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Abstract

Total alkalinity (TA) is one of the few measurable quantities that can be used together with other quantities to calculate
concentrations of species of the carbonate system (CO2, HCO3

−, CO3
2−, H+, OH−). TA and dissolved inorganic carbon (DIC) are

conservative quantities with respect to mixing and changes in temperature and pressure and are, therefore, used in oceanic carbon
cycle models. Thus it is important to understand the changes of TA due to various biogeochemical processes such as formation and
remineralization of organic matter by microalgae, precipitation and dissolution of calcium carbonate. Unfortunately deriving such
changes from the common expression for TA in terms of concentrations of non-conservative chemical species (HCO3

−, CO3
2−,

B(OH)4
−, H+, OH−, etc.) is rarely obvious.

Here an expression for TA (TAec) in terms of the total concentrations of certain major ions (Na+, Cl−, Ca2+ etc.) and the total
concentrations of various acid-base species (total phosphate etc.) is derived from Dickson's original definition of TA under the
constraint of electroneutrality. Changes of TA by various biogeochemical processes are easy to derive from this so-called explicit
conservative expression for TA because each term in this expression is independent of changes of temperature or pressure within
the ranges normally encountered in the ocean and obeys a linear mixing relation.

Further, the constrains of electroneutrality for nutrient uptake by microalgae and photoautotrophs are discussed. A so-called
nutrient-H+-compensation principle is proposed. This principle in combination with TAec allows one to make predictions for
changes in TA due to uptake of nutrients that are consistent with observations. A new prediction based on this principle is the
change in TA due to nitrogen fixation followed by remineralization of organic matter and subsequent nitrification of ammonia
which implies a significant sink of TA in tropical and subtropical regions where most of the nitrogen fixation takes place.
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1. Introduction

Total alkalinity is an important and very useful
concept in the context of the carbonate system in
seawater. Already in the 19th century it was known
that seawater is alkaline and that it contains large
amounts of dissolved inorganic carbon (DIC) which
can be released in the form of CO2 by titration with a
strong acid. The alkalinity of seawater is much higher
than that of freshwater and so is the content of DIC.
Although several authors (for example, Jacobsen,
1873) supposed a connection between salt and DIC,
the development of a clear concept of alkalinity had to
await progress in understanding the form of salts in
aqueous solutions (ions instead of undissociated
compounds) and an advanced concept of acids and
bases (proton donors and acceptors; Brønsted, 1923;
Lowry, 1923a,b). In the 1930s alkalinity was defined
operationally as the number of milliequivalents of
hydrogen ion neutralized by one liter of water at 20°C,
without detailing which chemical species are actually
responsible for the observed neutralization. Rakestraw
(1949) was the first to discuss how the ‘concept of
proton donors and acceptors could be used to shed
light on exactly what it was that an alkalinity titration
measured’ (Dickson, 1992). Rakestraw's expression,
which considered only bicarbonate, carbonate ion and
borate, is still a first approximation to the most recent
definition by Dickson (1981), cf. DOE (1994). The
historical development of the alkalinity concept is
discussed in detail by Dickson (1992). Even today
several different definitions of TA are in use and can
be found in textbooks: a fact that may lead to
confusion. The concept of TA has been characterized
as difficult to grasp and to explain.

The plan of the current paper is as follows. In
Section 2 we consider a system with simple chemical
composition where the alkalinity concept is easily
explained. Based on the understanding of this system
we discuss the generalization of the TA concept and
hence Dickson's definition. Dickson's expression for
TA in natural water samples is given in Section 3.11.
The combination of Dickson's expression for alkalin-
ity with the expression for the charge balance
(electroneutrality) of the solution leads to an expres-
sion for TA in terms of conservative species and
conservative total concentrations (Section 4). Although
this expression is easy to derive, it has not been
published before, to the best of our knowledge, and is
very useful to calculate changes in alkalinity due to
various biogeochemical processes (Section 5). An
alternative definition of TA proposed by Peng et al.
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The e
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(1987) and its relation to Dickson's definition is
discussed in Section 6.

All concentrations in the current paper are assumed
to be on the moles per kilogram solution scale
(gravimetric units; mol kg−1 for short). The use of
gravimetric units has the advantage that concentrations
of quantities such as DIC or [Na+] stay constant despite
changes of pressure or temperature.

In marine chemistry the term ‘conservative’ quantity
or property has been used in various, often contradic-
tory, ways. Quantities have been denoted as conserva-
tive without explaining in what sense. Distinct
definitions are legitimate and reflect the interests of
different communities. In order to avoid confusion we
will define the concept of ‘conservative quantities’ as
used in this article. When two water parcels are mixed
together the amount of any chemical element, E, in the
mixture is equal to the sum of the amounts of this
element in the two initial parcels and thus the
concentration of E measured in gravimetric units
obeys the linear mixing relation

½E�1M1 þ ½E�2M2 ¼ ½E�mðM1 þM2Þ ð1Þ

where [E]s is the concentration of element E in parcel
s=1, s=2, or in the mixture (s=m) and Ms are the
corresponding masses. This linear mixing relation can
be used to calculate [E]m. Quantities that obey this linear
mixing relation and stay constant under changes of
temperature (T) and pressure (p) will be called
‘conservative with respect to mixing and changes in T
or p’ or just ‘conservative’.

Thus DIC is conservative because the carbon atoms
of DIC stay as DIC during mixing and changes of
temperature and pressure. The same applies to total
phosphate because the phosphorus atoms are still in one
or the other form of phosphate after mixing or changes
in T or p. The total concentrations of other acid-base
systems such as total ammonia and total sulphate are
conservative as well. The concentrations of ions such
as Na+, Ca2+, Cl−, NO3

− etc. are also conservative
because they are derived from fully dissociated acids or
bases. TA is conservative too; this will become obvious
later.

In contrast to DIC and TA, the concentrations of
individual species of the carbonate system change with
temperature and pressure (because of variation of the
equilibrium constants with T and p). Even if T, p, and S
of two water parcels are equal, the concentrations of
CO2, HCO3

−, and CO3
2− do not obey a linear mixing

relation if their concentrations in the initial water parcels
are different.
xplicit conservative expression and its application to biogeochemical
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2. Total alkalinity in a simple system

In order to get a feeling for the alkalinity concept we
will discuss total alkalinity in a simplified seawater system
made up from NaCl, NaHCO3, CO2, and H2O. Our
simplified seawater contains H2O, H

+, OH−, Na+, Cl−,
CO2, HCO3

−, and CO3
2− only. The observed conditions are

[Na+]=0.6 mol kg−1, DIC=2 mmol kg−1, pH=8.2, and
TC=25°C. The following pK values will be used (the star
as superscript denotes stoichiometric in contrast to
thermodynamic equilibrium constant; compare, for ex-
ample, Zeebe andWolf-Gladrow, 2001, for a discussion of
equilibrium constants): pKW

⁎ =13.2 (ion product of water),
pK1

⁎=5.9, pK2
⁎=8.9 (first and second dissociation con-

stant of carbonic acid). The concentrations of H+ (6.3·
10−3 μmol kg−1), OH− (10 μmol kg−1), CO2 (8.3 μmol
kg−1), HCO3

− (1660 μmol kg−1), and CO3
2− (331 μmol

kg−1) can be calculated from the initial values and pK⁎

values as follows:

Hþ½ � ¼ 10−pH; OH− ¼ K⁎
W

½Hþ� ð2Þ

CO2½ � ¼ DIC
½Hþ�2

½Hþ�2 þ ½Hþ�K⁎
1 þ K⁎

1K
⁎
2

ð3Þ

½HCO−
3 � ¼ DIC

½Hþ�K⁎
1

½Hþ�2 þ ½Hþ�K⁎
1 þ K⁎

1K
⁎
2

ð4Þ

½CO2−
3 � ¼ DIC

K⁎
1K

⁎
2

½Hþ�2 þ ½Hþ�K⁎
1 þ K⁎

1K
⁎
2

ð5Þ

where Kν⁎=10
−pKν⁎.

The concentration of Cl− is not observed but can be
calculated from electroneutrality:

½Cl−� ¼ ½Naþ� þ ½Hþ�−½HCO−
3 �−2½CO2−

3 �−½OH−�
¼ 0:59767 mol kg−1: ð6Þ

This simple solution can be prepared in principle by
adding NaCl (0.59767 moles per kilogram solution) and
a small amount (0.00233 moles per kilogram solution)
of NaHCO3 to distilled water, and finally equilibrating
with air of pCO2=295 µatm (pK0=1.55). Note that the
addition of NaHCO3 is essential to approach conditions
similar to those in natural seawater and that our simple
system is different from a solution of table salt (NaCl)
equilibrated with air.

2.1. The concept of total alkalinity

Titration of a sample (say 1 kg) of our simple system
with HCl (say 1 mol kg−1) leads to a decrease of pH
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The ex
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(Fig. 1) whereby most of the H+ added is used up to
convert CO3

2− to HCO3
− and HCO3

− to H2CO3 which
dissociates into CO2 andH2O (the amount of true carbonic
acid, H2CO3, in aqueous solutions is negligible compared
to that of CO2). At initial pH of 8.2, CO3

2− and HCO3
− are

the major proton acceptors in the solution. Total alkalinity
can roughly be considered as a measure of the amount of
these proton acceptors or more precisely the amount of
protons that can be accepted by these acceptors, i.e.
TA≈ [HCO3

−]+2 [CO3
2−] (the factor 2 stems from the fact

that CO3
2− has to accept 2 protons in order to be converted

to CO2). TA is measured by acidimetric titration which
also affects the concentrations of other proton acceptors
and proton donors with minor concentrations (OH− and
H+), thus TA is defined as the excess of proton acceptors
over proton donors (see below). At the alkalinity
equivalence point (where TA=0, see next section), the
pH is about 4.3, and thus the TA of the initial sample could
be estimated as the amount of HCl that has to be added to
reach this pH.

The explanation given above can be considered as
the total alkalinity concept in a nutshell. An exact
definition of TA is needed, however, in order to make
accurate measurements, especially when complex
mixtures of compounds such as natural seawater are
concerned. This will now be introduced for the simple
system under consideration in this section and later on
generalized so that it can be applied to natural water
samples. The exact definition of TA requires the
introduction of the following concepts: zero level of
protons, proton acceptors and donors, proton condition.
These concepts will be discussed at some length.

2.2. Zero level of protons, proton acceptors and donors

Titration with HCl results in conversion of CO3
2− to

HCO3
− and of HCO3

− to CO2. The three species CO2,
HCO3

−, and CO3
2− have different capacities to accept

protons in the titration process. CO2 is conventionally
chosen as the zero level of protons. HCO3

− can accept
one proton and thus occupies proton level −1 (with
respect to CO2 as the zero level of protons) and CO3

2−

can accept two protons and thus occupies proton level
−2 (Fig. 2). HCO3

− and CO3
2− are called proton acceptors

with respect to CO2 as the zero level of protons. The
choice of a particular chemical species (here: CO2)
defines the zero level of protons for a single set of
related acid-base species (here: CO2, HCO3

−, and CO3
2−).

Protons can also be accepted by OH− ions. Thus we
must consider the water system as well. The zero level
of protons for water is always chosen to be H2O.
Accordingly OH− is a proton acceptor (proton level −1).
plicit conservative expression and its application to biogeochemical
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H+ (H3O
+) is a proton donor (proton level +1). In fact, a

separate zero level of protons must be defined for each
acid-base system in a solution.

2.3. Definition of alkalinity, proton condition

The weighted sums of proton acceptors and donors in
our simple system at any pH are given by

proton acceptors ¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½OH−� ð7Þ
proton donors ¼ ½Hþ� ð8Þ
Fig. 2. Concentrations of CO2, HCO3
−, CO3

2−, H+, and OH− as functions of p
ionic strength (blue solid lines) or stoichiometric pK values (pK⁎) typical
CO2 dominates for pH below pK1, CO3

2− above pK2, and HCO3
− in between

and pH≈4.3 (seawater pK's). (For interpretation of the references to colour
article.)

Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The e
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where the weights are given by the magnitude of the
proton level defined relative to the chosen zero level of
protons for each acid-base system (in case of CO3

2− the
proton level is −2 and thus the coefficient is +2). At the
initial pH of 8.2 our simple system clearly shows an
excess of proton acceptors over donors

proton acceptors ¼ 1660þ 2d331þ 10 ð9Þ

¼ 2332 l mol kg−1 at pH ¼ 8:2 ð10Þ

proton donors ¼ 0:0063 l mol kg−1 at pH ¼ 8:2: ð11Þ

ð11Þ
H (Bjerrum plot) calculated using thermodynamic pK values for zero
for seawater and used here for the simple system (red dashed lines).
. The lines of [H+] and [HCO3

−] cross at pH≈4.5 (fresh water pK's)
in this figure legend, the reader is referred to the web version of this

xplicit conservative expression and its application to biogeochemical
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This excess of proton acceptors over donors with
respect to the chosen zero level of protons is defined as
the total alkalinity (Dickson, 1981):

TA ¼ proton acceptors− proton donors
¼ ½HCO−

3 � þ 2½CO2−
3 � þ ½OH−�−½Hþ�: ð12Þ

For the aqueous solution of our simple system we
obtain (all values in μmol kg−1)

TA ¼ 1660þ 2d331þ 10−6:3d10−3 ð13Þ

c1660þ 662þ 10 ¼ 2332: ð14Þ
The TA of our sample is dominated by the

contributions of HCO3
− (which is the dominant species

of carbonic acid at pH=8.2) and CO3
2−. The OH−

contributes less than 1% to TA and H+ even less.
Seawater samples with pH around 8.2 show similar
features, i.e. TA is dominated by HCO3

− and CO3
2− and

TANDIC.
We can now ask: At what point (pH) is TA=0? From

TA=0 one immediately obtains from Eq. (12)

½Hþ� ¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½OH−� ð15Þ
which is a so-called proton condition. It defines the pH
at which proton donors (left-hand side of Eq. (15))
exactly balance the proton acceptors (right-hand side of
Eq. (15)). [H+] can be calculated as the unique positive
solution of the fourth order equation

½Hþ� ¼ DIC
½Hþ�K⁎

1 þ 2K⁎
1K

⁎
2

½Hþ�2 þ ½Hþ�K⁎
1 þ K⁎

1K
⁎
2

þ K⁎
W

½Hþ� : ð16Þ

The corresponding pH, denoted by pH0, is called the
CO2-equivalence point (CO2: because it is the zero level
of protons). It defines the point at which TA=0. For the
aqueous solution of our simple system one obtains
pH0≈4.3.
2.4. Discussion

In order to reach the summit of TA definition we
followed a safe route along a mountain ridge. In this
subsection we will explore some of the abysses we
passed by.

2.4.1. Dilution factor
Addition of HCl (typically 0.1 mol kg−1) during

titration leads to a slight decrease of the concentration of
conservative ions. For addition of HCl with a concen-
tration of 0.1 mol kg−1 to a solution with a TA of
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The ex
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2500 μmol kg−1 or less, the maximum dilution factor is
2.5%. This small dilution effect has been neglected in all
our calculations because it is not essential for the
explanation of the TA concept; it has to be considered,
however, for accurate measurements. The dilution effect
can be taken into account by using the linear mixing
relation (Eq. (1); for details compare Dickson, 1981).

2.4.2. Proton condition
Note that the concentrations in the proton condition

(Eq. (15)) are not the initial concentrations of our
sample. Instead the proton condition defines a pH (the
CO2-equivalence point). To make this clearer an index
(0) could be added to all concentrations:

½Hþ�0 ¼ ½HCO−
3 �0 þ 2½CO2−

3 �0 þ ½OH−�0: ð17Þ
2.4.3. Different choices of zero level of protons yield
different proton conditions

Other proton conditions can be defined for carbonic
acid by the choice of different zero levels of protons. If,
for example, HCO3

− is chosen as the zero level of
protons for CO2 species the corresponding proton
condition reads

½Hþ� þ ½CO2� ¼ ½CO2−
3 � þ ½OH−� ð18Þ

where CO2 is now a proton donor with HCO3
− as zero

level of protons and CO3
2− is just one proton below the

zero level of protons and thus [CO3
2−] is not multiplied

by 2 here. The pH0 (≈7.4 for our simple system)
resulting from this proton condition is the HCO3

−-
equivalence point. It was our choice, however, to select
CO2 as zero level of protons to define total alkalinity.
2.4.4. Defining the zero level of protons by a pK value
The zero level of protons is defined by choosing a

certain chemical species (for example, CO2). Chemical
species above or below this zero level of protons (for
example, HCO3

−, CO3
2−) have to donate or accept pro-

tons when they are converted to the species defined as
the zero level of protons and are thus called proton
donors and acceptors, respectively. The definition of the
zero level of protons is thus specific to each particular
acid-base system, and does not lend itself to a gen-
eralization to other acid-base systems. A relation be-
tween proton donors, acceptors, and the choice of the
species that define the zero level of protons can be
obtained, however, by specifying a single pK value,
pKzlp, which applies for all acid-base systems as a di-
viding point in the following sense. The chemical spe-
cies which dominates (largest concentration compared
plicit conservative expression and its application to biogeochemical
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to the other chemical species of the same acid-base
system) at pH=pKzlp defines the zero level of protons,
acids with pK≤pKzlp are proton donors (acids!), and
bases formed from weak acids with pKNpKzlp are
proton acceptors.

2.4.5. Selection of a value for pKzlp. pK or pK⁎?
To make the definition of the zero level of protons

independent of temperature, pressure or composition of
the natural water sample, Dickson (1981) proposed
using thermodynamic pK values at 25°C, standard
pressure (1 atm), and zero ionic strength. The choice
of pKzlp=4.5 by Dickson (1981) is a convention (the
motivation for this specific choice is given below). In
the case of the carbonic acid system with pK1=6.3 and
pK2=10.3 this choice leads to CO2 as the zero level of
proton species (because it dominates at pH=pKzlp=4.5),
HCO3

− and CO3
2− are bases (proton acceptors) with

pK values above pKzlp=4.5. For the water system (H2O,
H+, OH−) H2O is always the dominant species and is
thus the zero level of protons.

For our simple system the exact value of pKzlp does
not matter as long as it is below pK1 because it would
lead to the same division into zero level of proton
species, proton donors, and proton acceptors for the
carbonic acid system. In natural water samples, however,
several other acid-base systems contribute to TA.
Dickson (1981) chose pKzlp such that it is below pK1

and so that systems that are of no interest do not
contribute to TA (this was achieved by choosing pKzlp

above those of hydrogen sulphate (pK=2) and hydrogen
fluoride (pKHF=3.2)), i.e. pKHF=3.2bpKzlpbpK1=6.3.
pKzlp=4.5 was chosen to correspond roughly to the pH
of the conventional alkalinity end-point, and is nearly in
the middle of this range. Stoichiometric constants (pK⁎)
for CO2 species of natural water sample are different
from the thermodynamic constants at 25 °C, standard
pressure (1 atm), and zero ionic strength (for example,
pK1

⁎≈5.9 in seawater at 25 °C, standard pressure, S=35
versus pK1=6.3; Fig. 2) but they never come close to 4.5
in natural waters and thus a classification into proton
donors and acceptors using stoichiometric values would
lead to the same results for the typical inorganic
contributors to TA, but might result in differences for
minor organic acid-base systems.

2.4.6. Explicit conservative expression for total
alkalinity

None of the chemical species in the TA definition (Eq.
(12)) is conservative, i.e. their concentrations (measured
in gravimetric units) change with pressure and temper-
ature. One can combine the TA expression (Eq. (12))
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The e
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with the electroneutrality relation (Eq. (6)) to derive an
alternative expression for TA. In our simple system

TAec ¼ ½Naþ�−½Cl−�uTA
¼ ½HCO−

3 � þ 2½CO2−
3 � þ ½OH−�−½Hþ� ð19Þ

The expression for TAec contains concentrations of
conservative ions only and is thus called the explicit
conservative expression of total alkalinity. It is distinct
from but equivalent to TA. Later on, an analogous
explicitly conservative expression will be derived for
Dickson's TA definition. It will be shown that this
explicit conservative expression of total alkalinity is
extremely useful for the calculation of changes of TA due
to certain biogeochemical processes (Section 5).

3. Including other acid-base systems

Natural water samples contain various acid-base
systems (Fig. 3) that can accept and donate protons
(Table 1). The recipe for including these acid-base
systems in the expression for total alkalinity is quite
simple: the choice of pKzlp=4.5 defines a level of zero
protons and implies a classification of chemical species
into proton acceptors and proton donors as well as the
species that is neutral for TA (the zero level of protons) for
each acid-base system (Table 1). TA is defined, as before,
by the excess of proton acceptors over proton donors with
respect to the various species that each define their
respective zero level of protons. In the following we will
derive the zero level of protons species, the proton
acceptors, the proton donors, and the proton condition for
each acid-base system separately, as though it were the
only acid base system in the solution of interest, and
discuss some of their peculiarities. The thermodynamic
pK values used here stem from Dickson (1981).

3.1. Boric acid

B(OH)3 + H2O⇌ B(OH)4
− + H+, pK = 9.2. At

pH=pKzlp=4.5, B(OH)3 is the dominant species, i.e. the
zero level of protons. B(OH)4

− with pK=9.2NpKzlp=4.5
is a proton acceptor. Thus the corresponding proton
condition is

½Hþ� ¼ ½BðOHÞ−4 � þ ½OH−�: ð20Þ

3.2. Phosphoric acid (or phosphate)

H3PO4 can dissociate into H2PO4
−, HPO4

2−, and PO4
3−

with pK1=2.1, pK2=7.2, and pK3=12.7. At pH=
pKzlp=4.5, H2PO4

− is the dominant species, i.e. the zero
xplicit conservative expression and its application to biogeochemical
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level of protons. HPO4
2− with pK2=7.2 and PO4

3− with
pK3=12.7 are proton acceptors whereas H3PO4 with
pK1=2.1bpKzlp=4.5 is a proton donor. The corre-
sponding proton condition is

½Hþ� þ ½H3PO4� ¼ ½HPO2−
4 � þ 2½PO3−

4 �þ½OH−�: ð21Þ

Several features are noteworthy compared to the
proton condition for carbonic acid (Eq. (15)). This proton
condition for phosphate contains a neutral species
(H3PO4) which clearly shows that proton conditions
are not simple charge balances between ions. As a
consequence, the expression for TA can contain not only
ions but also neutral species. Please note also that the
Table 1
Acid-base systems: proton acceptors and donors

Acid pK1, pK2,… Zero level of proton s

H2CO3 6.3, 10.3 CO2

B(OH)3 9.2 B(OH)3
H3PO4 2.1, 7.2, 12.7 H2PO4

−

HSO4
− 2.0 SO4

2−

HF 3.2 F−

H4SiO4 9.7 H4SiO4

H2S 7.0 H2S
NH3 9.3 NH4

+

HNO2 3.3 NO2
−

HNO2 is not listed in Dickson's expression for TA because of its tiny conce
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coefficients of HPO4
2− (1) and PO4

3− (2) are different from
−1 times their charges; they are given by the difference
in number of protons fromH2PO4

−which is the zero level
of protons (compare Zeebe and Wolf-Gladrow, 2001,
Chapter 1.2.3 for a more detailed discussion).

3.3. Hydrogen sulphate

HSO4
−⇌SO4

2−+H+ with pK=2.0. At pH=pKzlp=
4.5, SO4

2− is the dominant species, i.e. the zero level of
protons. HSO4

− with pK=2.0bpKzlp=4.5 is a proton
donor. The proton condition is

½Hþ� þ ½HSO−
4 � ¼ ½OH−�: ð22Þ
pecies Proton acceptors Proton donors

HCO3
−, CO3

2−

B(OH)4
−

HPO4
2−, PO4

3− H3PO4

HSO4
−

HF
H3SiO4

−

HS−

NH3

ntration in seawater.

plicit conservative expression and its application to biogeochemical
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Please note that H2SO4 has not been included as a
proton donor here because its concentration is tiny
(vanishing for all practical purposes; due to its low pKb
−3) over the pH range of titration (which may go down
to 3.0, Watanabe et al., 2004).

3.4. Hydrofluoric acid

HF⇌F−+H+ with pK=3.2. At pH=pKzlp=4.5, F
−

is the dominant species, i.e. the zero level of protons. HF
with pK=3.2bpKzlp=4.5 is a proton donor. Thus the
corresponding proton condition is

½Hþ� þ ½HF� ¼ ½OH−�: ð23Þ

3.5. Silicic acid

H4SiO4 can dissociate into H3SiO
− with pK1=9.7.

Species of higher degree of dissociation are not included
here because their concentrations in natural water samples
are tiny (vanishing for all practical purposes). At
pH=pKzlp=4.5, H4SiO4 is the dominant species, i.e. the
zero level of protons.H3SiO4

−with pK=9.7NpKzlp=4.5 is
a proton acceptor. The corresponding proton condition is

½Hþ� ¼ ½H3SiO
−
4 � þ ½OH−�: ð24Þ

3.6. Hydrogen sulfide

H2S can dissociate into HS− with pK1=7.0. S
2− is

not included here because its concentration in aqueous
solutions is essentially zero due to its high pK. At
pH=pKzlp=4.5, H2S is the dominant species, i.e. the
zero level of protons. HS− with pK=7.0NpKzlp=4.5 is a
proton acceptor. The corresponding proton condition is

½Hþ� ¼ ½HS−� þ ½OH−�: ð25Þ

3.7. Ammonia

NH4
+⇌NH3+H

+ with pK=9.3. At pH=pKzlp=4.5,
NH4

+ is the dominant species, i.e. the zero level of
protons. NH3 with pK=9.3NpKzlp=4.5 is a proton
acceptor. The corresponding proton condition is

½Hþ� ¼ ½NH3� þ ½OH−�: ð26Þ

3.8. Nitrous acid

HNO2⇌NO2
−+H+ with pK=3.3. At pH=pKzlp=

4.5, NO2
− is the dominant species, i.e. the zero level of

protons. HNO2 with pK=3.3bpKzlp=4.5 is a proton
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The e
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donor. Thus the corresponding proton condition is

½Hþ� þ ½HNO2� ¼ ½OH−�: ð27Þ
Please note that each separate proton condition defines

a distinct equivalence point (pH0) which is a function of
the pK values of the acid-base system, the ion product of
water, and the total concentration of all species of the acid.

3.9. Nitrate

The major nutrient nitrate (HNO3⇌NO3
−+H+ with a

pK=−1) does not show up in the alkalinity expression
(Eq. (28)); because it is the anion of a strong acid no
protons are accepted or donated over the titration range.
This does not mean, however, that assimilation of nitrate
by algae has no effect on TA (see discussion in Section 5).

3.10. Other proton acceptors

Kim et al. (2006) have shown that negatively charged
surface groups on phytoplankton and bacterial cells
react with protons during titration with hydrochloric
acid. As a consequence there can be a difference in
measured total alkalinity between filtered and unfiltered
water. Acid-base functional groups in the dissolved
organic carbon pool in seawater can also have a small
influence on TA as well.

3.11. Dickson's expression for total alkalinity in natural
water samples

Total alkalinity is defined by the excess of proton
acceptors over proton donors with respect to the proton
condition defined by the value 4.5 for pKzlp (Dickson,
1981) which leads to the expression

TA ¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½BðOHÞ−4 � þ ½OH−�
þ ½HPO2−

4 � þ 2½PO3−
4 � þ ½H3SiO

−
4 � þ ½NH3�

þ ½HS−� þ…–½Hþ�–½HSO−
4 �–½HF�–½H3PO4�

–½HNO2� þ … ð28Þ
where the ellipses stand for additional, as yet unidentified,
acid-base species (Dickson, 1981, 1992; DOE, 1994; we
have added –[HNO2] to Dickson's original expression).
TA=0 is reached at the pH that is defined by the proton
condition (balance of proton donors and acceptors)

½Hþ� þ ½HSO−
4 � þ ½HF� þ ½H3PO4� þ ½HNO2�…

¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½BðOHÞ−4 � þ ½OH−�
þ ½HPO2−

4 � þ 2½PO3−
4 � þ ½H3SiO

−
4 � þ ½NH3�

þ ½HS−�… ð29Þ
xplicit conservative expression and its application to biogeochemical
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4. The explicit conservative expression for total
alkalinity

Macroscopic volumes (size larger than the Debye
length ≈0.4 nm in seawater) of aqueous solutions obey
electroneutrality, i.e. the sum of all charges is zero:

X

i

qi½ci� ¼ 0 ð30Þ

where [ci] is the concentration (in gravimetric units) and
qi the electric charge (in elementary units), respectively,
of the species ci and the summation runs over all species.
An explicit expression that contains the most important
(in terms of concentration) ions in oxic seawater reads

½Naþ� þ 2½Mg2þ� þ 2½Ca2þ� þ ½Kþ� þ 2½Sr2þ�
þ…þ ½NHþ

4 � þ ½Hþ� þ …–½Cl−�–2½SO2−
4 �–½Br−�

–½NO−
3 �–½NO−

2 �–…–½HCO−
3 �–2½CO2−

3 �–½BðOHÞ−4 �
–½OH−�–½HS−�–½H3SiO

−
4 �–½HSO−

4 �–½F−�–½H2PO
−
4 �

–2½HPO2−
4 �–3½PO3−

4 � ¼ 0 ð31Þ

where the ellipses stand for additional ions (with minor
or even negligible concentrations).

If terms are added to both sides of Eq. (31) until
Dickson's expression for total alkalinity (Eq. (28))
appears on the right-hand side of the equation, the left-
hand side then reads:

½Naþ� þ 2½Mg2þ� þ 2½Ca2þ� þ ½Kþ� þ 2½Sr2þ�
þ …–½Cl−�–½Br−�–½NO−

3 �–…TPO4

þ TNH3–2TSO4–THF–THNO2

¼ TAec ð32Þ

where TPO4=[H3PO4]+ [H2PO4
−]+ [HPO4

2−]+ [PO4
3−],

TNH3=[NH3]+[NH4
+], TSO4=[SO4

2−]+[HSO4
−], THF=

[F−]+ [HF], and THNO2=[NO2
−]+ [HNO2] are total

phosphate, ammonia, sulphate, fluoride, and nitrite,
respectively (the contribution of H2SO4 to total sulphate
can be neglected). Please note that even when the
concentrations of various phosphate species change with
pressure or temperature, total phosphate concentration
stays constant and obeys the linear mixing relation. Thus,
following our definition, total phosphate is a conserved
quantity and the same applies to the other total concentra-
tions. We denote expression (32) as the explicitly
conservative form of total alkalinity or TAec because each
single term in this expression is conservative. TAec is not a
new definition of total alkalinity. TAec is a different
expression for total alkalinity that is equivalent to
Dickson's expression (Eq. (28)). In the next section it
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The ex
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will be shown that changes of total alkalinity due to
biogeochemical processes can be calculated easily using
TAec.

5. Changes of alkalinity due to biogeochemical
processes

In the oceans total alkalinity changes first of all with
salinity (compare, for example, Friis et al., 2003) as do
the concentrations of Na+, Cl− etc. Further important
changes are due to various biogeochemical processes
such as calcium carbonate precipitation or production of
particulate organic matter by microalgae. It is often
difficult to derive the exact amount of these changes
from the standard definition of alkalinity in terms of the
non-conserved species (Eq. (28)) because an addition or
uptake of CO2 or phosphate, for example, affects also
the pH and therefore the concentration of all other
species listed in Eq. (28). In the literature, one can read:
“Estimating from the dissociation constants of acid in
sea water…, addition of 1 mole of phosphoric acid
causes a decrease in titration alkalinity which is very
close to 1 equivalent.” It can be shown, however, that
based on Eq. (32) the decrease in total alkalinity is ex-
actly 1 mole per mole phosphoric acid. TPO4 enters Eq.
(32) with a negative sign. Thus increasing TPO4 by
1 mole reduces TA by precisely the same amount. In
contrast, the addition of 1 mole of Na3PO4 would lead to
an increase of TA by 2 moles per mole Na3PO4: [Na

+]
increases by 3 moles and TPO4 by 1 mole per mole
Na3PO4 added, the difference is 2 moles per mole
Na3PO4.

Total alkalinity does not change as a result of
invasion of CO2 from or release to the atmosphere. This
might be difficult to recognize from Dickson's expres-
sion for TA because invasion of CO2 will decrease pH
(‘acidification of the ocean’). Thus all concentrations in
his expression will change and it is not obvious that the
sum stays constant. Invasion or release of CO2 does not
affect any concentration in TAec (Eq. (32)) and thus it is
evident that total alkalinity stays constant.

5.1. Calcium carbonate precipitation and dissolution

The precipitation of CaCO3 can be described by

Ca2þ þ 2HCO−
3⇒CaCO3 þ CO2 þ H2O ð33Þ

or by

Ca2þ þ CO2−
3 ⇒CaCO3: ð34Þ
plicit conservative expression and its application to biogeochemical
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These summary reactions obey conservation of
charge and of all elements involved. However, they
should not be interpreted as if [CO2] increases when
HCO3

− is the carbon source for CaCO3 whereas no
CO2 is released when CO3

2− is used. In a closed
system the precipitation of 1 mole CaCO3 always
leads to a decrease of 1 mole in DIC and 2 moles in
TA (Eq. (32)). The changes of [CO2] (increase, but
much less than 1 mole per mole CaCO3 precipitated),
[HCO3

−] and [CO3
2−] (decrease) can be calculated from

DIC and TA (Fig. 4a–c). In an open system, such as the
upper ocean mixed layer, the increase of [CO2] leads to
outgassing and therefore to a further decrease of DIC
(Fig. 4d). One should also note that the carbon source for
calcification cannot be inferred from observed changes
in DIC and TA. Dissolution of CaCO3 has the reverse
effect, i.e. DIC increases by 1 and TA by 2 moles per
mole CaCO3. From our TAec expression (Eq. (32)) it is
evident that the precipitation and dissolution of MgCO3

has the same effect on DIC and TA as that of CaCO3.

5.2. Electroneutrality and uptake of nutrients by algae

Many nutrients in seawater exist in the form of ions
(HCO3

−, NO3
−, NH4

+, HPO4
2−, H3SiO4

−,…). In order to
Fig. 4. Changes of the carbonate system due to precipitation of CaCO3.
Initial conditions: DIC=2050 μmol kg−1, TA=2300 μmol kg−1,
S=35, T=15°C⇒pCO2=361 μatm. a) Closed system: [CO2]
increases with CaCO3 precipitation. b) Closed system: the change of
[CO2] per mole of CaCO3 precipitated, d[CO2] /d[CaCO3], increases
with decreasing concentration of carbonate ion. c) Closed system:
changes in [CO2] (solid line), DIC (dashed line), TA (dash-dotted line),
[HCO3

−] (o), and [CO3
2−] (+). d) DIC decreases with CaCO3

precipitation in the closed system (solid line) but even more in the
open system (dashed line).
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keep electroneutrality inside the cell, algae have to take
up charged nutrient species by cotransport or exchange
of ions: either transporting negative and positive ions in
the same direction (symport) or transporting ions of the
same sign in opposite directions (antiport). Because
most of the charged nutrient species are anions and
because the cell demands respect stoichiometric con-
straints (‘Redfield ratios’; Redfield, 1934; Redfield
et al., 1963), electroneutrality has to be established by
cotransport or exchange with non-nutrient ions.

In erythrocytes, which together with blood plasma
transport CO2 from respiration in tissue to the lungs
where it leaves the body, HCO3

− and Cl− are exchanged.
This exchange cancels over a full cycle of blood
between tissue and lungs because the exchange goes
both ways with the same amount in each direction
(Fig. 5).

On the contrary, in photoautotrophs, salt ions cannot
be used for this purpose because after a while all ions of
a certain species (Cl−, for example) would be expelled
from the cell or the cellular concentration of certain
species (Na+, for example) would be ever increasing as
most nutrients are negatively charged.

If charge compensation between different nutrient
species and with salt ions is ruled out in microalgae, one
is left with compensation by transport of H+ or OH−.
Experimentally, it can be very difficult to discern
between H+ or OH− pumps, but the existence of proton
pumps is well established. In what follows we will speak
only of proton pumps while keeping in mind that an
OH− pump in the opposite direction would have the
same effect on the charge balance.

Based on the arguments presented above, one arrives
at the conclusion that deviations from electroneutrality
due to the uptake of charged nutrient species have to be
compensated by pumping protons in the appropriate
direction. More complex transport pathways may be
possible. NO3

− could be co-transported via a symport
with Na+, for example. It is known that some porter
systems are Na-dependent (Hildebrand et al., 1997;
Boyd and Gradmann, 1999). In order to avoid unlimited
accumulation of Na+ inside the cell, however, the
sodium ions have to be disposed of; this can be achieved
by exchange with H+ via an antiport. The net effect is
cotransport of NO3

− with H+. The same reasoning
applies also for other charged nutrient species. We
will refer to this as the ‘nutrient-H+-compensation
principle’.

In the following we will assume that the nutrient-
H+-compensation principle always applies. The com-
bination of this principle with the explicit conservative
expression for TA will allow us to derive in a simple
xplicit conservative expression and its application to biogeochemical
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Fig. 5. Exchange (antiport) of HCO3
− and Cl− in erythrocytes (after

Weiss, 1996). CO2 from respiration in tissue enters the erythrocyte by
diffusion (upper half, left; the oval line denotes the cell membrane of
the erythrocyte), is converted to HCO3

− (catalyzed by the enzyme
carbonic anhydrase (CA)), and is transported via an antiport (exchange
with Cl−, so-called Hamburger shift) into the blood plasma in the form
of HCO3

−. H+ binds to the hemoglobin-O2 complex (HbO2) and causes
release of O2 which leaves the cell by diffusion (upper half, right). Part
of the CO2 entering the cell binds with the hemoglobin-O2 complex
and also causes release of O2 (not shown here). O2, H

+, and CO2 bind
to different sites of the hemoglobin molecule. In the lungs, the high
oxygen concentration leads to the formation of hemoglobin-O2

complexes and release of H+. HCO3
− enters the erythrocyte from the

blood plasma (lower half, right) via an antiport (exchange with Cl−). It
is converted inside the cell to CO2 (catalyzed by carbonic anhydrase)
which leaves the cells by diffusion (lower half, left). Over a full cycle
between tissue and lungs the same amount of HCO3

− and Cl− enters and
leaves the cell and therefore there is no net accumulation or loss of Cl−

by the erythrocyte.
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way the changes of total alkalinity due to nutrient
assimilation.

5.3. Nitrogen assimilation and remineralization, nitri-
fication, denitrification

5.3.1. N assimilation
Marine photoautotrophs can use nitrate (NO3

−), nitrite
(NO2

−), ammonia (NH4
+), or molecular nitrogen (N2) as a

nitrogen source. From the nutrient-H+-compensation
principle and the expression for TAec (Eq. (32)) it
immediately follows that the assimilation of 1 mole of
nitrogen (atoms) leads to (i) an increase of alkalinity by
1 mole when nitrate or nitrite is the N source, (ii) to a
decrease of alkalinity by 1 mole when ammonia is used,
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The ex
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and (iii) to no change of alkalinity when molecular
nitrogen is the N source (cellular fixation of N2 by
cyanobacteria such as Trichodesmium). Indeed, these
alkalinity changes for the uptake of nitrate or ammonia,
respectively, have been observed in experiments by
Brewer and Goldman (1976) and Goldman and Brewer
(1980).

5.3.2. Remineralization
Remineralization of particulate organic matter (in-

cluding cyanobacteria) will change TA depending on the
form of reactive nitrogen produced. A release of 1 mole
of ammonia or nitrate will lead to an increase or
decrease, respectively, of TA by 1 mole (Eq. (32)).

5.3.3. Nitrification
In an aerobic environment, ammonia is ultimately

oxidized to nitrate. Nitrification according to (Schle-
singer, 1997)

NHþ
4 þ 3

2
O2ZNO−

2 þ H2Oþ 2Hþ

DTA ¼ −2 moles per mole NHþ
4

ð35Þ

NO−
2 þ

1
2
O2ZNO−

3 DTA ¼ 0 ð36Þ

leads to a decrease of TA by 2 moles per mole of NO3
−

formed (Eq. (32)).

5.3.4. Nitrogen fixation followed by remineralization
and nitrification

Nitrogen fixation followed by remineralization and
nitrification converts dissolved N2 to nitrate. Cellular
fixation of N2 by itself does not change total
alkalinity. Upon release of nitrogen in the form of
NH4

+ TA increases by 1 mole per mole N. Nitrifica-
tion (conversion of NH4

+ to NO3
−) decreases TA by

2 moles per mole N. Thus a decrease of TA by
1 mole per mole N fixed is the ultimate consequence
of nitrogen fixation followed by remineralization and
nitrification.

The global rate of marine nitrogen fixation has
been estimated to be 110 Tg N a−1 or 8 Tmol N a−1

(Deutsch et al., 2001) and thus the associated rate in
TA decrease is 8 Tmol a−1. To set this number into
perspective we estimate the TA flux due to a global
new production of 10 Pg C a−1. If this new production
is based on nitrate uptake, the nitrate flux can be
estimated as 10 Pg C a−1 / (12 g mol−1) / (6.6 mol C
(mol N)−1)≈100 Tmol N a−1 which corresponds to a
TA flux of 100 Tmol a−1. Thus the change of TA due
to nitrogen fixation followed by remineralization is
plicit conservative expression and its application to biogeochemical
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8% of the TA flux associated with nitrate uptake in
new production; locally the relative contribution by
nitrogen fixation may be much larger.

5.3.5. Denitrification
In steady state, the input of reactive nitrate by

nitrogen fixation is balanced by denitrification which
can be described by (Schlesinger, 1997)

5CH2O þ 4Hþ þ 4NO−
3⇒2N2 þ 5CO2

þ7H2O
ð37Þ

and which leads to an increase of TA by 1 mole per mole
of nitrate converted (Eq. (32)) thus balancing the
corresponding alkalinity decrease. However, because
N2 fixation and denitrification occur in different areas of
the world ocean these processes will affect the spatial
distribution of TA.
5.4. Phosphorus assimilation and remineralization

Uptake of 1 mole of phosphate (H3PO4, H2PO4
−,

HPO4
2−, or PO4

3−) by algae in accordance with the
nutrient-H+-compensation principle increases alkalinity
by 1 mole per mole P (compare the term TPO4 in Eq.
(32)). Please note that the change of TA is independent
of the phosphate species taken up by the cell; contrary
statements can be found in the literature without
convincing support.

Marine plankton contain C, N, P in the molar ratios
of 106:16:1 (mean values, according to Redfield et al.,
1963) and thus the effect on TA of phosphate uptake
by algae is small compared to the effect of nitrate
uptake. Assimilation of dissolved organic phosphate
(assumed as uncharged) would have no effect on
alkalinity. Release of inorganic phosphate during
remineralization leads to a corresponding decrease of
alkalinity.

5.5. Silicon assimilation and remineralization

Although H3SiO4
− contributes to TA (Eq. (28)),

uptake of silicic acid by diatoms does not change TA.
Uptake of H4SiO4 leads to changes in [H3SiO4

−] (due to
re-equilibration in the silicic acid system) and also in
pH. Uptake of H3SiO4

− has to be accompanied by H+

uptake and also leads to changes in pH. From these
considerations alone it is not possible to estimate the
possible change in TA. In Eq. (32), however, no silicon
compound or total concentration shows up and thus
uptake of silicic acid by diatoms or remineralization of
silica does not change TA.
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5.6. Sulfur assimilation and remineralization

Sulfur is an essential component of proteins and it is
contained in the amino acids cysteine and methionine.
The molar sulfur to phosphorus ratio, S:P, in marine
organic matter varies between 2.4:1 for Skeletonema
costatum (diatom) and 3.3:1 for Emiliania huxleyi
(coccolithophore) and for Prorocentrum minimum
(dinoflagellate); according to ratios calculated from
C:S ratios after Matrai and Keller (1994) assuming the
classical Red-field ratio C:P=106:1. Uptake of sulfate in
accordance with the nutrient-H+-compensation principle
and assimilation into particulate organic matter leads to
an increase of alkalinity by 2 moles per mole of S
(compare the term 2 TSO4 in Eq. (32)). This effect has
been mentioned already by Brewer et al. (1975) and
discussed in detail by Chen (1978). Release of sulfate
during remineralization leads to a corresponding de-
crease of alkalinity.

5.7. Overall effect of production by marine plankton

Following Chen (1978) we will now express the
change of alkalinity as a function of the amount of
CaCO3 precipitation, ΔCa (mol), and amount of
particulate organic matter produced (measured in units
of POP=Particulate Organic Phosphorus, mol P, or
PON=Particulate Organic Nitrogen, mol N). We
assume that nitrate, phosphate and sulfate are the
nutrient sources with ratios to carbon as C:N:P:S=
106:16:1:2.4 and that no other carbonates than CaCO3

are precipitated. Note that the algal uptake of silicic acid
(H4SiO4 or H3SiO4

−) in accordance with the nutrient-H+-
compensation principle has no effect on TA. The overall
change in alkalinity is

DTA ¼ 2DCa−21:8POP ¼ 2DCa−1:36PON ð38Þ

where the factor 21.8=16+1+2·2.4 stems from nitrate
uptake (+16; N:P=16), phosphate uptake (+1), and
sulphate uptake (+2.4 ·2; S:P=2.4; factor 2 stems from
2 TSO4 in Eq. (32)). The effect of sulfur is more
important (4.8:1) than that of phosphorus.

Conversely, the change of calcium can be predicted
from the changes of alkalinity and nitrate according to

DCa ¼ 0:5DTAþ 0:68DNO−
3 ð39Þ

where (again assuming N:P=16:1) 21.8/2/16≈0.68.
Based on a different S:C ratio Kanamori and Ikegami
(1982) gave a factor 0.63 instead of 0.68. These authors
found good agreement of these predictions with very
precise measurements of [Ca2+] in the Pacific.
xplicit conservative expression and its application to biogeochemical
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5.8. Methane oxidation by sulphate reduction

In anoxic sediments methane can be oxidized by
sulphate reduction:

CH4 þ SO2−
4 →HCO−

3 þ HS− þ H2O: ð40Þ
The products react with H+ and therefore it can be

difficult to derive the change in TA from the right-hand
side of the formula. From the left-hand side, however, it is
clear that the concentration of total sulphate decreases by
1 mole per mole of methane oxidized and thus TA is
increased by 2 moles per mole of methane oxidized
according to Eq. (32). Please note that the decrease of
methane concentration has no effect on TA. DIC increases
by 1 mole per mole of CH4 oxidized. The change of pH
(increase) can be calculated using TA and DIC.
6. The alkalinity definition by Peng et al. (1987)

Peng et al. (1987) define alkalinity by the following
expression (we have replaced H2BO3

− by B(OH)4
−)

APeng ¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½BðOHÞ−4 �
þ ½OH−� þ ½H2PO

−
4 � þ 2½HPO2−

4 �
þ 3½PO3−

4 � þ ½H3SiO
−
4 �–½Hþ�: ð41Þ

This definition encompasses charged species only
and the prefactors of each ion concentration is equal to
−1 times the ionic charge (for example, 3[PO4

3−]). This
definition is ‘correct’ in the sense that one can do
meaningful calculations based on this quantity. Unfor-
tunately, Peng's definition is not compatible with
Dickson's definition of titration alkalinity. For instance,
even if one neglects contributions by minor species such
as NH3 etc. in (Eq. (28)), Dickson's expression reads:

TA ¼ ½HCO−
3 � þ 2½CO2−

3 � þ ½BðOHÞ−4 � þ ½OH−�
þ ½HPO2−

4 � þ 2½PO3−
4 �

þ ½H3SiO
−
4 �–½Hþ�–½HSO−

4 �–H3PO4� ð42Þ
which is different (by TPO4) from Eq. (41). This
difference is due to a different choice of Peng et al. for
the zero level of protons for phosphoric acid (H3PO4

instead of H2PO4
−). A counter-intuitive consequence of

this choice of zero level of protons is that the alkalinity
of a seawater sample will not change when phosphoric
acid is added to it. Furthermore, there is scope for
significant confusion resulting from the existence of two
definitions. Calculations of fugacities (or partial pres-
sures) of CO2 based on the same values of alkalinity (but
not same definition!) and DIC will lead to different results
depending on the concentration of total phosphate: the
Please cite this article as: Wolf-Gladrow, D.A. et al. Total alkalinity: The ex
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difference in pCO2 is ≈1.6 μatm per μmol kg−1

phosphate. Such differences may be negligible for surface
water conditions but may be significant in deeper water or
in laboratory experiments with nutrient enriched water.

7. Summary and conclusion

Although the definition of total alkalinity by “TA is
the excess of proton acceptors over proton donors with
respect to a certain zero level of protons” is a simple one,
it is a difficult concept to grasp because many other
concepts (acid-base, equilibrium constants, zero level of
protons, proton condition, gravimetric units) are re-
quired to understand it and its consequences. The exact
definition of TA given by Dickson (1981) using zero
level of protons and selecting pKzlp=4.5 provides an
expression for TA of natural water samples in terms of
chemical species which are individually non-conserva-
tive although their sum is a conservative quantity.
Electroneutrality of aqueous solutions can be used to
derive an expression for TA in terms of concentrations
of conservative ions and of total concentrations of
phosphate, ammonia, sulphate, fluoride, and nitrite from
Dickson's definition of TA. In contrast to Dickson's
expression, each term in the newly derived expression is
conservative. This explicitly conservative form of total
alkalinity, TAec, is equivalent to Dickson's expression
for TA. The TAec can be used to derive the changes in
total alkalinity due to various biogeochemical processes
in an easy way (Section 5).
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