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1. Introduction

In the early 80-ties it became clear that the classification of the non-abelian
finite simple groups was complete. Among the finite simple groups we find
several families: the alternating groups and various families of groups of Lie-
type and their twisted analogues. Besides these families there exist 26 sporadic
finite simple groups.

Buildings are natural geometries for the groups of Lie-type (and, the thin
building of type A for the alternating groups). For the 26 sporadic groups there
is no canonical type of geometry. The theory of diagram geometries, however,
has opened various ways to associate geometries to these sporadic simple groups.

In these notes we consider five sporadic simple groups, the Mathieu groups
Mi, i ∈ {11, 12, 22, 23, 24}, as well as some of their geometries. In particular,
for the large Mathieu groups, i.e., i ∈ {22, 23, 24}, we will describe geometries
with the following diagrams:

M22 : s s sc

M23 : s s s sc

M24 : s s s s sc

M22 : s s sP

M23 : s s s sP

M24 : s s sL

The Mathieu groups were discovered by the French mathematician Émile
Mathieu (1835–1890), who also discovered the large Mathieu groups M22, M23

and M24. See [12, 13, 14]. They are remarkable groups: for example, apart from
the symmetric and alternating groups, M12 and M24 are the only 5-transitive
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permutation groups. After Mathieu’s discovery of these five sporadic simple
groups it took almost a century before the sixth sporadic simple group was
found.

Not only are the five Mathieu groups among the 26 sporadic simple groups,
they are also closely related to almost all the other sporadics. The geometries
we will describe in these notes are also closely connected to various geometries
associated to other sporadic simple groups. For example, they appear as residues
in the following geometries (see for example [6, 5]):

HS : s s s sc c∗

F22 : s s s sc

F23 : s s s s sc

F24 : s s s s s sc

McL : s s s sP

M : s s s s sL L∗

We note that the residue at the right most node of the last diagram is a
geometry for the the Conway group Co1.

2. Designs

A t − (v, k, λ)-design is a pair (X,B) consisting of a set X of points and a set
B of subsets of X called blocks, such that

• |X| = v;

• |b| = k for all b ∈ B;

• any t-tuple of points is contained in exactly λ blocks.

See for example [10, 7].

Example 2.1 A projective plane of order q is a 2− (q2 + q+ 1, q+ 1, 1)-design.
A unital of order q is a 2 − (q3 + 1, q + 1, 1)-design. An affine plane of order q
is a 2− (q2, q, 1)-design.
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Let (X,B) be a t-design, and fix a point p. The derived design at p is the
(t − 1)-design (X − {p}, {b − {p} | b ∈ B, p ∈ b}). The design (X,B) is called
an extension of the design D if for all points p of X the derived design at p is
isomorphic to D.

Proposition 2.2 If (X,B) is an extension of a t−(v, k, λ) design with b blocks,
then |B| = (v + 1)b/(k + 1) and hence k + 1 divides (v + 1)b.

Proof. We count the number incident point-block pairs in 2 ways. Each point
is on b blocks, so there are (v + 1)b such pairs. As each block contains k + 1
points, hence the number of incident point-block pairs equals |B|(k+ 1). Hence
|B|(k + 1) = (v + 1)b, and the Proposition follows. 2

A design is called an extension of a projective plane if its residual design is
a projective plane. The extension of a projective plane of order q is a 3− (q2 +
q+2, q+2, 1)-design. The set of points, the pairs of points and the set of blocks
of an extension of a projective plane form rank 3 geometry with diagram

s s sc

Inductively, we can define a k-fold extension of a projective plane, where
k ≥ 2, to be a design whose residual design is a (k − 1)-fold extension of a
projective plane.

The points, pairs of points, . . ., blocks, of a k-fold extension of a projective
plane form a geometry with diagram

s s s s sc c

Proposition 2.3 If (X,B) is an extension of a projective plane of order q, then
q = 2, 4 or 10.

Proof. The above Proposition implies that q+2 divides (q2 + q+2)(q2 + q+1).
Hence q + 2 divides 12, and q = 2, 4 or 10. 2

A few years ago, Lam and others did an extensive computer search for a
plane of order 10. They did not find such a plane. Thus we are only concerned
with q equal to 2 or 4.

The affine design on points and hyperplanes of AG(3, 2) is an extension of
the Fano plane PG(2, 2). Indeed, if we take a 3-dimensional affine space over
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GF (2), then any 3 points are contained in a unique 2-dimensional subspace and
the design is a 3− (8, 4, 1)-design.

We will study the extensions of a projective plane of order 4. Our main goal
will be to prove (or at least give a sketch of the proof of) the following:

Theorem 2.4 The projective plane PG(2, 4) can be extended 3 times leading to
the unique designs with parameters 3− (22, 6, 1), 4− (23, 7, 1) and 5− (24, 8, 1).

3. The projective plane of order 4

Before proving Theorem 2.4 we first restrict attention to projective planes of
order 4. The projective plane PG(2, 4) is of course an example of such a plane.
The following result implies that it is the unique example, see also [10, 7].

Theorem 3.1 There is a unique projective plane of order 4.

Proof. Suppose Π is a projective plane of order 4. Let p1, p2, p3 and p4 be 4
points in Π, no three being collinear. Let Li,j be the unique line through pi and
pj , where i 6= j ∈ {1, 2, 3, 4}. On these 6 lines we find 4 + 3 + 6 · 2 = 19 points
of the plane.

Let q1 be the intersection point of L1,2 and L3,4, q2 the intersection point
of L1,3 and L2,4 and q3 the intersection point of L2,3 and L1,4. We claim that
these points are collinear.

Figure 1. The points pi and qj

Suppose not, then the line through qi and qj , i 6= j ∈ {1, 2, 3} contains a
point of Π not on the 6 lines Ln,m. This gives us 3 new points, and we have
found 19 + 3 = 22 > 21 points in Π. A contradiction. Thus q1, q2 and q3 are
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collinear. Let M be the line through them and suppose p5 and p6 are the 2
remaining points of M .

In the set O = {p1, . . . , p6} no three points are collinear, and each line
meets O in 0 or 2 points. Moreover, this is the only set of 6 points containing
{p1, . . . , p4} with this property. (Such a set is called a (hyper)oval in Π.)

We will encode the points and lines of Π with the help of O.
Let r be a point of Π not in O, then there are three lines on r meeting O

nontrivially. These lines determine a partition of O into three pairs. We can
identify the 15 points r with the 15 partition of the 6 points of O into three
pairs.

The 15 lines of Π meeting O nontrivially can be identified with the pair of
points of O that they contain. It reamins to identify the 6 lines missing O. They
consist of 5 points that are all partitions of O into 3 pairs. So each such line can
be identified with a set of 5 pairwise disjoint partitions of O in 3 pairs, which
we call a factorisation of O. Incidences between points and lines can be read of
from the encoding.

As there are exactly 6 such factorisations of O, see the lemma below, we
have (up to isomorphism) a unique way to encode the points and lines of Π.
This implies that Π is the unique plane of order 4. 2

Lemma 3.2 The set {1, . . . , 6} admits 6 factorisations, all equivalent under the
action of S6.

Proof. Suppose we have two partitions of O = {1, . . . , 6} into 3 pairs that
are disjoint. Then these partions correspond to the triples of disjoint edges in a
hexagon with vertices 1 up to 6. A partition disjoint from these 2 corresponds to
the 3 ‘long diagonals’ of the hexagon, or to one ‘long’ and two ‘short diagonals’.
For a factorisation we can only take the three remaining partitions containing
short diagonals.

Thus each factorisation is uniquely determined by any two of its partitions
of O into 3 pairs. This implies that there are 15 · 8/5 · 4 = 6 factorisations of O,
and clearly S6 acts transitively on them. 2

Figure 2. ‘Long’ and ‘short’ diagonals
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4. The automorphisms of the plane of order 4

The above proof of the uniqueness of the projective plane of order 4 gives us
more information than only its uniqueness. It also shows that any set of 4
points, no 3 collinear, determines a unique hyperoval. Thus the plane contains
21 · 20 · 16 · 9/6 · 5 · 4 · 3 = 168 hyperovals. Moreover, the automorphism group
Aut(Π) of Π is transitive on these hyperovals, while the stabilizer of such a
hyperoval is isomorphic to the group S6. Hence |Aut(Π)| = 168 · |S6|.

Since Π is isomorphic to PG(2, 4), we know that (up to isomorphism) the
group PGL3(4) is contained in the automorphism group of Π. This group has
order 60480 and is of index 2 in Aut(Π). The extra automorphism is induced
by the field automorphism of order 2 of GF (4). So the complete automor-
phism group of Π is isomorphic to PΓL3(4), the projective group of semi-linear
transformations.

5. Hyperovals and Baer-subplanes in PG(2, 4)

The group PSL3(4) is normal in PΓL3(4) and has index 6 in this group. It
intersects the stabilizer of a hyperoval in a normal subgroup of S6 of index
at most 6. Hence this intersection is isomorphic to A6. Thus PSL3(4) has 3
orbits of length 56 = 168/3 on the hyperovals. Since any hyperoval is uniquely
determined by four of its points, two hyperovals can intersect in at most 3 points.

If we fix a hyperoval O, then an elation of PG(2, 4) with center in the
hyperoval fixes exactly two points of the hyperoval. All the other points are
mapped outside of the hyperoval. In this way we obtain 15 · 3 = 45 hyperovals
that are in the PSL3(4)-orbit of O and meet O in 2 points. The remaining 10
hyperovals in the PSL3(4)-orbit of O have to be disjoint from O.

Thus we have found that two hyperovals are in the same PSL3(4)-orbit if
and only if they intersect in an even number of points.

In the above proof we not only encountered hyperovals, also the 7 points
p1, . . . , p4, q1, q2 and q3 are of some interest. Together with the lines containing
at least 2 of them they form a projective plane of order 2 called a Baer-subplane
of PG(2, 4).

As above, we can count the number of Baer-subplanes. There are 360 of
them, forming one orbit under the group PΓL3(4), but falling apart in 3 orbits
of size 120 under the action of PSL3(4). Two Baer-subplanes are in the same
PSL3(4)-orbit if and only if they intersect in a line or a point.

The hyperoval O = {p1, . . . , p6} meets the Baer-subplane S on the points
p1, . . . , p4, q1, q2 and q3 in 4 points. Any other hyperoval in the PSL3(4)-orbit
of O meets S in 0, 2 or 4 points.

Summerizing we obtain the following. The projective plane of order 4 has
the following properties:

• it has 168 (hyper)ovals, i.e., a set of 6 points no 3 collinear; the set O of
hyperovals falls apart into 3 PSL3(4)-orbits Oi, with i = 1, 2, 3, of size 56.
Two hyperovals are in the same PSL3(4)-orbit if they intersect in an even
number of points. Three noncollinear points are in a unique hyperoval of
each PSL3(4)-orbit.
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• it has 360 Baer-subplanes, i.e., a set of 7 points meeting each line in 1 or
3 points; the set S of Baer-subplanes falls apart into 3 PSL3(4)-orbits Si,
with i = 1, 2, 3, of size 120.

Two hyperovals are in the same PSL3(4)-orbit if and only if they intersect
in an odd number of points. Any four noncollinear points are in a unique
Baer-subplane.

• the indices i and j can be chosen in such a way that for O ∈ Oi, and
S ∈ Sj , we have |O ∩ S| is even if and only if i = j.

6. The Mathieu-Witt designs

Let (X,B) = PG(2, 4) be the projective plane of order 4, and let ∞1, ∞2

and ∞3 be three new points. Construct the new structure M24 with point set
X ∪ {∞1,∞2,∞3} and with the following blocks:

• L ∪ {∞1,∞2,∞3}, where L ∈ B;

• O ∪ {∞1,∞2,∞3} − {∞i}, for each O ∈ Oi;

• S ∪ {∞i} for each S ∈ Si;

• L∆L′ for all L,L′ ∈ B, L 6= L′.

Theorem 6.1 M24 is a 5− (24, 8, 1) design.

Proof. Observe thatM24 has 24 points and 759 blocks of size 8. So on average,
every 5 tuple of points is in one block. Hence to prove thatM24 is a 5−(24, 8, 1)
design, it suffices to check that each 5-tuple of points is contained in at least
one block.

Let T be a 5-tuple of points.
If {∞1,∞2,∞3} ⊆ T , then the remaining two points of T determine a unique

line L in PG(2, 4). So the unique block containing T is {∞1,∞2,∞3} ∪ L.
Suppose |{∞1,∞2,∞3}∩T | = 2 and let ∞i be not in T . If the three points

of T in PG(2, q) are on a line L, then T is contained in {∞1,∞2,∞3} ∪ L. If
the three points of T inside PG(2, 4) are not collinear then they determine a
unique hyperoval O in Oi. Again there is a unique block on T , namely O ∪ T .

Now suppose |{∞1,∞2,∞3} ∩ T = ∞i. If the remaining 4 points of T are
on a line L of PG(2, 4), then {∞1,∞2,∞3} ∪ L is a block on T . If no three of
the four points are collinear, then these four points are in a unique hyperoval
O and a unique Baer-subplane S of PG(2, 4). If S ∈ Si then S ∪ {∞i} is a
block on T . If S ∈ Sj , j 6= i, then O is in Oj . Thus T is contained in the block
O ∪ {∞1,∞2,∞3} − {∞j}.

Finally suppose that T is contained in PG(2, 4). If T is contained in a
hyperoval, then it is in some block. Hence we may assume that there are at
least 3 points in T on some line L of PG(2, 4). If L meets T in more than 3
points, then clearly T is either contained in L or in the symmetric difference of
L and another line of PG(2, 4). Thus we can assume that L∩ T contains just 3
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points. Now let L′ be the line through the other two points of T . If L′ ∩ L is a
point of T , then T is contained in a Baer-subplane. If L′ ∩L is not in T , the T
is contained in L∆L′. In both cases we have found a block on T . This finishes
the proof that M24 is a 5− (24, 8, 1) design. 2

For i = 1, 2, 3, letM24−i be the derived design ofM25−i at∞i. The designs
Mi, are called the Mathieu-Witt designs, as Witt was the first to study them,
see [15, 11].

We prove uniqueness for the design M22:

Proposition 6.2 There exists a unique 3− (22, 6, 1) design.

Proof. Suppose (X,B) is such a design. Fix a point ∞ in X. Then the residue
at ∞ is a projective plane of order 4 and thus isomorphic to PG(2, 4). Identify
this residue with PG(2, 4). As |B| = 77 we still have to identify the 56 blocks
missing ∞. However, each such block is a set of 6 points in PG(2, 4) meeting
each line of PG(2, 4) in 0 or 2 points, so it is a hyperoval. As 2 blocks meet in
0 or 2 points, the blocks in B missing ∞ are all in one PSL3(4) orbit on the
168 hyperovals of PG(2, 4). In fact they form the complete set of 56 hyperovals
in one such orbit. In particular (X,B) is isomorphic to M22. 2

Similarly one can check that the designsM23 andM24 are the unique designs
with the parameters 4− (23, 7, 1), respectively, 5− (24, 8, 1).

Theorem 6.3 There exists a unique 4 − (23, 7, 1)-design and a unique 5 −
(24, 8, 1)-design.

Now 6.2 and 6.3 prove Theorem 2.4.

7. The large Mathieu groups

The group Aut(M24) is the Mathieu group M24. Inductively we define the
stabilizer of ∞i in M25−i to be the group M24−i. By the above construction
and uniqueness proofs it is clear that M24 is 3-transitive on the points of M24

(the choise and order of the points in {∞1,∞2,∞3} is of no importance in the
above). Moreover, M21, the pointwise stabilizer of {∞1,∞2,∞3} is isomorphic
to the simple group PSL3(4), which is 2-transitive on the remaining 21 points.
Hence we obtain:

Theorem 7.1 The group M24 is 5-transitive on the 24 points of M24.
Its order is 24.23.22.21.20.16.3.
The group M24−i, i = 1, 2, 3, is (5− i)-transitive on 24− i points of M24−i.

In the remainder of this section we prove simplicity of the large Mathieu
groups (see also [3, 2]):

Theorem 7.2 The groups M22, M23 and M24 are simple.
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A permutation group G acting on a set Ω is said to act primitively, if there
exists no non-trivial G-invariant partition of the set Ω. We say that G acts
regularly on Ω, if G is transtive on Ω and the stabilizer in G of an element of Ω
is the trivial group. (See [1, 3].)

Proposition 7.3 If G acts primitively on Ω and N 6= 1 is a normal subgroup
of G, then N is transitive on Ω.

Proof. Suppose N is not transitive on Ω, and let Ω1, . . . ,Ωr be the orbits of N
on Ω. We claim that Ω1 ∪ . . . ∪ Ωr is a G-invariant partition of Ω.

Let g ∈ G and suppose g(Ωi) intersects Ωj nontrivially and the intersection
contains an element g(ω). Then, since Ng = gN we have g(Ωi) = {gn(ω) | n ∈
N} = {ng(ω) | n ∈ N}, is the N -orbit of g(ω), and thus equal to Ωj . Thus
indeed we have found a G-invariant partition of Ω contradicting the primitivity.
2

Proposition 7.4 Suppose G acts primitively on a set Ω and the point stabilizer
Gω is simple for some ω ∈ Ω. Then either G is simple or G contains a normal
subgroup N which acts regularly on Ω.

Proof. Let N be a nontrivial normal subgroup of G. By the above result N is
transitive. But N ∩Gω �Gω and thus either Gω or trivial.

If this intersection is trivial, N acts regularly, otherwise N contains the
maximal subgroup Gω as a proper subgroup and thus equals G. Hence either
G is simple or contains a regular normal subgroup. 2

Suppose G acts transitively on Ω, and Gω is the stabilizer of some point ω of
Ω. We can identify the action of G on Ω with the action of G on G/Gω, where
the action of g ∈ G is defined by g : hGω 7→ ghGω for all h ∈ G.

If N is a regular normal subgroup of G on Ω, there is a unique element in
N ∩ hGω for each h ∈ G. Thus we can identify hGω with this unique element
in the intersection. Since for g ∈ Gω we have gnGω = gng−1Gω, the action of
g ∈ Gω is defined by g : n 7→ gng−1.

If G is 2-transitive and has a regular normal subgroup N , then all non-
identity elements of N are conjugate. Thus they all have the same order p, for
some prime p, and it is straightforward to check that N ' Znp for some n.

Exercise 7.5 Let G be a t-transitive group on a set Ω with regular normal
subgroup N . Show that:

(a) if t = 3, then N ' Zn2 or G ' S3;

(b) if t ≥ 4, then t = 4, N ' Z2
2 and G ' S4.

Thus we have:
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Theorem 7.6 Suppose G acts 2-transitively on Ω and N is a regular normal
subgroup of G. Then N ' Znp for some prime p. In particular, |Ω| = pn.

Moreover, if G is 3-transitive, then p = 2 or G ' S3, and if t ≥ 4, then
G ' S4 in its natural action on 4 elements.

We can now finish the proof of Theorem 7.2 for the large Mathieu groups.
As M22 is 3-transitive, M21 ' PSL3(4) is simple, and 22 is not a prime power,
the above results imply that M22 is simple.

Since M23 is 4-transitive and M22 is simple, we also find that M23 is simple.
Similarly we obtain that M24 is simple.

8. Some related geometries for the large Mathieu groups

In this section we describe some interesting geometries related to the Mathieu-
Witt designs. They can be found in for example [5, 6, 4].

8.1 The near hexagon related to M24 Consider the large Mathieu-Witt
design M24. This design contains 759 blocks. If b1 and b2 are two disjoint
blocks, then it easily checked that the complement of b1 ∪ b2 is also a block.
We can use this to define a partial linear space N on the blocks of M24: The
lines of this partial linear space are the triples of pairwise disjoint blocks. This
partial linear space N is called the near hexagon related to M24.

Exercise 8.2 Check that this near hexagon satisfies the following (see [4]):

(a) The distance between two blocks b and b′ in the collinearity graph of the
near hexagon is equal to 2, if the two blocks meet in 4 points and 3, if
they meet in 2 points.

(b) Given a line l and a block b, then there is a unique block on l closest to b.

(c) The collinearity graph is distance regular.

8.3 Consider a subset S1 of 4 points of M24. For each point x 6∈ S, there is a
unique block containing S∪{x}. Hence there are exactly 5 blocks bi, 2 = 1, . . . , 6
containing S1. Let Si be the complement of S in bi. Then the

⋃
i∈{1,...,6} Si is

a partition of the 24 points of M24. The union of any two elements from this
partition is a block. There are 15 such blocks. These 15 blocks are the points of
a subgeometry of N , called a quad, which is a generalized quadrangle of order
(2,2). (Check this!)

The geometry of blocks, lines (triples of disjoint blocks) and quads has
Buekenhout diagram

s s sL
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To see this we have to check that the lines and quads on a fixed block form
a linear space.

Fix a block b and two lines on b, say {b, b1, b2} and {b, b′1, b′2}. Then b′i ∩ b′j
contains 4 points. Hence there is a unique quad containing the two lines. This
easily implies that the residue at a block is a linear space of order 2. It contains
15 lines and 35 quads. Actually L is isomorphic to the linear space of points
and lines of PG(3, 2).

Exercise 8.4 Prove that the residue of a block is indeed the point-line space
of PG(3, 2).

8.5 Two Petersen geometries. Let N be the geometry of blocks, lines and
quads of the near hexagon constructed in the previous section. Fix a point p of
the designM24. Then the set Hp consisting of all blocks ofM24 containing p is
a geometric hyperplane of the near hexagon N . Indeed, as any line of the near
hexagon consists of a partition of the point set of M24 into 3 blocks, every line
of N has a unique block in Hp.

We can now construct a rank 4 geometry as follows: The type 1 elements
are all the blocks not in Hp. Type 2 are pairwise disjoint blocks not containing
p. The elements of type 3 are the complements in quads from Hp. Notice that
such complements are Petersen graphs. And finally, the type 4 elements are the
23 points different from p. Incidence between the elements of type 1, 2 and 3
is inherited from the near hexagon geometry N . A point q 6= p is incident with
block, pair of disjoint blocks or Petersen graph, if and only if it is not contained
in the block or blocks involved in the disjoint pair or Petersen graph.

The resulting geometry has diagram

s s s sP

Its automorphism group contains of course (and is actually equal to) M23.
The geometry is called the Petersen geometry for M23. The residue of a point
is the Petersen geometry for M22 with diagram

s s sP

Exercise 8.6 Determine the number of elements of each type in both Petersen
geometries described above.

We notice that there are also Petersen geometries related to the sporadic
groups Co2, J4 and the Baby Monster BM , see [6].
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9. The small Mathieu groups

In this section we sketch the construction of the small Mathieu groups and their
designs. Following [11], see also [9], we start with a 2-(9,3,1) design and will
extend it 3 times to obtain a 5-(12,6,1)-design. The automorphism group of this
design contains the 5-transitive group M12. The one and two point stabilizers
in this group are the groups M11 and M10, respectively. These groups are the
so called small Mathieu groups. The groups M11 and M12 are among the 26
sporadic simple groups. The group M10 contains a normal subgroup of index 2
isomorphic to the alternating group A6.

The designs we construct carry the structure of diagram geometries with
diagram

M10 : s s sc Af

M11 : s s s sc Af

M12 : s s s s sc Af

9.1 The affine plane of order 3. An example of a 2-(9,3,1) design is the
affine plane of order 3: as points we take the vectors of the vector space GF (3)2,
where GF (3) denotes the field with 3 elements. The blocks (also called lines) are
the triples of points contained in a coset of a 1-dimensional subspace. Indeed,
there are 9 points in the design; any block consists of 3 points and any pair of
points is in a unique coset of a 1-dimensional subspace.

It is not hard to show that this is, up to isomorphism, the only 2-(9, 3, 1)
design. For this reason, the design is also called the affine plane of order 3.

Let us denote this unique design by Θ. It is displayed in Figure 3. Its points
and lines are encoded as follows:

points

(0,0) 1
(1,0) 2

(-1,0) 3
(0,1) 4
(1,1) 5

(-1,1) 6
(0,-1) 7
(1,-1) 8

(-1,-1) 9

lines

1 2 3 1 6 8

1 5 9 1 4 7

2 6 7 2 4 9

2 5 8 3 4 8

3 5 7 3 6 9

4 5 6 7 8 9

Of course, the automorphism group of the design contains the group of
translations, a group of order 9. The stabilizer of (0, 0) contains the group
GL2(3). In particular, the automorphism group of the design contains a group
isomorphic to the split extension 32:GL2(3). The order of this group is 32 ·48 =
432.
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Figure 3. The affine plane of order 3.

As indicated above, we will consider the automorphism group of Θ as a
subgroup of the permutation group on the set P of points. With the labeling
given in Figure 3 this means it is a subgroup of S9.

An easy check shows that the following permutations are contained in H :=
Aut(Θ):

a = (1, 2, 3)(4, 5, 6)(7, 8, 9), a translation
b = (1, 4, 7)(2, 5, 8)(3, 6, 9), a translation
c = (2, 9, 3, 5)(4, 6, 7, 8),
d = (2, 7, 3, 4)(5, 8, 9, 6),
e = (5, 7)(4, 9)(6, 8),
f = (4, 7)(5, 8)(6, 9).

The subgroup G := 〈a, b, c, d〉 of H is also 2-transitive on the points of Θ. It
is a normal subgroup of H of order 72.

9.2 Extensions of the affine plane and the group M10. Suppose ∆ =
(P,B) is a 3-(10, 4, 1) design. Then the number of blocks in B equals 10 · 9 ·
8/(4 · 3 · 2) = 30. Moreover, each point is on 12 blocks. Fix some point p of ∆,
and consider the residue ∆p of ∆ at the point p. Then ∆p is a 2-(9, 3, 1) design,
and hence isomorphic to the affine plane Θ discussed above. To be specific, take
p = 10 and identify ∆10 with this affine plane. The 12 blocks of ∆ on p = 10
are then the sets {10} ∪ b where b is a block of Θ.

Next we want to show how to reconstruct ∆ from the design Θ. For that
purpose we still have to determine the remaining 30− 12 = 18 blocks. A block
of ∆ not containing 10 consists of 4 points of Θ meeting any block of Θ in at
most 2 points. Any set of 4 points of Θ with this property is called a 4-arc. The
number of 4-arcs in Θ is equal to 54 = 9 · 8 · 6 · 3/(4 · 3 · 2 · 1).

We can easily check that H is transitive on the set of 4-arcs of Θ. However,
under the action of the smaller group G this orbit splits into 3 orbits of size 18.

Exercise 9.3 Prove that two 4-arcs are in the same G-orbit if and only if they
intersect in an even number of points.
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Figure 4. The affine plane ∆1.

Let ∆ be the following design: the point set is {1, . . . , 10}; the blocks of ∆
are the 12 sets {10} ∪ b, where b is a block of Θ, and the eighteen 4-arcs in the
G-orbit of {1, 2, 4, 5}. We check that ∆ is a 3-(10, 4, 1) design.

Fix the point 1 and consider the residue ∆1. The 9 points and 12 blocks form
a 2-(9, 3, 1) design isomorphic to Θ, see Figure 4. The automorphism group of
∆1 contains the translation

g = (10, 2, 3)(4, 9, 8)(7, 6, 5).

It is easily checked that the block set of ∆ is invariant under g, so g ∈ Aut(∆).
Let M10 be the subgroup of S10 generated by G and the element g. Then

M10 is transitive on the 10 points of ∆. Hence at each point p of ∆ the residual
design is an affine plane. But then ∆ itself is indeed a 3-(10, 4, 1) design. An
order computation yields that |M10| = 10 · 9 · 8 = 720: The point stabilizer of
10 equals G. As G is 2-transitive on {1, . . . , 9}, the group M10 is 3-transitive
on {1, . . . , 10}; in particular, it is transitive on the 30 blocks. It is called the
Mathieu group of degree 10.

Exercise 9.4 Prove the uniqueness of a 3-(10,4,1)-design.

9.5 Multiple extensions and the small Mathieu groups. The preceding
procedure gives us three ways, corresponding to the three choices for the G-orbit
on the 4-arcs of Θ, to complete the design Θ to a 3-(10, 4, 1) design ∆. As stated
above all three ways lead to isomorphic designs; here it follows directly from the
fact that H normalizes G and permutes the 3 choices of 18 blocks. However, it
also shows how we may proceed to extend ∆ to a 4-(11, 5, 1) design and even
to a 5-(12, 6, 1) design. We will construct a 4-(11, 5, 1) design and a 5-(12, 6, 1)
design with the help of a 4- and a 5-transitive group.

Let O10 = {1, 2, 4, 5}G, O11 = {1, 2, 4, 8}G and O12 = {1, 2, 4, 6}G be the
three orbits of G on the 4-arcs of Θ. For i = 10, 11, 12, extend Θ to a design
∆i with point set {1, . . . , 9} ∪ {i}, and with blocks the sets b ∪ {i} (where b
runs through the blocks of Θ) and the sets in Oi. Then both ∆11 and ∆12 are
3-(10, 4, 1) designs just as ∆10 = ∆.

14
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As before we can prove that

g2 = (11, 2, 3)(4, 6, 9)(7, 5, 8)

and
g3 = (12, 2, 3)(4, 8, 5)(7, 9, 6)

are automorphisms of ∆11 and ∆12, respectively.
Consider the groups M11 = 〈M10, g2〉 and M12 = 〈M11, g3〉. Since g2 moves

11 and g3 moves 12, these groups are transitive on {1, . . . , 11} and {1, . . . , 12},
respectively. Actually, as M10 is 3-transitive, we find that M11 is at least 4-
transitive and M12 at least 5-transitive.

Now consider a design M12 on the 12 points {1, . . . , 12} with the following
132 blocks:

• {10, 11, 12} ∪ L, where L is a line of Θ.

• {10, 11, 12} ∪O \ {i}, where O ∈ Oi, with i ∈ {10, 11, 12}.

• {i} ∪ L ∪M , where L,M are intersecting lines of Θ and L∆M is a 4-arc
in Oi, again i ∈ {10, 11, 12}.

• L ∪M , where L,M are distinct parallel lines of Θ.

(Notice that the designs ∆i appear as residues of two points.) An easy check
shows that M12 is contained in the automorphism group of this design. As M12

is 5-transitive on the points, we find that any 5-tuple is contained in at least
one block. But then it is contained in exactly one block. This implies thatM12

is a 5-(12, 6, 1) design.
Order calculations reveal that

|M11| = 11 · |M10| = 11 · 10 · 9 · 8 = 7920,

and
|M12| = 12 · |M11| = 12 · 11 · 10 · 9 · 8 = 95040.

The groups M11 and M12 are called the Mathieu groups of degrees 11 and 12,
respectively.

Exercise 9.6 Prove that M11 and M12 are simple. (Here you may use the fact
that M10 ' A6 · 2.)

References

[1] M. Aschbacher, Finite group theory, Cambridge University Press,
Cambridge, 1985.

[2] M. Aschbacher, Sporadic Groups, Cambridge University Press,
Cambridge, 1994.

15



The Mathieu groups and their geometries

[3] N. Biggs, N. White, Permutation groups and combinatorial struc-
tures, LMS Lecture Notes Series 33, Cambridge University Press,
Cambridge, 1979.

[4] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular
Graphs, Springer, Berlin and New York, 1989.

[5] F. Buekenhout, Diagram geometries for sporadic groups, in Finite
Groups – Coming of Age (J. McKay ed.), A.M.S. Contemporary
Mathematics 45, 1985, 1–32.

[6] F. Buekenhout, A. Pasini, Finite diagram geometries extending
buildings, Chapter 22 in Handbook of Incidence Geometry (ed.
F. Buekenhout), Elsevier, Amsterdam, 1995.

[7] P. Cameron, J. van Lint, Designs, graphs, codes and their links,
LMS Student texts 22, Cambridge University Press, Cambridge,
1991.

[8] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wil-
son, An ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.

[9] H. Cuypers, L.H. Soicher, H. Sterk, The small Mathieu groups,
Project in Some Tapas of Computer Algebra (eds. A.M. Cohen, H.
Cuypers, H. Sterk), to appear.

[10] D.R. Hughes and F.C. Piper, Design Theory, Cambridge University
Press, Cambridge, 1985.
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[12] E. Mathieu, Mémoire sur le nombre de valeurs que peut acquérir
une function quand on y permut ses variables de toutes le manière
possibles, J. de Math. Pure et App. 5 (1860) 9–42.
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