland, on a modifi ed leg segment 
and that the spigots derived from simple hair 
structures (Bristowe  1932 ; Butt and Taylor  1991 ). 
Another hypothesis proposes that spigots are 
modifi ed sensory hairs, rather than simple hairs 
(Palmer  1991 ). Independently, it has been sug-
gested that silk glands developed from epidermal 
invagination events, comparable to the male gen-
ital glands (epiandrous glands) (Palmer  1991 ; 
Craig  1997 ). Hypotheses grounded in such mor-
phological studies are anticipated to be greatly 
informed by the advent of molecular and devel-
opmental genetic approaches. At present, com-
paratively little is understood about the genetic 
basis for spinneret and spigot development, 
whereas recent and redoubled efforts are shed-
ding light on the characterisation of spider silk 
genes (Hayashi and Lewis  1998 ,  2000 ; Hayashi 
et al.  1999 ; Ayoub et al.  2007 ,  2013 ; Garb et al. 
 2010 ; Clarke et al.  2014 ; Sanggaard et al.  2014 ). 

 To elucidate the evolutionary rise of spinneret, 
silk gland, and silk protein diversity, these efforts 
should be complemented by comparative mor-
phological, phylogenetic, and developmental 
studies, in tandem with comparative genetic and 
biochemical analysis of silk proteins. Such an 
integrative and cross-disciplinary pursuit is antic-
ipated to inform understanding of spider diversi-
fi cation, as well as key innovations in evolution, 
more broadly. 

 In addition to the examples of terrestrialisa-
tion and silk production outlined above, there are 
several important open questions that can be 
addressed by future studies of chelicerates in 
comparison to those of other metazoans to pro-
vide new insights into evolutionary developmen-
tal biology. Some of these open questions are 
highlighted below, but this list is by no means 
exhaustive.   
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    OPEN QUESTIONS 

•     How are book lungs, book gills, and tracheae 
patterned in the different chelicerate orders?  

•   What is the genetic basis for appendage diver-
sity across Chelicerata and how is each 
appendage type specifi ed?  

•   What is the genetic basis for sexual dimor-
phism in Chelicerata, and is this mechanism 
homologous to its mandibulate equivalent?  

•   How does the visual system develop, and what 
is the developmental genetic relationship 
between faceted eyes (Xiphosura only), lateral 
eyes (most arachnids), and median ocelli (all 
Chelicerata)?  

•   How is the development of the digestive sys-
tem regulated in chelicerates?  

•   When during their development do chelicer-
ates other than spiders and mites specify germ 
cells and which molecular mechanisms do 
they employ?  

•   How is the formation of the SAZ regulated 
and how are new segments generated from 
this tissue?  

•   Besides  hb  and  Dll , which other factors are 
required for segmentation of the prosoma?        
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