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Stochastic resonance and the benefits of
noise: from ice ages to crayfish and SQUIDs

Kurt Wiesenfeld & Frank Moss

Noise in dynamical systems is usually considered a nuisance. But in certain nonlinear systems,
including electronic circuits and biological sensory apparatus, the presence of noise can in
fact enhance the detection of weak signals. This phenomenon, called stochastic resonance,
may find useful application in physical, technological and biomedical contexts.

SINCE the early days of radio, when the random arrival of elec-
trons at the anode of a vacuum tube translated into an audible
and annoying hiss at the loudspeaker, engineers have sought to
minimize the effects of noise in electronic circuits and communi-
cation systems. But recent research has established that noise
can play a constructive role in the detection of weak periodic
signals, via a mechanism known as stochastic resonance (SR).
In essence, SR is a nonlinear cooperative effect in which a weak
periodic stimulus entrains large-scale environmental fluctua-
tions, with the result that the periodic component is greatly
enhanced.

Stochastic resonance is now known to occur in a wide range
of physical systems; however, it was originally proposed as an
explanation of the periodic recurrences of the Earth’s ice ages,
which exhibit a 100,000-year periodicity. In 1981, a group of
European scientists' ~ described a general dynamical mechanism
whereby small periodic perturbations could be greatly amplified
by large environmental fluctuations. In the case of the ice ages,
a weak periodicity in the insolation stemming from variations
in the Earth’s orbital parameters might cause regular transitions
in a bistable energy potential used to model long-term changes
in global climate®. Although the proposition that the glacial-
interglacial cycles are indeed periodic and linked to the Earth’s
orbital motions has been a matter of recent debate™, the possible
role of SR in palacoclimatology is a topic of continuing
interest”®. These discussions notwithstanding, SR as a physical
process is now firmly established as a genuine and even common
phenomenon.

Experimentally, SR was first demonstrated with a noise-driven
electronic circuit known as a Schmitt trigger’; this work was
also the first to characterize the phenomenon in terms of a signal-
to-noise ratio. It took five more years before the interest of
physicists ignited, sparked by the demonstration of SR in a
bistable ring-laser experiment'®. Stochastic resonance has been
reported in a wide variety of physical systems'""'?, and the class-
ical theory'> " is well in hand. Now SR has crossed disciplinary
boundaries: its role in sensory biology is being explored in
experiments on single crayfish neurons, and in perceptive brain
function by experiments on people’s ability to resolve ambiguous
figures. These new efforts, together with attempts to exploit SR
for technological advantage, are the main trends in current
research on this topic. There are even indications that SR may
affect research in medical and environmental science.

The mechanism

The basic picture of SR can be illustrated using a mechanical
analogy. Imagine a particle subject to friction, moving in a
double-well potential. A weak signal serves to periodically mod-
ulate the potential by alternately raising and lowering the wells
relative to the barrier (Fig. la). Here, “weak’” means that the
modulation is far too small to excite the particle over the barrier.
On the other hand, the presence of random noise alone is
sufficient to induce (irregular) switching between the wells. In
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the high-friction limit, the dynamics can be modelled by the
differential equation

g=—d—U+ F(t)+ A sin (wt)

dt dx
where U is the bare potential, 4 sin (w?) is the signal, and F is
the noise. Stochastic resonance is a nonlinear cooperative effect
whereby the small signal entrains the noise-induced hopping,
so the transitions are surprisingly regular. What is more, the
regularity can improve with the addition of more noise. In this
way a small regular influence can have a large effect if environ-
mental fluctuations are available to be tapped.

There is another way to view SR which is enlightening when
thinking about applications, both in technology and biology.
It concerns the problem of detecting weak signals in a noisy
environment. Imagine that the system and signal are hidden
from view, and that we gain information only by observing the
system’s output as a time series of switching events. In SR the
system becomes a more sensitive detector as more noise is added,
at least up to a point: it is optimally sensitive at some non-zero
level of input noise.

Today, we know that SR is even more general than the bistable
picture implies. Even simpler systems®', including those with a
single potential well”> and integrate-and-fire”’ dynamics can
exhibit SR or SR-like properties. The latter is a common model
for neurons wherein a steady input is integrated until the result
exceeds a critical threshold whereupon the neuron ‘fires’, and
resets the ‘integrator’ to zero. In fact, the simplest possible
system™ consists only of a threshold, a subthreshold signal and
added noise, as depicted in Fig. 15. Whenever the noise plus the
signal crosses the threshold in one direction, it triggers a narrow
pulse in the output (Fig. 1¢). The nonlinearity in this system is
simply the on/off nature of the output. This version of SR has
obvious appeal for those working in sensory biology, as neurons
are excitable systems with properties similar to those depicted
in Fig. 15, ¢: when some internal threshold is crossed the neuron
‘fires’ and then resets itself to await another threshold-crossing
event.

Stochastic resonance should not be confused with ‘dither’,
also known as stochastic linearization, a technique wherein peri-
odic or random forcing is intentionally introduced to overcome
regions of ‘dead’ dynamical behaviour in self-regulating systems.
A familiar example is the use of dither to cancel the effect of gear
backlash which, in servo mechanisms, often leads to undesirable
effects such as gear chatter.

Quantifying SR

The most common way to quantify SR is through the signal-to-
noise ratio (SNR). This is readily obtained from the output
by forming the power spectrum, which measures the frequency
content of a time series. A typical result is shown in Fig. 1d, taken
from numerical simulations of a threshold-crossing system. The
signal shows up as a sharp peak located at the signal frequency
riding on a broadband noise background; the SNR is the ratio
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a Although the power spectrum is the most widely
used coherence measure, it is not the only possibility.
An alternative is the residence-time probability
distribution® depicted in Fig. 2a-c, more familiarly
known to experimental biologists as the interspike
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interval histogram®. This measure is composed of a
2 set of peaks which are widely spread for very small
noise but become more coherent for larger noise
intensity. This qualitative structure of the histogram is
very common, and is not in itself a signature of SR.
b Rather, SR is identified with the more particular behav-
iour shown in Fig. 2d, where the amplitudes of the
lower-order peaks pass through individual maxima
with increasing noise intensity®>*’. Similar histograms
from both neuron models®” and actual biological
¢ preparations™ show SR or at least a strong connection
between the ability of a sensory neuron to transmit
coherent information and its internal or external

Frequency (kHz)

FIG. 1 a, A bistable potential, weakly modulated by a periodic signal. b, The
simplest instance of stochastic resonance (SR) consists of a threshold (shown by
the straight line) and a subthreshold sinusoidal signal with added gaussian noise.
Each time the signal plus the noise increases across the threshold, a pulse of
standard shape is written to the time series shown in c. d, Power spectrum of a
long time series of the pulses shown in ¢ has a broadband noise background
whose amplitude at zero frequency is related to the mean pulse repetition rate
and hence to the noise. The signal feature is the sharp peak located at the signal
frequency (0.5 kHz in this case) riding on the noise background. The SNR is defined
as 10 log.1o(S/No) in decibels (dB) where S is the area enclosed above the noise
background, and N, is the amplitude of the noise background at the signal fre-
quency. Inset, the characteristic signature of SR, that is, a maximum in the SNR

at an optimal value of input noise intensity.

of the strength of this peak to the background level (see Fig. 1
legend). Remarkably, theories for all three main types of SR—
the bistable potential model, the fire-and-reset excitable system
model, and the simple threshold model—result in the same gen-
eral formula (apart from some constant factors of order one in
both the prefactor and the exponent) for the SNR:

2
SNR oc('SATU) e 2v/P (1

where ¢ is the input signal strength, D is the input noise intensity
and AU is a constant related to the barrier height or the thresh-
old. The signature of stochastic resonance is that this SNR is
zero for zero added noise (that is, D — 0: no noise implies no
switching or threshold crossings, hence no output), rises sharply
to a maximum at some optimal noise intensity, and decreases
gradually for larger noise intensity as randomization overrides
the cooperative effect. The detailed shape of this curve depends
on the signal frequency and other system parameters; Figs 3 and
4 show typical examples.
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. SR in biology

T 1072 4 Is it possible that noise-mediated detection or transmis-
Rl sion of weak signals plays a significant role in biology?
L 103 < Sensory neurons are notoriously noisy, and in their
g 2 coarse behaviour operate as threshold systems. Could
% 10 SR account for the exquisite sensitivity of some animals
& Noise intensity to weak coherent signals embedded in a noisy environ-
% 108 ment? This question prompted a series of experiments
B with a simple, perhaps even primitive, sensory system:
2 10° the mechanoreceptor hair cells of the crayfish Procam-
@ barus clarkii®®. These cells are specialized to detect
%’ 107 .t 1 I weak, coherent water motions produced, for example,
£ 0.0 05 1.0 15 2.0 by the approach of a predator, perhaps a swimming

fish. In these experiments, a piece of the telson together
with the nerve cord and the sixth ganglion was excised
and mounted in crayfish saline on an electromechanical
transducer. Signal and noise generators drove the
transducer so that the hair cell’s motion through the
saline was a combination of coherent and random
motions. Electrophysiological recordings were made
from a single cell stimulated with a weak (subthres-
hold) signal. Most cells tested showed clear evidence
of SR (Fig. 3).

A familiar and frequently used theoretical model of
a neuron, known as the Fitzhugh-Nagumo equations,
gave similar results. These were implemented using an
analogue electronic circuit operating in the subthres-
hold regime and stimulated with gaussian noise and a
weak sinusoidal signal®'. Figure 3 shows data from
both the crayfish experiment (squares) and the Fitzhugh-Nag-
umo simulation (diamonds); both data sets show the character-
istic signature of SR. The crayfish data do not decrease rapidly
for small noise because of the residual internal noise of the neu-
ron. The solid curve shown in Fig. 3 is a fit to the data using
equation (1). Thus theory, simulation and experiment all provide
support for the notion of SR as a viable mechanism in sensory
biology.

It is possible, although not yet demonstrated, that SR is a
common phenomenon in sensory biology. Virtually all sensory
systems operate as threshold detectors, and the crayfish mech-
anoreceptor example demonstrates that the efficiency for detect-
ing weak signals can be enhanced by the addition of external
noise. This is obviously helpful in noisy environments, but might
even be useful where external noise is not available. Neurons
can also have substantial amounts of internally generated noise,
and it is natural to ask whether this apparently undesirable noise
source can serve a useful function. This remains an important
open question: to date, experiments designed to study the role
of the internal noise have been inconclusive™®.
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Technological applications
Researchers are just beginning to pursue possibilities for techno-
logical exploitation of SR. With a view to possible applications
. in magnetic sensing, a group associated with Quantum Magnet-
ics, Inc. (San Diego) demonstrated SR in a bistable supercon-
ducting quantum interference device (SQUID) loop™*. Future
directions for this work can be threefold. First, the passage of
individual fluxons into and out of the loop are macroscopic
quantum tunnelling events and thus are candidates to demon-
strate quantum SR. Investigation of these events would be of
fundamental interest; recent theoretical work™ predicts subtle
differences from the classical case with respect to underlying
symmetries of the system. Second, SQUIDs fabricated from
high-temperature superconducting materials are in principle
much cheaper to operate, but are inherently noisy. It may be
possible to optimize their performance in some applications by
using SR to exploit the internal noise for weak magnetic signal
detection. Third, researchers are actively considering arrays of
coupled SQUIDs to boost the sensitivity of these bistable sys-
tems even further.

FIG. 3 Results of our experiment with crayfish mechanoreceptors (filled
squares) compared to the electronic Fitzhugh-Nagumo simulation
(diamonds) and the theory given by equation (1) (solid curve)’*. The
horizontal axis represents externally applied, gaussian noise: hydrody-
namic noise in the case of the mechanoreceptor, and electronic noise
in the case of the neuron model. The crayfish data do not decrease
rapidly for small noise because of the residual internal noise of the
neuron.
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With an eye to electromagnetic communications, a recent
study™ reported using SR to improve detection of a weak carrier
signal, operated in both amplitude- and frequency-modulated
modes (AM and FM). An interesting twist here is that the detec-
tor was a bistable system (known as Chua’s circuit), the two
states of which were chaotic. Although there is no obvious
advantage in using a chaotic detector, chaos does not impede
the effect®®?’, illustrating yet again the generality of SR. Possibly
indicative of the approaching technological exploitation, both
Chua’s circuit and the Quantum Magnetics SQUID have been
implemented on silicon chips.

Physicists at the Georgia Institute of Technology (K.W. et al.,
unpublished results) are studying the role that SR could play
in enhancement of trigger-threshold detectors. In practice all
detectors have a minimum threshold; inputs smaller than this
are ‘invisible’. The traditional approach to detector design is to
make this threshold as small as possible, while isolating the sys-
tem from noise as much as possible. However, at some point each
of these objectives becomes either impractical or prohibitively
expensive. An economical alternative may be, for a given thresh-
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FIG. 4 Main figure, data from a numerical simulation of a trigger-reset
system based on a Josephson junction as nonlinear element®®. Inset,
circuit.diagram of the Josephson system, consisting of an ideal junction
(cross), quasiparticle resistance, and current source | which is the sum
of three components—constant bias, weak periodic signal and noise.
The output is the voltage, V. :

old value, to allow enough noise to produce operation at the
optimal value on the SNR curve. An example of SR in such a
threshold device is shown in Fig. 4, generated from numerical
simulations of a device that uses a superconducting Josephson
junction as the nonlinear element.

Further examples

The possible role of SR is being pursued in other areas of
science as well. One such study concerns human perception
of simple ambiguous figures, for example the Necker cube®,
which may be viewed as a bistable process with an inherent
noise. Bistability arises in the perception of which one of a
pair of diagonally opposed corners of the transparent cube is
in the foreground, and the perception spontaneously switches
between the two alternatives. The switching is a random (or
possibly a low-dimensional chaotic) process, and the fluctua-
tion intensity can be controlled by the size and/or aspect
ratio of the cube®. A weak ‘signal’ can be introduced by
moving a marker sinusoidally along a diagonal joining the
two corners. In this way the eye, and hence the observer’s
attention, is weakly biased alternately between the two possible
perceptions. Recently researchers demonstrated SR in a neural-
network simulation of this process*’; an experiment by this
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same group using human subjects is in progress.

A controversial issue, currently the focus of an intense public
health debate, is the effect (if any) of extremely low frequency
electromagnetic fields on living tissue*' **. Theoretical estimates
consistently predict the interaction energies of such fields after
penetrating tissue to be up to three orders of magnitude smaller
than the average energy of thermal fluctuations. How could such
low-level coherence affect living cells**? A concise review of this
problem, including a summary of recent experimental results, is
given in ref. 45. Recently, it was suggested that SR may play a
role®*’: voltage-sensitive ion channels in cell membranes
behave like threshold devices in regard to external fields, ran-
domly switching between open and closed states in response to
thermal fluctuations. If SR is relevant, the effect of weak
extremely low frequency electromagnetic fields might be greatly
amplified. Whether any such enhancement is large enough to
have significant biological ramifications is at this stage purely
speculative.
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