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Abstract. We propose a hash function based on three design principles: the sponge construction, 
ARX operations, and the wide trail strategy. While the sponge construction applies generically to any 
sufficiently strong permutation, the wide trail strategy and the ARX operations are naturally 
somewhat incompatible. We show that while the ARX operations provide only very weakly nonlinear 
S-boxes, it is possible to build very strong linear diffusion layers with them. As a result, the wide trail 
argument, which bounds the attacker’s success probability in terms of the minimum number of active 
S-boxes across two rounds, survives. The proposed hash function is one of a very select group of 
ARX ciphers featuring rigorous bounds against differential and linear cryptanalysis. 
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1. INTRODUCTION 

In the design of symmetric ciphers, the wide trail strategy is a common technique offering a strong 
resilience against differential and linear cryptanalysis [6] and lies at the base of many popular and widely 
adopted ciphers such as the AES [5]. The technique entails alternating between a confusion layer, in which 
many highly nonlinear but localized functional blocks operate in parallel on a large state; and a diffusion layer, 
in which the localized effects of the previous layer are spread out across the entire state. The combined effect of 
both layers results in an upper bound on the differential and linear probabilities, thereby enabling the designer 
to estimate the number of rounds required to reach a target security level against the matching attacks. 

An alternate design strategy increasingly popular particularly in the context of software-oriented 
ciphers is the minimalist reliance on only three instructions: Modular Addition, Cyclic Rotation, and 
Exclusive-or (xor), or ARX for short. While these operations do not generally offer the strong non-linearity 
required by the relatively hard-to-compute functional blocks in the wide trail strategy, ARX ciphers can 
afford to compensate with a larger number of rounds: compared to the highly non-linear functional blocks of 
the wide trail strategy, the addition, rotation, and xor functions are relatively fast. 

The ARX and wide trail design strategies seem to be fundamentally in opposition to each other. 
Popular ARX ciphers like Salsa [3], Blake [1], and Speck [2] drop rigorous bounds on the differential and 
linear probabilities altogether in favor of heuristic arguments. A notable exception to this list but still in 
support of the opposition of strategies, is the SPARX and LAX family of ciphers [8]. The designers of these 
families introduce an alternative to the wide trail strategy called the long trail strategy, which advocates 
using large and expensive functional blocks derived from many simple operations (such as ARX operations), 
coupled with a cheaper and weaker diffusion layer. The long trail strategy admits provable bounds on the 
linear and differential success probabilities. 

Our contribution. We present Eaglesong, a hash function whose design successfully unifies the ARX 
and wide trail strategies. The key to this fusion is the algebraic interpretation of the addition, rotation, and 
xor operations. This algebraic perspective in turn enables the construction of a strong diffusion layer, a 
rigorous analysis of its properties, and the derivation of bounds on the linear and differential probabilities in 
accordance with which the number of rounds is set. 
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2. SPECIFICATION 

Eaglesong is a sponge function. The innovation is in the construction of the permutation F .  We revisit 
the standard construction of a hash function from a sponge function in Section 2.1 for the sake of a self-
contained presentation. For other modes of operation derived from the sponge construction we refer the 
reader to the exposition by Bertoni et al. [4]. 

The Eaglesong permutation F  operates on a state of 16 words of 32 bits by applying the round function 
N = 43 times for a 128 bit security level. The round function consists of four steps: 

1. Bit matrix, with which words are mixed across the entire state. This diffusion is accomplished using 
an invertible 16×16 matrix over 2F . The action of this matrix is realized with only the xor operation. 

2. Circulant multiplication, in which bits are mixed within each word. This operation is realized with 
xors and rotations, compatible with multiplication-by-constant in the quotient ring 32

2[ ] 1x x〈 + 〉F . 
3. Injection of constants, in which a predetermined list of random constants are xored into the state. 

The constants are different each round. 
4. Nonlinear map, in which nonlinear operations are applied to the state elements. Here we use integer 

addition modulo 232, which is nonlinear with respect to vector spaces over 2F . Modular addition is 
applied twice, before and after a rotation of the words by 8 bits in opposite directions. 

A diagram overview of the round function is presented in Fig.1. 
 

 
Fig. 1 – Eaglesong round function F .  

 
Bit matrix. The between-word diffusion layer applies a linear operation to the vector of state elements. 

Specifically, the operation on the state vector e is given by a matrix 16 16
2
×∈M F  via T Te e M . As this 

matrix consists of known elements in the coefficient ring 2F , the multiplications involved in this linear 
transformation correspond to simply xoring or ignoring the elements of the state vector depending on 
whether the matching element of the matrix is a 1 or a 0. 

The matrix M is determined via the binary BCH code with 5,  6,  31m n= δ = = , extension field 
5 2

2[ ] 1x x x= 〈 + + 〉E F , and generator polynomial 

15 11 10 9 8 7 5 3 2( ) 1g X X X X X X X X X X X= + + + + + + + + + + . 
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As a linear code, this code is defined by a generator matrix 16 31
2
×∈G F . Without loss of generality we 

may consider the echelon form of G ,  or in the lingo of coding theory, its systematic form: ( )|s =G I M , 

where 16 15
2
×∈M F . Then we find M by adjoining to M  the unique column vector 16

2∈k F  satisfying 
T 0=k M . In particular, M is given by: 

1 1 1 1 0 1 0 1 1 1 1 1 0 0 0
0 1 1 1 1 0 1 0 1 1 1 1 1 0 0
0 0 1 1 1 1 0 1 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 0 1 0 1 0 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 1 1 0 1 0 0 0 1
1 0 1 0 1 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 1 1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 1 0 1 0 0 1 0 0
0 0 0 1 0 1 0 1 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0 1 1 0 1 0 0 1
1 1 1 1 0 0 0 0 1 0 0 1 1 0 0
0 1 1

=M

1
1
1
1
0
1
0
1
1
1
1
1
0

1 1 0 0 0 0 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0
1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1
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 (1)

 

An exhaustive search in the primal code ( ){ }T T 16
2, | ∈x x M x F  and the dual code 

( ){ }T T T 16
2, | ∈x x M x F  shows that neither have nonzero codewords of Hamming weight less than 8. 

Moreover, the minimum weight of codewords in the primal and dual code is 5 with respect to the following 
alternative “pairwise Hamming weight” metric: partition the codeword into adjacent pairs of bits, and then 
count the number of pairs different from 00. 
 

Circulant multiplication. The within-word diffusion interprets each word as an element in the ring 
32

2[ ] 1x x〈 + 〉F  and maps it to its product by a trinomial from the same ring. The known coefficient of this 
multiplication is given by 1 i ia bx x+ +  where all 0ia ≠  and { }0,i ib a∉  are determined from SHAKE256 
seeded with the ASCII string “I thought of calling it ‘information’, but the word was overly used, so I 
decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a better idea”. We use 
rejection sampling to ensure that no coefficient is its own inverse, and that the Hamming weight of any 
product of coefficients is at least 7. 

Trinomials are invertible under multiplication in the ring 32
2[ ] 1x x〈 + 〉F , meaning that this operation 

maps uniform inputs to uniform outputs. Moreover, given that multiplication by iax  represents rotation by 
ia  positions, the multiplication can be computed with two rotations (denoted by 5 ) and two xors 

(denoted by ⊕ ): 

( )1 ( ) ( )i ia b
i i i i i i ie e x x e e a e b× + + = ⊕ ⊕5 5 . 

This operation has a characterization in the language of coding theory: the set 

( ){ }32
2), [1 | ] 1( i ia b

i i ie e x x e x x× + + 〈 + 〉∈F  represents a quasi-cyclic code of length 64n =  and dimension 

32k = . Its minimal distance can be verified by way of brute force to be at least four. 
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Injection of constants. In this layer, the constant ic  is xored into state element ie . The ic  are 
determined from SHAKE256 seeded with the ASCII string “I have always been on the machines’ side”. 
They are provided in the full version of the paper, which is available from the authors upon request. 
 

Nonlinear map. The nonlinear map consists of three steps: odd-to-even addition, followed by rotation, 
followed by even-to-odd addition1. Specifically and in sequence: 

1  if  even
 otherwise;

i i
i

i

e e i
e

e
+


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24  otherwise;

i
i

i

e i
e

e
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Here  represents addition modulo 322 . These operations are the only component of the Eaglesong round 
function that are nonlinear for 32

2[ ] 1x x〈 + 〉F . 
This nonlinear map departs from traditional substitution-permutation networks, in which the 

substitution layer is typically a bricklayer function of S-boxes, applying to each word without mixing them 
with others. In contrast, the present map mixes pairs of words. Alternatively, the Addition-Rotation-Addition 
block can be viewed as an S-box applying to pairs of words rather than individual ones. 

2.2. The hash function 

The sequence of four steps described above constitutes a single round. Repeating this round 43N =  
times computes the Eaglesong permutation. Using this permutation in a sponge construction is what gives 
the hash function. 

The sponge construction consists of two phases, absorbing and squeezing, and is associated with two 
parameters, the rate r  and the capacity c  such that the full state consists of r + c  bits. First, the state is 
initialized to the all zero string. Then a delimiter is appended to the input before the entire input is cut into 
chunks of r  bits, with the last chunk being possibly smaller. Every chunk is xored into the state, after which 
the permutation is applied. This describes the absorbing phase. In each iteration of the squeezing phase, r  
bits are read out from the state before the permutation is applied. To obtain a hash function one truncates the 
output to whatever output length is specified. For Eaglesong, we set c = r = 256 bits and 0×06 as the 
delimiter byte. 

Out of space considerations, we omit pseudocode for the permutation and sponge construction. We refer the 
interested reader to the full version of this paper for a standalone specification of the complete hash function. 

3. SECURITY ANALYSIS 

We assess the security of Eaglesong (as a block cipher in the PRP game) from the perspective of two 
branches of statistical cryptanalysis: differential cryptanalysis, and linear cryptanalysis; and provide bounds 
on the distinguishing advantage for one query – or conversely, on the requisite number of queries for a 
reasonably successful distinguisher – as a function of the number of rounds N .  Of these branches, linear 
cryptanalysis yields the weakest bound, and the number of rounds is set accordingly. For the sake of brevity 
we omit an exhaustive list of alternative statistical cryptanalyses and rely on the overwhelmingly accurate 
right-hand rule that differential and linear cryptanalysis are the best performers anyway. 

3.1. Differential cryptanalysis 

Differential cryptanalysis studies the propagation of differences through various stages of the cipher. 
Specifically, let { } { }: 0,1 0,1n nF →  be a function, then for fixed input difference { }∆ 0,1 nx∈  and output 

difference { }∆ 0,1 ny∈  we define the differential probability as 

                                                           
1 Here and elsewhere, indexation starts, as it should, from zero. 
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[ ]( )DP ∆ ,∆ Pr ( ) ( ∆ ) ∆F X
x y F X F X x y

∆
= ⊕ ⊕ = . (2)

When the cipher is parameterized by an unknown key K ,  we prefer the expected differential 
probability instead: 

[ ]EDP ∆ ,∆ E Pr ( ;( ) ( ∆ ∆) ; )F K X
x y F X K F X x K y

∆  = ⊕ ⊕ =  
. (3)

The utility of these notions stems from their capacity to be outliers. If the attacker knows a suitable 
differential pair (∆ ,∆ )x y  for which EDP (∆ ,∆ )F x y  is much larger than it would be if F  were random (see 
[8] for the expected behaviour of random permutations), then by computing this value from a large enough 
number of plaintext and ciphertext pairs, the attacker can determine which function he is interfacing with – 
the cipher, or a random permutation. From the designer’s standpoint, it is imperative to make the EDP 
indistinguishable from that of a random permutation, for all differential pairs. From a security analysis 
perspective, a common method is to bound the maximum expected differential probability (MEDP): 

{ }∆ ,∆ {0,1} \ 0
MEDP max EDP ∆( ),∆

nF F
x y

x y
∆

∈
= . (4)

If the function F  decomposes as a sequence of stages, i.e., 0 1 1rF f f f −= , then one can consider 
a vector of differences called a differential characteristic ( )0 1∆ ,∆ , ,∆ rx x x= …∆x  and the associated 
(expected) differential characteristic probability ((E)DCP): 

1

1
0

DCP ( ) DP ∆ ,∆ ﻿( )
i

r

F i i
i

f x x
−∆

+
=

= ∏∆x , (5)

[ ]
1

1
0

EDCP ( ) Pr ;( ) ( ﻿);
r

F i i i iK X
i

E f X K f X x K x
−∆

+
=

 
= ⊕ ⊕∆ = ∆ 

 
∏∆x . (6)

We hope to bound the maximum of this value, the maximum expected differential characteristic probability 
(MEDCP): 

1{0,1}( )
MEDCP max ( )EDCP

n rF F+

∆

∈
=

∆
∆

x
x . (7)

We say a bit in a differential characteristic is active if it is set, and components in the cipher’s circuit are 
active for the characteristic if it has at least one active input bit. 

We apply two heuristics. First, we ignore the positive reinforcement of characteristic probabilities due 
to different characteristics that have the same first and last value, i.e. ≠∆ ∆x y  but 0 0∆ ∆x y=  and 

1 1∆ ∆r rx y− −= . Second, we assume that the differential probabilities are independent in each stage. Although 
these assumptions are strictly speaking false, they are common and have proved to be “good enough” over 
the years. 

We decompose the Eaglesong permutation F  as a sequence of N  rounds if , { }0, , 1i N∈ … − . With 
the above heuristics we can then identify MEDCPF  with the N th power of MEDCP if . Furthermore, after 
decomposing a single round function into its four layers, one observes that the bit matrix, circulant 
multiplication, and injection of constants (and key), do not decrease the EDP because they are all affine. All 
EDP decrease must therefore come from the nonlinear map, and more specifically from the modular 
additions contained therein. 

Modular addition takes two outputs X and Y, and produces one output, 32 mod 2Z X Y= + . With respect 
to nonzero input differences, we distinguish two cases. First, { }31∆ ,∆ 0,2x y∈  giving rise to a { }31∆ 0,2z∈  
with probability 1. Second, and more interestingly, ∆x  or ∆y  or both take values from outside the set 

{ }310,2 , and whatever value the output difference ∆z  takes, it takes it with probability at most one half. 
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The Addition-Rotation-Addition (ARA) block is constructed such that there is always at least one 
addition incurring an MEDP degradation of 0.5 if the block is active. In fact, the event of 0.5 MEDP 
degradation is rare. We count only four difference characteristics with this probability: 

( ) ( ) ( ) ( )1 231 31 7 7 7
DP 1 DP 1 DP 0.52 ,0 2 ,0 2 ,0 2 ,2= = =→ → →

5  (8)

( ) ( ) ( ) ( )1 231 31 31 23 23
DP 1 DP 1 DP 0.52 ,2 0,2 0,2 0,2= = =→ → →

5  (9)

( ) ( ) ( ) ( )1 223 23 31 31 31
DP 0.5 DP 1 DP 12 ,0 2 ,0 2 ,0 2 ,2= = =→ → →

5  (10)

( ) ( ) ( ) ( )1 27 7 7 31 31
DP 0.5 DP 1 DP 12 ,2 0,2 0,2 0,2= = =→ → →

5  (11)

Aside from the difference (0,0), which propagates with probability 1, any other characteristic occurs with 
probability at most 0.25. 

The distinction between differential probability 0.5, and 0.25 or less, motivates a distinction between 
weakly active (0.5), and strongly active (0.25 or less), Addition-Rotation-Addition blocks. In particular, it 
enables an argument lower-bounding the minimum number of strongly active Addition-Rotation-Addition 
blocks across any two rounds. We know that the bitmatrix induces a code of minimum distance 5 under the 
pairwise Hamming weight metric. An exhaustive computer enumeration of all possible output patterns of 1, 
2, 3, or 4 weakly active Addition-Rotation-Addition blocks (and no strongly active ones), indicates that in all 
cases 5 or more blocks are strongly active in the next layer. The same observation holds in reverse. The 
worst possible scenario not captured by our enumeration is still five active blocks across two rounds, but 
with at least two strongly active ones. Consequently, the EDCP of any characteristic spanning two rounds is 
at most 3 2 70.5 0.25 2−⋅ = . Finally, the MEDCP of the full N  rounds is this number raised to the power 2N : 

7 / 2MEDCP 2 N
F

−≤ . (12)

3.2. Linear cryptanalysis 

Where differential cryptanalysis studies the propagation of differences in pairs of inputs and outputs, 
linear cryptanalysis studies the propagation of masks and the inputs and outputs that they satisfy. 
Specifically, a mask , {0,1}na b∈  on an input-output pair ( ),X Y  with {0,1}nX ∈  and ( )Y F X=  for some 
function F  is satisfying if the sum of inner products is zero, i.e., 0a X b Y⋅ ⊕ ⋅ = . For a function F ,  we 
associate the linear potential (LP) to this event; the expectation of that potential, in the case of a keyed 
primitive; and the maximum of that expectation: 

[ ]( )2
LP , 2 Pr ( ) 0 1( )F X

a b a X b F X
∆
= ⋅ ⋅ ⊕ ⋅ = − ; (13)

( ; )ELP ( , ) (E , )LPF F KK
a b a b

∆

⋅ =    ; (14)

{ }, {0,1} \ 0
MELP ELP ( , )

nF F
a b

max a b
∆

∈
= . (15)

Instead of differential characteristics, we have linear trails that analogously represent sequences of 
masks applied to the inputs and outputs of a function that decomposes into various stages 0 1rF f f −= . 
We associate the ((maximum) expected) linear trail potential (((M)E)LTP) accordingly. 

1

0

LTP , LP , ﻿( ) ( )
i

r

F i i
i

fa b a b
−∆

=

=∏ ; (16)
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( )

1

;
0

ELTP ( , ) E LP ( , ﻿)
i

r

F i if KK
i

a b a b
−∆

⋅
=

 
=  

  
∏  ; (17)

,
MELTP ELTP ( , )F Fa b

max a b
∆
= . (18)

Like their differential counterparts, the utility of these notions stems from their capacity to be outliers. 
An attacker who computes a sufficiently close approximation to the actual linear probability can distinguish 
the cipher from a random permutation. The task of the designer is then to push the linear potential 
sufficiently close to zero so that it cannot be detected using the amount of data given. 

Also like in differential cryptanalysis, the affine operations do not affect the ELP; all ELP decrease 
must come from the modular additions in the nonlinear layer. The key challenge is therefore to determine 

ARAMELP . 
First, we determine the MELP of modular addition, where ( , )a b  is the mask applied to the input and c  

is applied to the output. Observe that the mask 1a b c= = =  is always satisfied, reflecting the fact that the 
least significant bit of the output is always the exclusive-or of the least significant bits of the inputs. In all 

other cases, ( )ModAdd
1LP ( , ),
4

a b c ≤ . 

For the ARA block, we observe four trails that are satisfied with potential 1, associated with all 
combinations of masks (0,0,0) or (1,1,1) for the two adders. The first and last elements of these trails should 
be considered inactive masks. The trails are as follows, with elements ordered according to the picture. 

 
Fig. 2 – Trails elements ordering. 

(  ,  ,  , ,  ,   ,  , ,  ,    )a b c d e f g h i j  
(  0, 0, 0, 0, 0, 0, 0, 0, 0, 0  )
(  1, 1, 1, 1, 0, 256, 0, 0, 256, 0  )
(  0, 256, 0, 0, 256, 0, 1, 1, 1, 1  )
(  1, 257, 1, 1, 256, 256, 1, 1, 257, 1  )

 
(19)

All other trails activate at least one adder and are hence satisfied with potential at most 22− . This 
observation motivates an exhaustive enumeration of all masks for the full state in the input to the nonlinear 
layer in round i +1, in order to compute the matching activity pattern at the output of the nonlinear layer in 
round i ,  as well as the other way around. Our computer enumeration indicates that in all nonzero cases at 
least 3 pairs of words are active in the other round. Supplementing this exhaustive enumeration with a 
symbolic treatment of one active pair of words (with all the others being inactive) shows that on the other 
side of the linear layers at least two pairs of words are active. These enumerations establish that 3 is a lower-
bound on the minimum number of active S-boxes in any trail spanning two rounds, and so 

1
/2 3 /2 3MELTP MELP MELP 2

i i
N N N

F f f ModAdd+

× −≤ ≤ = . (20)
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