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Abstract: 
 

The carbon cycle model of Rothman et al. [2003] is modified by allowing 
temperature dependent photosynthetic and remineralization fluxes and through the 
introduction of a temperature dependent photosynthetic isotopic fractionation.  The 
carbon model is then coupled to the energy balance/ice-sheet model (EBM)/(ISM) of 
Peltier and Tarasov [1999].  Two major solutions are found.  For a magnitude of the 
remineralization flux parameter of 0.0003 or less, a hysteresis loop forms in the 
temperature-dRad phase space with oscillations having a period controlled by the flux 
parameter and which can have glacial-interglacial timescales greater than 3Myr.  When 
the magnitude of the remineralization flux parameter is greater than or equal to 0.0006, 
the system approaches an equilibrium state.  There is a suggestion in the results of the 
simulation with the remineralization flux parameter set to 0.0006 that a Hard Snowball 
Earth state could exist for values of the flux parameter greater than 0.0006.  Isotopic data 
for inorganic carbon is produced which matches data from the Neoproterozoic era 
remarkably well in both the complicated trajectory that exists in the inorganic carbon 
isotopic composition vs. photosynthetic isotopic fractionation phase plane and in the 
large scale variations of isotopic composition for inorganic carbon. 
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While writing up the thesis an error in equation (28) was propagated through the 
equations.  The following are corrections: 
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1. Introduction 

 

1.1 Neoproterozoic Climate, Snowball Earth, and δ13C 

One of the major driving forces behind the Snowball Earth hypothesis, the 

suggestion that the Earth was once 

entirely ice-covered, is the observed 

large amplitude variability in del-13C 

(δ13C) measured in carbonate 

sequences of the Neoproterozoic era.  

The Neoproterozoic era spans from 

roughly one billion years ago to 

around 550 million years ago.  Figure 

1 shows the δ13C time series of 

Halverson et al. [2005] for most of 

the Neoproterozoic era.  It has been 

suggested that the variability in the 

δ13C time series could have occurred 

if photosynthetic production had all 

but nearly ceased.  

While several groups originally argued that photosynthetic life could have found 

refuge during a Snowball Earth event at equatorial thin-ice regions where light could still 

 

 

Figure 1: Two of the δ13C time series  
of Halverson et al. [2005] 
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penetrate the thin ice (<10m) [eg. McKay, 2000], it was later shown that regions of thin 

ice could not survive at the equator due to crystallized brine pockets of salt which would 

alter the albedo and surface heat flux of the ice and also due to the intrusion of sea 

glaciers which would rip apart and destroy thin ice [Warren et al. 2002].  Thus the 

scenario of an ice encapsulated Earth would provide the necessary mechanism to halt 

photosynthetic production as little light would be able to penetrate the deep ice of the 

“Hard Snowball” like state and could have lead to the large amplitude variability depicted 

in figure 1.  

However, the implications of a Hard Snowball event and the consequent halt of 

photosynthetic life which would follow is a source of major controversy as it seems to 

conflict with the history of biological evolution [eg. Runnegar, 2000; Knoll, 2003].  A 

study of the evolution of early life forms has shown that the ancestors of the biota 

involved in the “Cambrian Explosion of Life” had existed in the Neoproterozoic era as 

well in the form of eukaryotic life forms (algae).  Had the earth entirely frozen over, thick 

ice would have ended most photosynthetic activity and likely also resulted in the 

extinction of species that required photosynthesis for survival and these life forms would 

not have been around to evolve. 

Fortunately, an alternative to the Snowball Hypothesis was presented in a paper 

by Hyde et al. [2000] in which it was suggested that the most likely state of the climate 

system during Neoproterozoic time would be one in which the earth only partially froze 

over with open water still existing near the equator.  This new solution has been named 

the “Oasis solution” or the “Slushball Earth” solution.  While the Slushball Earth solution 

seems to avoid the pitfall of terminating photosynthetic life, it has been criticized on the 
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grounds that it is unable to produce the appropriate timescale between glacial and 

interglacial states (>~3Myr) [Schrag et al., 2001].  A further criticism of the Slushball 

solution is the claim that such solutions are unable to produce variations of the observed 

magnitude in the δ13C time series. 

This paper will demonstrate the importance and overall effect of the carbon cycle 

on Neoproterozoic climate dynamics and its affect on the timescales between glacial and 

interglacial events as well as its influence on δ13C values. 

 

1.2 The Neoproterozoic Carbon Model (The Rothman Model) 

A Neoproterozoic model of the carbon cycle was constructed by Rothman et al. 

[2003] in which the carbon in the oceans and atmosphere was modeled as two reservoirs 

of constant mass; one for organic carbon and the second for inorganic carbon.  The 

masses of the two reservoirs were assumed to be constant with the system operating at 

steady state.  The model is shown in figure 2.  The reservoir on the left represents the 

inorganic carbon with mass M1, time constant τ1, and isotopic composition δa (shown as 

δ1).   Similarly, the reservoir on the right represents the organic carbon with mass M2, 

time constant τ2, and isotopic composition δo (shown as δ2).  The symbols and subscripts 

are consistent with those used by Rothman.  The isotopic composition is defined as 

!!
"

#
$$
%

& '
=

STD

STDx

x

R

RR
1000(  where 

C

C
R
x 12

13

=  is the isotopic ratio for the sample.  δa is also 

commonly referred to as δ13C (as in the discussion above). 

Fluxes between reservoirs represent the photosynthetic flux as J12 (including 

isotopic depletion by an amount εo), and remineralization flux as J21.  Fluxes b1 and b2 out 
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of the reservoirs represent carbon burial.  The flux Ji into the inorganic reservoir 

represents volcanic and other inputs with average isotopic content δi.   

 

Figure 2:  The Rothman Carbon Cycle.  Figure as in 
Rothman et al. [2003] 

 

By definition, J1 and J2 are the total mass fluxes into and out of the inorganic and 

organic carbon reservoirs respectively.  Thus at equilibrium,  
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 where the subscript e denotes an equilibrium value.  

 The time constants τ1 and τ2 are taken at steady state and are defined as  
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Other constants defined and used are the normalized photosynthetic flux, φ12, 

defined as the ratio of the flux J12 to the flux J1, the organic portion of the output as a 

fraction of the total output, f, and the ratio of the two time constants, µ.  These values are 

given by: 
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 The defining equations for the system presented by Rothman et al. are 
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 For constant
e

12
! , the fluxes are constant in the Rothman model.  Substituting the 

first eq’n of (1) into (5) gives 
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 Combining the first of eq’n (1) with eq’n (3) gives 
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 Substituting (13) into (14) and solving for b1 gives 
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 Substituting the second eq’n of (2) into (4) and then substituting that and eq’n (3) 

into (7) gives 
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 Now making use of eq’n (5) and solving for M2e in (16) results in 
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 Equation (17) gives the equilibrium size of the organic carbon reservoir relative to 

the inorganic carbon reservoir. 

 Solving for b2 in (6) and substituting in b1 from (15) provides 
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Adding eqn’s (10) and (11) together at steady state (ie. dM1/dt=0 and dM2/dt=0) 

and solving for Ji gives 
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By introducing a time dependent sinusoidal value for ε and assuming that the 

mass of the organic reservoir was approximately one hundred times that of the organic, 



J. W. Crowley 

7 

Rothman et al. were able to reproduce phase curves in the δa vs. ε phase plane that 

resembled observational data. 

 

1.3 The Energy Balance Model / Ice Sheet Model 

 The carbon cycle is coupled to an energy balance model (EBM) that is coupled to 

an ice sheet model (ISM).   

The coupled EBM/ISM model was previously used to model climate dynamics 

related to the plausibility of the “snowball bifurcation” by Peltier and Tarsov [Peltier et 

al., 2004] as well as predicting the evolutionary history of the North American and 

Eurasian ice sheets over the last glacial cycle [Tarasov and Peltier, 1999, Peltier, 2002].  

The global EBM is essentially that of North et al. [1983] to which has been added a full 

three dimensional thermomechanical ISM.  The full model consists of several individual 

elements linked by nonlinear partial differential equations.  The main component of the 

EBM is the nonlinear diffusion equation: 

[ ] ),(
4
),()()(

),(
),( tS

Q
traBTATD

t

trT
trC sshh

s !!
"

"
++#$%$=   (23) 

in which C(r, t) is the space and time dependent heat capacity of the surface of the sphere 

which is used to differentiate continental from oceanic surface and ice covered from non-

ice-covered surface.  D(θ) is the diffusion coefficient which is latitude dependent, Ts(r, t) 

is the time and space dependent surface temperature, and the values of A and B are 

associated with the black body emission of the earth.  The space and time dependent 

function S(θ, t) represents the variation of the insulation incident at the top of the 

atmosphere which includes the change due to deviations in the parameters that 

correspond to the geometry of Earth’s orbit around the Sun.  The space and time 
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dependent parameter a(r, t) is the surface albedo which is used to distinguish a highly 

reflective surface such as ice from less reflective surfaces such as continents.  Q is the 

solar constant and is equal to approximately 1370W/m2. 

Modifying the coefficient A, provides a reduction or enhancement of the infrared 

forcing at the surface that arises from a change in the atmospheric carbon dioxide 

concentration.  It is through the parameter A that the carbon cycle model is coupled to the 

EBM. 

The EBM is coupled to a three-dimensional thermo-mechanical model of 

continental ice-sheet evolution.  The central component of the ISM is the non-linear 

diffusion equation for ice thickness H which is given by equation (24). 
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 in which h is the surface elevation above present-day sea level, ρi is the density of 

ice, g is the acceleration due to gravity, T is the temperature of the ice, and G is the net 

mass balance.  Both (23) and (24) are solved on the surface of the sphere.  In (24), the 

A(T) is a term which represents the degree of crystalline anisotropy and/or impurities in 

the ice. 

 The final component of the ice-sheet coupled EBM consists of a model of the 

glacial isostatic adjustment (GIA) process represented by a simple “damped return to 

equilibrium” model that has the following form: 
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 in which τ = 4kyr is the assumed constant relaxation time of the 

adjustment process, ho(r, 0) is the topography with respect to sea level of the unglaciated 

state, ρi and ρE are the densities of ice and Earth respectively, and h is the vertical 

bedrock deflection due to loading.  

A more detailed description of the EBM/ISM may be found in the cited references 

and thus further details are omitted here. 

The EBM/ISM solves a spatially and time dependent problem in which surface 

temperature values for the earth, as well as ice cover for both land and sea, are variables 

among the solution set.  The EMB/ISM computes a mean sea level temperature for a 

small increment of time which is passed to the carbon cycle model.  The carbon cycle 

model then calculates the new temperature dependent fluxes and photosynthetic isotopic 

fractionation which it then uses to compute the new carbon reservoir sizes and their 

respective isotopic compositions.  The carbon cycle model then passes the new 

atmospheric carbon dioxide concentration to the EBM/ISM which uses it to calculate a 

new mean sea level temperature for the earth.  And consequently the models are coupled 

and interact through the time dependent values of temperature and atmospheric carbon 

dioxide concentration. 
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2. The New Model 

 

2.1 Temperature-Dependent Mass Transport through Oxygen Solubility 

Allowing mass transport between the two carbon reservoirs modifies Rothman’s 

model and allows it to be used as a primitive method for predicting atmospheric carbon 

dioxide levels.   

The main idea is that the remineralization flux should be temperature dependent.  

As mentioned in Rothman et al. [2003], as temperatures decrease, the solubility of 

oxygen in the ocean increases and surface waters become oxygen enriched.  This oxygen 

enrichment increases the rate of oxidation of organic carbons, thus increasing the amount 

of inorganic carbon in the oceans.  As the atmosphere equilibrates with surface waters on 

a short time scale (less than a thousand years), its concentration of carbon dioxide will 

increase as well. 

 

 
Figure 3: Oxygen Solubility as a Function of Temperature and Salinity 
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Figure 3 shows how the solubility of oxygen in salt water changes as a function of 

temperature.  The solubility curves for oxygen were generated using the equations for 

oxygen solubility in seawater developed by Garcia et al. [1992].  The different curves 

shown are for various oceanic salinities. 

 In the revised carbon model a linear function is used to approximate the solubility 

of oxygen in the ocean as a function of temperature and is given by equation (27), where 

the e subscript denotes an equilibrium value at an equilibrium temperature Te, and A is a 

constant. 

( )
esolsol
TTAOO

e

!+=
22

      (27) 

           The remineralization flux is allowed to be linearly proportional to the oxygen 

solubility with an equilibrium flux of J21e equal to that used in Rothman’s model at an 

equilibrium temperature Te.  Away from equilibrium, the flux J21 is allowed to vary as a 

function of the oxygen solubility and is expressed by equation (28), with B as a constant. 
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 Substituting equation (27) into equation (28) and letting F21=-AB/
esol

O
2

, equation 

(29) shows how J21 may be expressed explicitly as a function of temperature.  Note that 

the sign of F21 will be positive by definition since A is expected to be negative (negative 

slope of oxygen solubility curve) and B and O2sole are both positive values. 
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If the mass of the inorganic carbon reservoir increases beyond its regular steady 

state value then a similar argument could be made to increase the photosynthetic flux if 
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one desired.  Thus for generality, the photosynthetic flux J12 will be allowed to vary as a 

function of temperature according to equation (30). 
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The photosynthetic and remineralization fluxes may be expressed as equations 

(31) and (32) after substituting in the steady state fluxes from equations (21) and (22) 

respectively. 
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 The inward and burial fluxes remain the same as in the Rothman model to ensure 

mass conservation for the entire system and are given by equations (15), (18), and (20). 

 

2.2 Temperature-Dependent Isotopic Fractionation 

 A second critical change to the model which has no affect on mass transport but 

that does play an important role in the behavior of the isotopic composition is the added 

temperature dependence for the photosynthetic isotopic fractionation value ε.  This 

relationship is justified on the grounds of several papers, including Wong and Sackett 

[1978], which suggest that the value for photosynthetic isotopic fractionation for certain 

species may vary as much as 0.4%/oC.  A linear relationship will be used for the isotopic 

fractionation and is given by equation (33). 

( )efraco TTa !!= ""         (33) 
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2.3 Summary of Model 

 Using equations (15), (18), (20), (31), (32), and (33) for b1, b2, Ji, J12, J21, and ε 

respectively, and substituting them into equations (8) through (11) gives the time-

dependent equations for the new system.  They are: 
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The model is completely described by specifying 
e

12
! , µ, τ1, εo, δi, afrac, F12, F21, 

Te, and f. 
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3 Experimental Setup: 

 

3.1 The EBM/ISM: 

 All inputs to the EBM/ISM are the same as were used in Peltier et al. [2004].  The 

one exception being that the carbon dioxide concentration is variable and is determined 

by the coupled carbon cycle model.   

The effect of carbon dioxide is expressed in the EBM/ISM as a deviation, in 

Watts per square meter, of the surface radiation balance due to a decrease or increase in 

atmospheric pCO2, as in Peltier et al [2004], and is given by equation (38). 

!!
"

#
$$
%

&
'=

o
C

C
dRad ln35.5      (38) 

 The parameter dRad is linearly proportional to the parameter A of equation (23) 

with a proportionality constant depending on Neoproterozoic conditions and described in 

Peltier et al. [2004]. 

 If one assumes that the total amount of CO2 in the system is some constant 

fraction, k1, of the total amount of inorganic carbon, M1, in the system, then 

! 

M
CO

2
Tot

= k
1
M
1
       (39) 

 And if the amount of CO2 expected to be in the atmosphere is some constant 

fraction, say k2, of the total mass of CO2, then 

! 

M
CO

2
Atm

= k
2
M

CO
2
Tot

      (40) 

 Equation (40) is clearly an approximation and an assumption of the model, as one 

would expect the partitioning of CO2 between the atmosphere and the oceans to be 

temperature dependent due to the temperature dependence of CO2 solubility.  This model 
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makes the assumption that the effect of the temperature dependent carbon dioxide 

solubility on the partitioning of CO2 between the atmosphere and the ocean will be 

negligible compared to the effect of the change in atmospheric carbon dioxide resulting 

from the increase or decrease in the inorganic carbon reservoir size. 

 Furthermore, one may relate the partial pressure of CO2 in the atmosphere, pCO2, 

to the total mass of CO2 in the atmosphere by another constant, say k3 

! 

pCO
2

= k
3
MCO

2
Atm       (41) 

 Combining (39) through (41) yields 

! 

pCO
2

= kM
1
 with 

! 

k = k
1
k
2
k
3
    (42) 

 If one takes the ratio of pCO2(t)  (at some time t) to pCO2o (where pCO2o is some 

reference (or initial) atmospheric carbon dioxide partial pressure) then one obtains 

! 

pCO
2
(t)

pCO
20

=
M
1
(t)

M
10

      (43) 

For simplicity, the ratio of the instantaneous to reference (or initial) atmospheric 

mass of carbon dioxide is used rather than the ratio of the instantaneous to reference (or 

initial) atmospheric carbon dioxide concentration (in partial pressure).  

 

3.2 The Carbon Cycle Model: 

 Several runs were completed in order to study the effect of changes in the 

parameters F21 and afrac as well as running the model both synchronously and 

asynchronously. 

 The coupled model was run with the same parameter values as in Rothman’s 

paper [2003].  The values used for the carbon model constants are given in table 1 on the 
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following page.  Just as in Rothman’s paper, the values of 
e

12
!  and µ produce an organic 

reservoir roughly 100 times larger then the inorganic reservoir and result in isotopic 

changes that are most obvious in the inorganic carbon reservoir’s isotopic data.  The 

initial mass of the inorganic carbon reservoir used is somewhat arbitrary and does not 

affect the dynamics of the problem in any way.  This can be understood by noting where 

the time dependent and initial mass terms enter into the equations of the system 

(equations 34-37).  The initial value chosen for the runs was 40,000 Gig tons and is a 

rough estimate of the amount of inorganic carbon in the oceans today [Kump, 2004].  The 

parameter Te was help constant at 1. 

 

 

Parameter Description Value Units 
τ1 Inorganic Carbon Reservoir Time Constant 1000 Years 
µ Ratio of Time Constants 10-2 Unitless 
ε0 Isotopic Fractionation 28% Per mil 
δi Input Flux Isotopic Composition -6% Per mil 
φ12 Normalized photosynthetic flux 0.999 Unitless 
f  Ratio of Organic Burial 0.3 Unitless 
Te Equilibrium Temperature 1 Degrees 

Celsius 
M1i Initial Mass of Inorganic Carbon 40000 Giga Tons 

 
F12 Flux parameter for photosynthetic flux 

 
0 Unitless 

F21 Flux parameter for remineralization flux 
 

Var* Unitless 

afrac Photosynthetic isotopic fractionation constant Var* Per mil/Co 
 

Table 1: Carbon Cycle Constants 
Var* indicates values which are varied for different model runs 
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3.3 The Coupling of the Models: 

The physical coupling of the carbon cycle model and the EBM/ISM was 

performed by a summer NSERC student, Julien Rioux, in the department of physics at 

the University of Toronto.  The data used in the following results was produced by Julien 

through the use of the coupled model code. 
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4 Results: 

 

4.1 Existence of a Hysteresis Loop 

For the first run the values of F21 and afrac were set to 0.0003 and 0.3 %/oC (per 

mill) respectively and the model was run synchronously.   

 The output mean sea level temperature, atmospheric carbon dioxide concentration 

(dRad), and mass of the inorganic carbon reservoir are all shown as a function of time in 

figure 4.  The temperature fluctuates between approximately -9 oC and 9 oC with a 

regular period of 2040 ± 40 Ka.  The system tends to cool and warm very rapidly with 

periods of slower temperature change between extremes.  This is likely due to positive 

feedback mechanisms in the EBM/ISM such as ice sheet-albedo feedback.  Figure 5 
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Figure 4: (Top) Mean sea level temperature vs. time, 
 (Middle) Atmospheric carbon dioxide concentration 

(dRad) vs. time, (Bottom) Mass of carbon vs. time   

 
Figure 5: (Top)  δ13C  vs. time 

(Bottom) “afrac” vs. time 
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shows both δ13C and afrac as functions of time in the model.  The first 5Myr of simulation 

in figure 5 demonstrates that the δ13C variations will be small as long as afrac is set to 

zero.  It is not until afrac is set to 0.3 %/oC (per mill) that the variations in δ13C become 

significant with respect to Neoproterozoic δ13C variations. 

 Figure 6 shows the mean sea level temperature as a function of atmospheric 

carbon dioxide concentration (dRad).  

The red curve is for roughly the first four 

million years and the blue is for the 

remaining four million years of the 

simulation.  The two colors show that the 

cycle is fixed and stable and figure 4 

shows no evidence of the system drifting 

towards an equilibrium state.   

 

4.2 Existence of a Steady State Solution: 

A second synchronous run with F21 set to 0.0006 and afrac again at 0.3 %/oC (per 

mill) behaved quite differently from the previous run with no stable cycle existing and the 

system moving towards a steady state. 

Figures 7 and 8 show the mean sea level temperature and the mass of the 

inorganic carbon reservoir, both as functions of time.  Figure 9 displays both mean sea 

level temperature and the inorganic carbon reservoir size on the same plot to show the 

relative phases of the two.  Both figures 7 and 8 show that the system relaxes to a steady 

state and figure 9 displays how the phase difference between the maximums in reservoir 
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Figure 6: Mean sea level temperature vs. 
atmospheric carbon dioxide concentration (dRad) 
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mass and temperature decrease as time progresses.  With the magnitude of F21 doubled 

from the previous run, it seems that the system is now able to exchange carbon between 

the reservoirs fast enough that the carbon cycle is able to stabilize the entire system.  In 

other words, the carbon cycle “catches” up with the climate model. 

It should also be noted that the period of the oscillations is approximately half that 

of the previous run and this seems to suggest that the period is strongly dependent on the 

value of the parameter F21. 

  
Figure 7: Mean sea level temperature vs. time Figure 8: Mass of inorganic carbon vs. time  

  
Figure 9: Mass of inorganic carbon and mean sea 

level temperature vs. time 
Figure 10: Mean sea level temperature vs. 

atmospheric carbon dioxide concentration (dRad) 
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 Figure 10 shows the same type of temperature vs. atmospheric carbon dioxide 

concentration plot as was given in figure 6 for the first run.  Again, the red curve is for 

the first half of the simulation in time and the blue curve for the second half.  Figure 10 

shows how the system behaves as it approaches its equilibrium state.  The large path of 

the red curve and the short path of the blue curve illustrate how the dynamics of the 

system slow down as equilibrium is achieved. 

 An additional important observation taken from figure 10 is the apparent 

overshoot that the system makes as it descends along the “hot” upper branch of the 

hysteresis loop for the first time.  Comparing the hysteresis loop of figure 10 to that of 6 

shows that while the right side of the loops are close to identical, the lower left corner of 

the loop in figure 10 reaches both a lower temperature and a lower value of dRad than 

that of figure 6.   

 

4.3 Behavior of the Carbon Isotopic Composition: 

 Setting the parameter afrac to 0.3 

%/oC (per mill) provides a very 

promising result that strengthens the 

validity of the model.  The isotopic 

fractionation ε varies as a function of 

temperature as described by equation 

(30) and affects the isotopic compositions 

of both the organic and inorganic carbon 

reservoirs as mass is exchanged.  The inorganic carbon reservoir is affected to a greater 

 
Figure 11: Isotopic composition of inorganic  

carbon vs. the temperature dependent  
isotopic fractionation 
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extent due to its relatively smaller size.  The effect may be seen in figure 11, which 

shows the isotopic composition of the inorganic reservoir, δa, as a function of the isotopic 

fractionation ε.  The resulting relationship is a complex yet well behaved cycle.  Figure 

11 comes from the F21 = 0.0003 synchronous run and spans a time of approximately 6.5 

million years, traversing just over 3 complete cycles.   

 

4.4 Running the Model Asynchronously: 

Only one asynchronous run was attempted, as it was not completely successful.  

The values for F21 and afrac were again 0.0003 and 0.30 %/oC (per mill) respectively.  The 

model was run with the carbon cycle module time stepping at intervals of 1,000 years and 

the EBM/ISM stepping at intervals of 10,000 years. 

Figure 12 compares the result of the mass of the inorganic carbon reservoir of the 

asynchronous run with that of the synchronous run with the same parameter settings. 

The asynchronous run was found to evolve slower than that of the synchronous 

one. 

It has not yet been determined if this result is due to problems with the forward 

solver or an issue with the time stepping. 

It is expected that the system 

should be able to be run asynchronously 

since the carbon cycle evolves much 

slower than that of the EBM/ISM.  The 

asynchronous trials are still being 

developed. 
 

Figure 12: Inorganic carbon reservoir mass for  
synchronous and asynchronous runs 
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5 Discussion: 

 

5.1 Overall effect of the Carbon Cycle on the Solution: 

 While the carbon cycle is simple in design, Rothman has validated its results at 

steady state and its new behavior with the addition of mass transport is entirely plausible. 

 Temperature dependent mass transport in the model introduces a mechanism for 

the carbon-cycle/EBM/ISM to behave in either a cyclic fashion or to approach an 

equilibrium state.  A time dependent flux parameter, F21, can allow the system to move 

back and forth between the two types of behavior. 

 The two synchronously run trials with differing values of F21 demonstrate that the 

period of oscillation in the climate system is heavily dependent on the carbon cycle and 

as such may be controlled by changing the flux parameter.  Thus reducing F21 by a factor 

of ten would allow for “ice ages” with periods approximately ten times longer.   

As the isotopic data will oscillate with a period equal to the period of oscillations 

of the carbon reservoirs mass, the coupled model can be made to produce data that fits 

the somewhat cyclic data of the Neoproterozoic era.  Due to computational burden, runs 

of hundreds of millions of years of simulation time with F21 << 0.0003 could not be 

attempted. 

 For F21 values of 0.0003 and lower the system was locked in a stable limit cycle 

and evolved at a rate (and with a period) determined by the magnitude of F21.  Figure 6 

may be compared with the hysteresis loop of Peltier et al. [2004] that was a solution for 

steady states using the same EBM/ISM described above.  Observation shows that the two 
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solutions are in agreement and that the Earth would not enter into a “Hard Snowball” 

state for F21 ≤ 0.0003. 

For F21 values equal to or greater than 0.0006, the solution is quite different.  The 

system settled to an equilibrium state and broke away from the cyclic climate behavior.  

The systems overshoot on its first descent along the “hot” branch of the hysteresis loop 

seems to suggest a rather important possibility; that the system may in fact be capable of 

much colder conditions due to the “momentum” of the system.  The larger value of F21 

allows the reservoirs to exchange mass at an increased rate.  If the exchange of mass is 

rapid enough it may be possible for the entire system to be “thrown” off of the hysteresis 

loop and into a much colder state, as is partially demonstrated by figure 10.  This result 

could demonstrate that this model is capable of displaying both “Snowball” and 

“Slushball” behavior for different values of the remineralization flux parameter F21. 

For some F21 value between 0.0006 and 0.0003 the system moves from its stable 

limit cycle to an equilibrium state.  This result places an upper bound on the length of 

time it would take for the Earth to exit from the “ice age cycles” to a more steady state.  

Thus the upper bound is the period of approximately 2 million years, obtained from the 

F21 = 0.0003 run.   

If the system were in a state with a flux parameter value less than 0.0003, it would 

be forced to oscillate between extreme warm and cold climates with a period dictated by 

the influence of oxygen solubility and the carbon cycle and a temperature magnitude 

bounded by the upper and lower bounds of the hysteresis loop.  If something in the 

system’s carbon cycle dynamics changed, the flux parameter would also be expected to 

change and could cause the system to exit from the cyclic pattern, potentially overshoot 
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the hysteresis loop and end up in some cold state, and then move to a more stable climate 

behavior.   

The introduction of evolving multi-cellular organisms with organic carbon rich 

protective exoskeletons at the Precambrian explosion of life would no doubt have had a 

profound effect on the carbon cycle through their alteration of the remineralization flux 

parameter.  This could account for the apparent change in the behavior of the δ13C value 

at the end of the Neoproterozoic and would be entirely consistent with isotopic data for 

the Neoproterozoic and Precambrian eras.  

 

5.2 Isotopic Behavior: 

 Just as the magnitude of the flux parameter may be changed to scale the 

behavior of the system in time, the constant afrac in equation 16 for the isotopic 

fractionation may also be changed to alter the scale of the isotopic results.  

As mentioned above, by introducing a time dependent sinusoidal value for ε and 

assuming that the mass of the organic reservoir was approximately one hundred times 

that of the organic, Rothman et al. were able to reproduce phase curves in the δa vs. ε 

phase plane that resembled observational data.  Figure 13, taken from Rothman et al. 

[2003], shows isotopic data for the Neoproterozoic era from 738-549 million years ago.  

The data has several close similarities to the results shown in figure 11.   

To begin with, the shape of the trajectory in figure 11 agrees with the 

Neoproterozoic data well.  The broad upper end and thin elongated bottom of the loop in 
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figure 11 seem to match the isotopic data well 

and appear a much better fit than the simple 

ellipsoid solutions of Rothman et al. [2003]. 

Although the scales do not match, simply doubling afrac would allow both the 

isotopic fractionation and the inorganic isotopic composition to deviate from their steady 

state values by as much as twice their present amounts.  By adjusting εo and δi in the 

model, one can effectively translate the resulting image in the δ13C vs. ε phase space.  

And furthermore, changing the magnitude of F21 would allow for the results to match the 

data on similar time scales (as discussed above).  Thus varying the model parameters 

should produce highly agreeable results to the observationally determined 

Neoproterozoic data.  And through finding the values of the parameters which produce 

the highest level of agreement between simulation and observational data, it will also be 

possible to infer a great deal about Neoproterozoic conditions such as the average 

photosynthetic isotopic fractionation and the degree of its temperature dependence. 

Here it is important to note that it is primarily the change in the isotopic 

fractionation due to temperature dependence, occurring simultaneously with the mass 

transport, which causes the large scale δ13C variations, and not the mass transport alone.  

This point is made clear by figure 5.  As a result of the δ13C results from the model being 

highly sensitive to the value of afrac, a thorough investigation of Neoproterozoic life 

forms and their photosynthetic activity should be undertaken to explore the possible and 

acceptable values which may be used for further Neoproterozoic simulations. 

Figure 13: Trajectories in the del-13C vs. ε  
phase plane.  Arrows indicate the forward  

direction in time which spans from 738Myr  
to 549Mry ago.  Figure reproduced from  

Rothman et al. [2003] 
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This solution thus provides a mechanism for producing large δ13C variations in a 

Neoproterozoic environment without having to resort to the “Hard Snowball Earth” 

solution and the implied limitations to photosynthetic life that accompany it. 

 While a greater analysis of the system would be beneficial to increasing our 

understanding regarding the threshold value of F21 which separates the equilibrium 

solution of figure 10 from the cyclic solution of figure 6, the possible existence of the 

Snowball solution in the model, the exact relationship between the value of F21 and the 

period of oscillations, and the actual degree of fit that one can obtain for the isotopic data, 

the program is rather temperamental and further work is required before additional 

simulations may be attempted. 
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6 Conclusions: 

 

 The carbon cycle model of Rothman et al. [2003] was modified by allowing the 

photosynthetic and remineralization fluxes to be temperature dependent as well as by 

introducing a temperature dependent photosynthetic isotopic fractionation. 

 The result of coupling the new carbon cycle model to an EBM/ISM was to 

produce a hysteresis loop in the temperature vs. dRad phase space that is consistent with 

the equilibrium solutions of Peltier and Tarasov [2004] for a remineralization flux 

parameter value of 0.0003 or less.  This is a direct result of the EBM/ISM reacting faster 

than the carbon cycle. 

 The magnitude of the remineralization flux parameter was found to be inversely 

proportional to the period of the oscillations for the solutions with a hysteresis loop.  

Thus by decreasing the magnitude of F21, oscillations that occur on time scales much 

longer than one or two million years can be easily achieved without changing the 

behavior of the system.  Again, this is a direct result of the carbon cycle evolving slower 

than the EBM/ISM.  This demonstrates that the Oasis/Slushball solutions can indeed 

produce glacial-interglacial timescales greater than 3Myr. 

 It was also observed that when the magnitude of the remineralization flux 

parameter was set greater than or equal to 0.0006, the carbon cycle was able to exchange 

mass fast enough to stabilize the entire Carbon/EBM/ISM model and an equilibrium state 

was achieved.  The simulation results also suggested the possible existence of a colder 

Snowball-like state for values of F21 greater than 0.0006. 
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The threshold value for the remineralization flux parameter that yields a cyclic 

solution rather than a steady-state solution is known to be between 0.0003 and 0.0006.  

 Isotopic data for inorganic carbon was produced that matched Neoproterozoic 

data well by allowing the isotopic fractionation to vary as a linear function of 

temperature.  It was found that a temperature dependent mass transfer alone could not 

produce large δ13C variations but, when coupled to a temperature dependent 

photosynthetic isotopic fractionation, large deviations in δ13C can occur.  The shape of 

the cycle produced in the inorganic carbon isotopic composition vs. isotopic fractionation 

phase plane had remarkable similarities to the actual Neoproterozoic data that did not 

show up in the simulations and results produced by Rothman et al. [2003].   

The results of this paper thus demonstrate that the model produces Oasis solutions 

that are in fact capable of producing large scale δ13C variations of the historically 

observed magnitudes.  An additional result is that the model may also be capable of 

producing Snowball events for large values of F21.  It is therefore important that a further 

study be undertaken to explore the acceptable range of values of F21 which may be used 

in the model. 

 Asynchronous runs were attempted but were not successful.  An investigation into 

running the model asynchronously is currently taking place, and once complete, the 

carbon cycle model will be coupled and run asynchronously with a more detailed GCM 

such as the Community Climate System Model (CCSM) of the US National Center for 

Atmospheric Research (NCAR).  These simulations will be required to further verify the 

existence of the hysteresis loop as well as the results of this paper. 
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